Integrating Boosting and Stochastic Attribute Selection Committees
for Further Improving the Performance of Decision Tree Learning

Zijian Zheng, Geoffrey I. Webb, and Kai Ming Ting
School of Computing and Mathematics
Deakin University, Geelong
Victoria 3217, Australia
{zijian,webb,kmting}@deakin.edu.au

Abstract

Techniques for constructing classifier committees
including Boosting and Bagging have demonstrated
great success, especially Boosting for decision tree
learning. This type of technique generates several clas-
sifiers to form a committee by repeated application of a
single base learning algorithm. The committee mem-
bers vote to decide the final classification. Boosting
and Bagging create different classifiers by modifying
the distribution of the training set. SASC (Stochas-
tic Attribute Selection Committees) uses an alterna-
tive approach to generating classifier commiitees by
stochastic manipulation of the set of attributes con-
sidered at each node during tree induction, but keeping
the distribution of the training set unchanged. In this
paper, we propose a method for improving the perfor-
mance of Boosting. This technique combines Boosting
and SASC. It builds classifier committees by manipu-
lating both the distribution of the training set and the
set of attributes available during induction. In the syn-
ergy, SASC effectively increases the model diversity of
Boosting. Experiments with o representative collection
of natural domains show that, on average, the com-
bined technique outperforms either Boosting or SASC
alone in terms of reducing the error rate of decision
tree learning.

1. Introduction

In order to increase the prediction accuracy of clas-
sifiers, classifier committee! learning techniques have
been developed with great success [11, 12, 13, 18, 4, 3,

1 Committees are also referred to as ensembles [7].

0-7803-5214-9/98/$10.00 © 1998 IEEE. 216

9, 1, 6, 20, 10, 2, 21], especially Boosting? [13, 18, 2].
This type of technique generates several classifiers to
form a committee by using a single base learning al-
gorithm. At the classification stage, the committee
members vote to make the final decision.

Given a training set described using a set of at-
tributes, conventional classifier learning algorithms
such as decision tree learning algorithms [5, 17] build
one classifier. Usually, the classifier is correct for most
parts of the instance space, but incorrect for some
small parts of the instance space. If classifiers in a
committee partition the instance space differently, and
most points in the instance space are correctly covered
by the majority of the committee, then the committee
has a lower error rate than the individual classifiers.

Bagging [4] and Boosting [19, 11, 12, 13, 20}, as
two representative methods of this type, can signifi-
cantly decrease the error rate of decision tree learning
[18, 13, 2] with Boosting being generally better than
Bagging [18, 2]. They repeatedly build different clas-
sifiers using a base learning algorithm, such as a de-
cision tree generator, by changing the distribution of
the training set. Bagging generates different classifiers
using different bootstrap samples. Boosting builds dif-
ferent classifiers sequentially. The weights of training
examples used for creating each classifier are modified
based on the performance of the previous classifiers.
The objective is to make the generation of the next
classifier concentrate on the training examples that
are misclassified by the previous classifiers. The main
difference between Bagging and Boosting is that the
latter adaptively changes the distribution of the train-
ing set based on the performance of previously created
classifiers and uses a function of the performance of a
classifier as the weight for voting, while the former uses

2Breiman (3] refers to Boosting as the arcing (adaptively re-
sample and combine) method.

Copyright © 2005 IEEE. Reprinted from the Proceedings of ICTAI'98

This material is posted here with permission of the IEEE. Internal or personal use of this nf

is permitted. However, permission to reprint/republish this material for advertising or

promotional purposes or for creating new collective works for resale or redistribution must

obtained from the IEEE by writing to pubs-permissions@ieee.org.

By choosing to view this document, you agree to all provisions of the copyright laws proted

michelle
Copyright © 2005 IEEE. Reprinted from the Proceedings of ICTAI'98
This material is posted here with permission of the IEEE. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to pubs-permissions@ieee.org.
By choosing to view this document, you agree to all provisions of the copyright laws protecting it.

equal weight voting.

In contrast to Bagging and Boosting, SAsC
(Stochastic Attribute Selection Committees) adopts
an alternative approach to generating different classi-
fiers to form a committee [21]. It builds different clas-
sifiers by modifying the set of attributes considered at
each node during tree induction, while the distribution
of the training set is kept unchanged. The selection of
an attribute set is carried out stochastically. Experi-
ments show that as BOOST, SASC can also significantly
reduce the error rate of decision tree learning, although
the two techniques use quite different mechanisms [21].

In the light of this finding, we propose, in this paper,
a novel approach to further improving the accuracy
of decision tree learning. The new approach is called
SascB (Stochastic Attribute Selection Committees
with Boosting), a combination of the Boosting and
SAsc techniques. Since SAsC and Boosting improve
the accuracy of decision tree learning using different
mechanisms, we expect that combining them can take
advantage from both. Indeed, we show that the syn-
ergy performs, on average, better than either SASC or
Boosting alone. Our analysis suggests that the im-
provement is achieved through increasing model di-
versity by SASC, in addition to that by Boosting.

There are some other classifier committee learn-
ing approaches such as generating multiple trees by
manually changing learning parameters [15], error-
correcting output codes [8], and generating different
classifiers by randomizing the base learning process
[9, 1] which is similar to SAsc [21]. Reviews of re-
lated methods are provided by Dietterich [7] and Ali
[1]. A collection of recent research in this area can be
found from [6].

In the following section, we briefly describe the
Boosting and SASC techniques for decision tree learn-
ing. Section 3 presents the SASCB method of combin-
ing Boosting and SASC. SASCB is, then, empirically
evaluated using a representative collection of natural
domains. Finally, we summarize our conclusions.

2. Boosting and SAsc

Since the SASCB technique is a combination of
Boosting and SASC, we briefly discuss Boosting and
SASC in this section before describing the approach to
combining them. The classification process of Boost-
ing and SASC is presented in Section 2.3, since it is the
same for both of them. For details about Boosting,
see [19], [18], [20], and [2]. For details about SAsC, see
[21].

217

2.1. Boosting

Boosting is a general framework for improving base
learning algorithms, such as decision tree learning, rule
learning, and neural networks. The key idea of Boost-
ing was presented in Section 1. Here, we describe our
implementation of the Boosting algorithm with deci-
sion tree learning, called BOOST. It follows the Boosted
C4.5 algorithm (AdaBoost.M1) [18] but uses a new
Boosting equation as shown in Equation 1, derived
from [20].

Given a training set D consisting of m instances
and an integer T, the number of trials, BOOST builds
T pruned trees over T trials by repeatedly invoking
C4.5. Let wy(z) denote the weight of instance = in D
at trial ¢t. At the first trial, each instance has weight
1; that is, w1 (x) = 1 for each z. At trial ¢, decision
tree H; is built using D under the distribution w;. The
error ¢; of Hy is, then, calculated by summing up the
weights of the instances that H; misclassifies and di-
vided by m. If ¢ is greater than 0.5 or equal to 0,
wg(x) is re-initialized using bootstrap sampling, and
then the Boosting process continues. Note that the
tree with ¢ > 0.5 is discarded,® while the tree with
€ = 0 is accepted by the committee. Otherwise, the
weight w41 (z) of each instance z for the next trial is
computed using Equation 1. These weights are, then,
renormalized so that they sum to m.

wie1) (@) = wi(@)ezp((—1)"ay), (1

where o = 3In((1—€)/e); d(z) = 1if H,
correctly classifies and d(z) = 0 other-
wise.

2.2.SAsc

During the growth of a decision tree, at each deci-
sion node, a decision tree learning algorithm searches
for the best attribute to form a test based on some
test selection functions [5, 17]. The key idea of SASC is
to vary the members of a decision tree committee by
stochastic manipulation of the set of attributes avail-
able for selection at decision nodes. This creates de-
cision trees that each partition the instance space dif-
ferently. In order to have a good quality tree in the
sense that it can correctly cover most parts of the in-
stance space, the tests used at decision nodes should
be as good as possible with respect to the test selection
function employed.

3To make the algorithm efficient, this step is limited to 10X T
times.

C4.58Aas(Att, D, W, P)
INPUT: Att: a set of attributes,
D: a training set represented using At and
classes,
W: instance weights for D,
P: a probability value.
OUTPUT: a pruned tree.

C := the majority class in D

RawTree := Grow-Tree-Sas(Att, D, W, C, P)
PrunedTree := Prune-Tree(RawTree, Att, D, W)
RETURN PrunedTree

Figure 1. The C4.58As decision tree learning
algorithm

We use C4.5 [17] with the modifications described
below as the base classifier learning algorithm in SAsc.
When building a decision node, by default C4.5 uses
the information gain ratio to search for the best at-
tribute to form a test [17]. To force C4.5 to generate
different trees using the same training set, we modified
C4.5 by stochastically restricting the set of attributes
available for selection at a decision node. This is im-
plemented by using a probability parameter P.* At
each decision node, an attribute subset is randomly
selected with each available attribute having the prob-
ability P of being selected. The available attributes re-
fer to those attributes that have non-negative gain val-
ues. For nominal attributes, they must not have been
used in the path from the root to the current node.
Numeric attributes are always available for selection.
This stochastic attribute subset selection process will
be repeated, if no attribute was selected and there are
some attributes available at this node. The objective
is to make sure that at least one available attribute is
included in the subset if possible. After attribute sub-
set selection, the algorithm chooses the attribute with
the highest gain ratio to form a test for the decision
node from the subset. A different random subset is se-
lected at each node of the tree. The modified version
of C4.5 is called C4.5Sas (C4.5 Stochastic Attribute
Selection). The probability of each attribute being in-
cluded in a subset is specified by the parameter P with
a default value of 33%. That is, by default, each avail-
able attribute has at least one third of chance of being
selected into the subset. This allows C4.5SAsS to have
a chance to use different alternative attributes to form
tests at decision nodes when building trees at different
trials using the same training set. C4.5SAS still uses
the best attribute from the subset to form a test each

4The value of P does not change during induction.

218

Grow-Tree-SAs(Att, D, W, C, P)
INPUT: Att: a set of attributes,
D: a training set,
W: instance weights for D,
C: the majority class at the parent node,
P: a probability value.
QOUTPUT: a decision tree.

IF (D is empty)
RETURN a leaf node labeled with C
ELSE
{ C:= the majority class in D
IF (the stopping criterion is satisfied)
RETURN a leaf node labeled with C
ELSE :
{ Attsubset:= select a subset from Att in whic
each available atcribute has
the probability P of being selected.
Testpest := Find-Best-Test(Attsybset, D, W)
IF (Testpest is reasonable (with a positive test
evaluation function value))
{ Use Testpest to partition D and Winto n
subsets Dy, Dy, -+, D, and Wy, Wa, .-,
W, respectively, one for each outcome
of the test
RETURN the tree formed by a decision node
with the test Testpes: and subtrees:
Grow-Tree-SAs(Att, D;, W1, C, P),
Grow-Tree-SAS(Att, Dy, Wa, C, P),

Grow-Tree-SAs(Att, D, W, C, P)
}
ELSE
RETURN a leaf node labeled with C

Figure 2. The algorithm for growing a tree
with stochastic attribute selection

time, although it may not use the best one among all
the attributes available at a node every time.

Figures 1 and 2 provide a description of the C4.5SAs
algorithm. The only difference between C4.5SAs and
C4.5 is that when growing a tree, at a decision node,
C4.53AS creates an attribute subset Atf;,p5.¢ and uses
the best attribute in it to form a test as described
above. All other parts are identical for these two algo-
rithms. With P = 1, C4.5SAS generates the same tree
as C4.5.

Having C4.55As, the design of SASC is very simple.
As described in Figure 3, C4.584s is invoked T times
to generate T different decision trees to form a com-
mittee. Here, all the trees are pruned trees. As in
Boosting, the first tree produced by SASC is the same

SASC(At, D, P, T)
INPUT: Att: a set of attributes,
D: a training set represented using Att and
classes,
P: a probability value,
T: the number of trials.
OUTPUT: a committee, H, containing T pruned trees.

Set instance weight w(z) =1 for every z in D
H, := C4.5SASs(Att, D, w, 1)
FOR each t from 2 to T

H,; := C4.5S8As(Att, D, w, P)
RETURN H

Figure 3. The SAsc learning algorithm

as the tree generated by C4.5.
2.3. Decision making in Boosting and SAsc

At the classification stage, for a given example, both
BooST and SASC make the final prediction through
committee voting. In this paper, a voting method that
uses the probabilistic predictions produced by all com-
mittee members without voting weights is adopted.
With this method, each decision tree returns a distri-
bution over classes that the example belongs to. This
is performed by tracing the example down to a leaf of
the tree. The class distribution for the example is es-
timated using the proportion of the training examples
of each class at the leaf, if the leaf is not empty. This
is the same as C4.5 [17]. When the leaf contains no
training examples, C4.5 produces a class distribution
with the labeled class of the leaf having the probabil-
ity 1, and all other classes having the probability 0.
In this case, BOOST and SASC are different from C4.5.
They estimate the class distribution using the train-
ing examples at the parent node of the empty leaf.
The decision tree committee members vote by sum-
ming up the class distributions provided by all trees.
The class with the highest score (sum of probabilities)
wins the voting, and serves as the predicted class of
BOOST and SASC for this example. There is no voting
weight when summing up class distributions. Class
distribution provides more detailed information than
is obtained when each committee member votes for
a single class, and this information is meaningful for
committee voting.

There are three other approaches to voting. One is
using the categorical predictions provided by all trees,
without voting weights. In this case, each tree pro-
duces a single predicted class for an example. Then,
the committee members vote by predicting the most

219

frequent class returned by all trees.

The other two methods are the same as the two
mentioned above but each tree is given a weight oy
for voting, which is a function of the performance of
the decision tree on the training set, and is defined in
Equation 1. The last of these alternatives, weighted
voting of categorical predictions, corresponds to the
original AdaBoost.M1. These three voting methods
perform either worse than or similarly to the method
that we use here [21].

3. Combining Boosting and SAscC

Our objective in combining Boosting and SASC is
to combine the advantages of both Boosting and SASC
when generating different decision trees that partition
the instance space differently. The combination strat-
egy adopted here employs, when generating decision
trees, both the stochastic selection of attribute sub-
sets of SAsC and the adaptive modification of the dis-
tribution of the training set of Boosting, that is, gener-
ating Stochastic Attribute Selection Committees with
Boosting (SASCB).

Figure 4 presents the details of the SASCB algo-
rithm, where C4.5SAS is defined in Figures 1 and 2.
SASCB uses the same Boosting procedure as BOOST ex-
cept that C4.5SAs instead of C4.5 is used as the base
tree generator. Another difference is that when the
weighted error rate of a tree is greater than 0.5 or
equal to 0, SASCB does not change instance weights.
Another tree will be built using the same distribution
of the training set. Since the stochastic attribute sub-
set selection process is involved, the tree generated this
time should be different from the one created previ-
ously even though the same distribution of the train-
ing set is used. As in BOOST, the tree¢ with an error
rate greater than 0.5 is discarded,® while the tree with
no errors on the training set is kept.

SASCB can be considered as introducing the stochas-
tic attribute selection process into the generation of
each tree in the Boosting process. It can also be
thought of as adaptively modifying the distribution of
the training set after the generation of each decision
tree in the SASC process. SASCB uses the same voting
method as BOOST and SASC, since it generally performs
better than the other three voting approaches [21] as
mentioned in Section 2.3.

5This step is also limited to 10 x 7" times, where T is the
number of Boosting trials.

SASCB(Att, D, P, T)
INPUT: Att: a set of attributes,
D: a training set represented using A¢t and
classes,
P: a probability value,
T: the number of trials.
OUTPUT: a committee, H, containing T pruned trees.
Set instance weight wq(x) = 1 for each z in D
H, := C4.5SAS(Att, ,D7 w1, 1)

t =2
WHILE (¢t <= T)
{ D' := training cases in D that are misclassified
by {{(t—l)
“-1 = 5] > wia(a)
z€D!
IF (f(t-l) >1/2)
ti=t—-1

ELSE IF (e(;_1) # 0)

Calculate w:(z), the weight of each z in
D, from w;_1y(z) using Equation 1
and renormalize these weights so that
they sum to |D]

H,; := C4.5SAS(Att, D, wy, P)
ti=t+1

}
RETURN H

Figure 4. The SAscB learning algorithm

4. Experiments

We conjectured that combining Boosting and SASC
can further reduce the error rate of decision tree learn-
ing. In this section, we evaluate SASCB using experi-
ments to examine whether it can benefit from the com-
bination with respect to further reducing the error rate
of C4.5. We also explore whether SASCB can outper-
form BOOST and SASC in terms of lower error rate.
SASCB is compared with C4.5, BO0ST, and SASC, using
error rate as the primary performance metric.

4.1. Experimental domains and methods

Forty natural domains from the UCI machine learn-
ing repository [16] are used. They include all the
domains used by Quinlan [18] for studying Boosting.
This test suite covers a wide variety of different do-

mains with respect to dataset size, the number of

classes, the number of attributes, and types of at-
tribute.

In every domain, two stratified 10-fold cross-
validations [5, 14] were carried out for each algorithm.
The result reported for each algorithm in each domain

220

is an average value over 20 trials. All the algorithms
are run on the same training and test set partitions
with their default option settings. All BoosT, SASC,
and SASCB use probabilistic predictions (without vot-
ing weights) for voting to decide the final classifica-
tion. Schapire et al. [20] show that the test accuracy of
Boosting increases as T increases even after the train-
ing error reaches zero. It is interesting to see the per-
formance improvement that can be achieved with two
orders of magnitude increase in computation. There-
fore, the number of trials (the parameter T) is set at
100 in the experiments for all BOOST, SASC, and SASCB.
The probability of each attribiute being selected into
the subset (the parameter P) is set at the default, 33%,
for both SASC and SAscCB.

4.2. Comparing SascB with C4.5, BoosT, and
Sasc

Table 1 shows the error rates of the four algorithms.
To facilitate pairwise comparisons among the four al-
gorithms, error ratios are derived from Table 1 and
presented in Table 2. An error ratio, for example for
BoOST vs C4.5, presents a result for BoosT divided by
the corresponding result for C4.5 — a value less than
1 indicates an improvement due to BoosT. To com-
pare the error rates of two algorithms in a domain,
a two-tailed pairwise t-test on the error rates of the
20 trials is carried out. The difference is considered
as significant, if the significance level of the t-test is
better than 0.05. In Table 2, boldface (italic) font,
for example for BOOST vs C4.5, indicates that BOOST
is significantly more (less) accurate than C4.5. The
last row in Table 2 presents the significance levels of a
one-tajled pairwise sign-test for comparing the number
of wins, ties, and losses between the error rates of the
corresponding two algorithms in the 40 domains.

From Tables 1 and 2, we have the following obser-
vations.

¢ By combining Boosting and SASC, on average
SASCB further reduces the error rate of C4.5. A
one-tailed pairwise sign-test shows that the num-
ber of domains for which SASCB reduces error is
significant at a level better than 0.0001.

While BOOST and SAsc reduce the average error
rate of C4.5 from 19.18% to 15.97% and 16.10%
respectively, SASCB further reduces it to 15.76%.
The average relative error reduction of SASCB over
C4.51is 22%. It is 20% and 16% for BOOST and SASC
respectively.

SASCB is significantly more accurate than C4.5 in
27 out of the 40 domains, and significantly less ac-

Table 1. Error rates (%)

Domain Dataset | C4.5 [BoosT | SAsc | SASCB
size

Annealing 808 | 7.40 4.90| 5.85| 4.12
Audiology 226(21.39| 15.41)18.73| 15.19
Automobile 205|16.31(13.42|14.35(15.88
Breast (W) 699 5.08| 3.22| 3.44| 3.08
Chess (KR-KP) 3169| 0.72| 0.36, 0.67| 0.36
Chess (KR-KN) 561| 8.89| 3.54{ 9.26| 4.09
Credit (Aust) 690(14.49| 13.91|14.71| 14.20
Credit (Ger) 1000 (29.40 | 25.45|25.10| 25.15
Echocardiogram 131137.80| 36.24|37.01| 39.20
Glass 214133.62(21.09|25.27| 21.99
Heart (C) 303122.07| 18.80/16.65| 18.63
Heart (H) 29421.09| 21.25{18.88 21.09
Hepatitis 155)20.63| 17.67118.40| 15.79
Horse colic 368|15.76 | 19.84|17.39| 19.43
House votes 84 435(5.62(4.82(4.59] 4.25
Hypo 3772 046(0.32| 0.46| 0.36
Hypothyroid 3163(0.71| 1.14(0.76| 0.98
Image 2310 2.97| 1.58| 2.06| 1.58
Iris 1501 4.33] 5.67| 5.00(5.67
Labor 57)123.67| 10.83/18.83| 9.83
LED 24 200 (36.50 | 32.75129.00} 32.50
Letter 20000 [12.16 | 2.95| 3.74| 2.76
Liver disorders 345 (35.36 | 28.88(29.90| 29.47
Lung cancer 3257.50] 53.75|45.83| 53.75
Lymphography 148121.88| 16.86|18.48 | 16.50
NetTalk(Letter) 543825.88| 22.14 {21.98| 19.91
NetTalk(Ph) 5438 18.97(16.0118.03| 14.60
NetTalk(Stress) 5438 17.25| 11.91(12.44| 11.30
Pima 768123.97| 26.5723.76 | 26.43
Postoperative 90129.44 | 38.89|28.89 | 38.89
Primary tumor 339(59.59| 55.75 [54.72 | 55.02
Promoters 106 [17.50| 4.68| 7.09| 4.73
Sick 3772 1.30| 0.92| 142 1.04
Solar flare 1389115.62} 17.57(15.70| 17.57
Sonar 208|26.43| 14.64|16.32 | 13.93
Soybean 683 8.49| 6.22f 542| 5.64
Splice junction 3177| 5.81| 4.80f 4.50! 3.65
Vehicle 846 (28.50| 22.40(25.12| 22.40
Waveform-21 300{23.83| 18.33/19.83| 17.50
Wine 178| 8.96| 3.35| 4.48| 1.96

average 19.18] 15.97116.10| 15.76

221

Table 2. Error rate ratios

Domain BOOST | SAsC | SASCB [SASCB vs
vs C4.5 Boost| SAsC
Annealing .66 .79 .56 84| .70
Audiology .72 .88 71 .99 .81
Automobile .82 .88 97| 1.18) 1.11
Breast (W) .63 .68 61| .96] .90
Chess (KR-KP) .50 .93 .50 1.00{ .54
Chess (KR-KN) .40 1.04 .46] 1.16| .44
Credit (Aust) .96 1.02 98| 1.02| .97
Credit (Ger) .87 .85 .86 .99] 1.00
Echocardiogram .96 .98 1.04| 1.08] 1.06
Glass .63 .75 .65 1.04} .87
Heart (C) .85 .75 .84 991 1.12
Heart (H) 1.01 .90 1.00 99| 1.12
Hepatitis .86 .89 7 .89 .86
Horse colic 1.26 1.10 1.28 98] 1.12
House votes 84 .86 .82 .76 .88 .93
Hypo .70 1.00 78] 1.12| .78
Hypothyroid 1.61 1.07 1.38] .86| 1.29
Image .53 .69 .53| 1.00| .77
Iris 1.31 1.15 1.31{ 1.00f 1.13
Labor .46 .80 .42 91} .52
LED 24 .90 .79 .89 99 1.12
Letter .24 .31 .23 .94 .74
Liver disorders .82 .85 .83 1.02| .99
Lung cancer .93 .80 93| 1.00) 1.17
Lymphography 7 .84 .75 981 .89
NetTalk(Letter) .86 .85 7| .90f .91
NetTalk(Ph) .84 .95 77| .91 .81
NetTalk(Stress) .69 72 .66] .95 .91
Pima 1.11 .99 1.10f 99| 1.11
Postoperative 1.52 .98 1.32] 1.00| 1.35
Primary tumor .94 .92 .92 99! 1.01
Promoters 27 .41 27 1.01) .67
Sick .71 1.09 .80 1.13| .73
Solar flare 1.12 1.01 1.12] 1.00| 1.12
Sonar .55 .62 B3 .95] .85
Soybean .73 .64 .66 91| 1.04
Splice junction .83 77 63| .76] .81
Vehicle 79 .88 791 1.00| .89
Waveform-21 7T .83 73 95| .88
Wine .37 .50 .22 .09 44
average .80 .84 .78 971 .91
p. of wtl|< .0001|< .0001|< .0001| .0068.0769

curate in 5 domains. BOOST is significantly more ac-
curate than C4.5 in 27 domains, and significantly
less accurate in 5 domains. SASC is significantly
more accurate than C4.5 in 23 domains, and signif-
icantly less accurate in no domains. This indicates
‘that the performance of SASCB and BOOST is more
variable than that of SAsc.

On average, SASCB outperforms both BOOST and
SAsC.

SASCB achieves the lowest error rate among the
three committee learning algorithms in 18 out of
the 40 domains. The error rate of SASCB is between
those of BOOST and SaAsc in 20 other domains. Only
in 2 domains, does SASCB obtain higher error rates
than both BOOST and SAscC.

SASCB is significantly more accurate than BOOST
in 5 domains, and significantly less accurate in no
domains (one-tailed sign-test, p = 0.0313). It is sig-
nificantly more accurate than SASC in 16 domains,
and significantly less accurate in 5 domains (one-
tailed sign-test, p = 0.0133).

The average error rate of SASCB is 0.21 and 0.34
percentage points lower than those of BOOST and
SASC respectively in the 40 domains. The average
relative error reductions of SASCB over BOOST and
Sasc are 3% and 9% respectively. A one-tailed pair-
wise sign-test over the error rates in the 40 domains
shows that SASCB has lower error rate more fre-
quently than BOOST at a significance level of 0.0068.
The significance level of the equivalent test between
SascB and SAscC is 0.0769. This significance level is
not better than 0.05, preventing us from reaching
the firm conclusion that SASCB has a general advan-
tage over Sasc. However, the balance of evidence
available at this time, specifically that the former
achieves a big average relative error reduction over
the latter (9%) and the former significantly more
frequently outperforms the latter when ignoring in-
significant error differences as shown in the previ-
ous paragraph, suggests that in the absence of evi-
dence to the contrary SASCB should be considered
the method of choice.

SASCB follows the performance trend of BOOST.

SASCB performs very similarly to BOOST in terms
of lower/higher error rate than C4.5, although
the extent to which the error rate of C4.5 is de-
creased/increased is different for SASCB and BOOST.
This indicates that the Boosting component has
a stronger influence on the performance of SASCB
than the SAsc component. This is not surprising
since the Boosting component is the driving mech-
anism in the outer loop of SASCB. The SASC com-

222

ponent helps to produce more diverse classifiers,
which most of the time reduces the error rate fur-
ther.

5. Conclusions

This paper has described a novel classifier commit-
tee learning method, SASCB, for decision tree learning.
It combines the Boosting technique and the stochas-
tic attribute selection committee technique. SASCB
generates different trees to form a committee by both
stochastically varying the set of attributes available for
creating a test at each decision node and adaptively
modifying the distribution of the training set.

Our analysis suggests that the Boosting component
has a stronger influence on the performance of SASCB
than the SASC component, since the Boosting com-
ponent is the driving mechanism in the outer loop of
SASCB. The SASC component helps SASCB to produce
more diverse classifiers, which most of the time reduces
the error rate further. The implication of our results
is that methods for increasing the model diversity of
other base learning algorithms such as rule learners
and neural networks used in classifier committee learn-
ing algorithms such as Boosting should be investigated -
and employed.

The results of experiments with a representative col-
lection of natural domains suggest that SASCB gains
advantage from both Boost and Sasc. It further signif--
icantly reduces the error rate of decision tree learning,
and decreases, on average, the error rate of Boosting
and Sasc by 3% and 9% respectively. This further
indicates that the Boosting and SAsC techniques re-
duce the error rate of decision tree learning through
different agencies.

6. Acknowledgments

The authors are grateful to J. Ross Quinlan for pro-
viding C4.5.

References

[1] K. Ali. Learning Probabilistic Relational Concept De-
scriptions. Ph.d. thesis, Dept of Info. and Computer
Science, Univ. of California, Irvine, 1996.

E. Bauer and R. Kohavi. An empirical comparison of
voting classification algorithms: Bagging, Boosting,
and variants. To appear in Machine Learning (avail-
able at: http://reality.sgi.com/ronnyk/vote.ps.gz),
1998.

2]

[3] L. Breiman.

[6]

(7]
(8]

9]

(10]

(1]

(12]

Arcing classifiers. Technical re-
port, Department of Statistics, University of Cali-
fornia, Berkeley, CA (available at: http://www.stat.
Berkeley. EDU/users/breiman/), 1996.

L. Breiman. Bagging predictors. Machine Learning,
24:123-140, 1996.

L. Breiman, J. Friedman, R. Olshen, and C. Stone.
Classification And Regression Trees. Belmont, CA:
Wadsworth, 1984.

P. Chan, S. Stolfo, and D. Wolpert. Working Notes
of AAAI Workshop on Integrating Multiple Learned
Models for Improving and Sceling Machine Learn-
ing Algorithms, 1996. (available at http://www.cs.fit.
edu/~imlm/papers.html), Portland, Oregon.

T. Dietterich. Machine learning research. Al Maga-
zine, 18:97-136, 1997.

T. Dietterich and G. Bakiri. Solving multiclass
learning problems via error-correcting output codes.
Journal of Artificial Intelligence Research, 2:263-286,
1995.

T. Dietterich and E. Kong. Machine learning bias,
statistical bias, and statistical variance of decision
tree algorithms. Technical report, Dept of Com-
puter Science, Oregon State University, Corvallis,
Oregon (available at ftp://ftp.cs.orst.edu/pub/tgd/
papers/tr-bias.ps.gz), 1995.

P. Domingos. Why does bagging work? a Bayesian
account and its implications. In Proceedings of the
Third International Conference on Knowledge Discov-
ery and Data Mining, pages 155-158. AAAI Press,
1997.

Y. Freund. Boosting a weak learning algorithm by ma-
jority. Information and Computation, 121:256-285,
1996.

Y. Freund and R. Schapire. A decision-theoretic
generalization of on-line learning and an application
to Boosting. Unpublished manuscript (available at:
http:/ /www.research.att.com/~yoav), 1996.

223

[13]

(14]

[15]

[16]

[17]

18]

(19]

[20]

[21]

Y. Freund and R. Schapire. Experiments with a
new Boosting algorithm. In Proceedings of the Thir-
teenth International Conference on Machine Learn-
ing, pages 148-156. San Francisco, CA: Morgan Kauf-
mann, 1996.

R. Kohavi. A study of cross-validation and bootstrap
for accuracy estimation and model selection. In Pro-
ceedings of the Fourteenth International Joint Confer-
ence on Artificial Intelligence, pages 1137-1143. San
Mateo, CA: Morgan Kaufmann, 1995.

S. Kwok and C. Carter. Multiple decision trees. In
R. Schachter, T. Levitt, L. Kanal, and J. Lemmer,
editors, Uncertainty in Artificial Intelligence, pages
327-335. Elsevier Science, 1990.

C. Merz and P. Murphy. UCI repository of machine
learning databases [http://www.ics.uci.edu/~mlearn/
MLRepository.html]. Irvine, CA: Univ of California,
Dept of Info and Computer Science, 1997.

J. R. Quinlan. C4.5: Programs for Machine Learning.
San Mateo, CA: Morgan Kaufmann, 1993.

J. R. Quinlan. Bagging, Boosting, and C4.5. In Pro-
ceedings of the Thirteenth National Conference on Ar-
tificial Intelligence, pages 725-730. Menlo Park, CA:
AAAI Press, 1996.

R. Schapire. The strength of weak learnability. Ma-
chine Learning, 5:197-227, 1990. '

R. Schapire, Y. Freund, P. Bartlett, and W. Lee.
Boosting the margin: A new explanation for the
effectiveness of voting methods. In Proceedings of
the Fourteenth International Conference on Machine
Learning, pages 322-330. San Francisco, CA: Morgan
Kaufmann, 1997.

Z. Zheng and G. Webb. Stochastic attribute se-
lection committees. In Proceedings of the Eleventh
Australian Joint Conference on Artificial Intelligence.
Berlin: Springet-Verlag, 1998.

