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ABSTRACT: Approaches to learning classifier committees, including Boost-
ing, Bagging, SASC, and SASCB, have demonstrated great success in increasing
the prediction accuracy of decision trees. This type of technique generates sev-
eral classifiers to form a committee by repeated application of a single base
learning algorithm. The committee members vote to decide the final classifica-
tion. Boosting and Bagging create different classifiers by modifying the distri-
bution of the training set. SASC (Stochastic Attribute Selection Committees)
adopts a different method. It generates committees by stochastic manipula-
tion of the set of attributes considered at each node during tree induction,
but keeping the distribution of the training set unchanged. SAScB, a combi-
nation of Boosting and SASC, has been shown to be able to further increase,
on average, the prediction accuracy of decision trees. It has been found that
the performance of SASCB and Boosting is more variable than that of SAsc,
although SASCB is more accurate than the others on average. In this paper,
we present a novel method to reduce variability of SAsCcB and Boosting, and
further increase their average accuracy. It generates multiple committees by
incorporating Bagging into SASCB. As well as improving stability and average
accuracy, the resulting method is amenable to parallel or distributed process-
ing, while Boosting and SASCB are not. This is an important characteristic
for datamining in large datasets.
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1 Introduction

For classifier learning, a key technique in KDD, prediction accuracy and computational
requirements are two primary concerns. To increase the prediction accuracy of classi-
fiers, classifier committee! learning techniques have been developed with great success
(Freund 1996; Freund and Schapire 1996a; 1996b; Quinlan 1996; Breiman 1996a; 1996b;
Dietterich and Kong 1995; Ali 1996; Chan, Stolfo, and Wolpert 1996; Schapire, Freund,
Bartlett, and Lee 1997; Domingos 1997; Bauer and Kohavi 1998), especially Boosting?
(Freund and Schapire 1996b; Quinlan 1996; Bauer and Kohavi 1998). This type of tech-
nique generates several classifiers to form a committee by using a single base learning
algorithm. At the classification stage, the committee members vote to make the final
decision.

Given a training set described using a set of attributes, conventional classifier learning
algorithms such as decision tree learning algorithms (Breiman, Friedman, Olshen, and
Stone 1984; Quinlan 1993) build one classifier. Usually, the classifier is correct for most
parts of the instance space, but incorrect for some small parts of the instance space.
If classifiers in a committee partition the instance space differently, and most points
in the instance space are correctly covered by the majority of the committee, then the
committee has a lower error rate than the individual classifiers.

Bagging (Breiman 1996a) and Boosting (Schapire 1990; Freund and Schapire 1996a;
1996b; Freund 1996; Schapire et al. 1997), as two representative methods of this type,
can significantly decrease the error rate of decision tree learning (Quinlan 1996; Freund
and Schapire 1996b; Bauer and Kohavi 1998). They repeatedly build different classi-
fiers using a base learning algorithm, such as a decision tree generator, by changing
the distribution of the training set. Bagging generates different classifiers using differ-
ent bootstrap samples. Boosting builds different classifiers sequentially. The weights of
training examples used for creating each classifier are modified based on the performance
of the previous classifiers. The objective is to make the generation of the next classifier
concentrate on the training examples that are misclassified by the previous classifiers.
The main difference between Bagging and Boosting is that the latter adaptively changes
the distribution of the training set based on the performance of previously created clas-
sifiers and uses a function of the performance of a classifier as the weight for voting,
while the former stochastically changes the distribution of the training set and uses
equal weight voting. Although Boosting is generally more accurate than Bagging, the
performance of Boosting is more variable than that of Bagging (Quinlan 1996; Bauer
and Kohavi 1998).

As an alternative approach to generating different classifiers to form a committee, SASC
(Stochastic Attribute Selection Committees) (Zheng and Webb 1998) builds different
classifiers by modifying the set of attributes considered at each node, while the distribu-
tion of the training set is kept unchanged. Each attribute set is selected stochastically.
Experiments show that SASc, like Boosting, can also significantly reduce the error rate

! Committees are also referred to as ensembles (Dietterich 1997).
2Breiman (1996b) refers to Boosting as the arcing (adaptively resample and combine) method.



of decision tree learning, although the two techniques use quite different mechanisms
(Zheng and Webb 1998). In addition, SASC is more stable than Boosting (Zheng and
Webb 1998).

There are some other classifier committee learning approaches such as generating mul-
tiple trees by manually changing learning parameters (Kwok and Carter 1990), error-
correcting output codes (Dietterich and Bakiri 1995), and generating different classifiers
by randomizing the base learning process (Dietterich and Kong 1995; Ali 1996) which
is similar to SAsC (Zheng and Webb 1998). Reviews of related methods are provided
in Dietterich (1997) and Ali (1996). A collection of recent research in this area can be
found from Chan et al. (1996).

Base on the observation that both Boosting and SASC can significantly increase the pre-
diction accuracy of decision trees but through different mechanisms, we developed an-
other technique to further improve the accuracy of decision trees (Zheng, Webb, and Ting
1998). The new approach is called SAscB (Stochastic Attribute Selection Committees
with Boosting), a combination of the Boosting and SASC techniques. SASCB has been
shown to be able to outperform, on average, either SASC or Boosting alone in terms of
lower error rate. However, as Boosting, SASCB is more variable than SAsSc, due to that
the Boosting component is the driving mechanism in the SASCB procedure.

As far as the computational requirements are concerned, each of SAsc, SAsCB, Boost,
and Bagging needs approximately 7' times as long as their base learning algorithm
does for learning a single classifier, where 7' is the size of the committee. However,
SAsc and Bagging have an advantage over SASCB and Boosting. That is, the former
are amenable to parallel and distributed processing while the latter are not, since the
generation of each committee member, a classifier, is independent for the former while
it must occur sequentially for the latter. This makes SASC and Bagging faster than
SascB and Boosting when multiple processors or computers are available.

In summary, we have the following three observations from the previous studies on
committee learning. SASCB, as a combination of Boosting and SASC, can generally
outperform Boosting and SASC. SASCB is more variable than SAsc. Bagging is less
variable than Boosting. In the light of these findings, in this paper, we present a novel
approach, namely SAscMB (Stochastic Attribute Selection Committees with Multiple
Boosting), to improving the stability and average accuracy of SAscB and Boosting. It
generates multiple committees by incorporating Bagging into SASCB using the multi-
boosting technique (Webb 1998). We expect that splitting one committee into multiple
committees, with each committee being created from a bootstrap sample of the training
set, can reduce the variability of Boosting and SASCB, since the Boosting process is bro-
ken down into several small processes. In addition, we expect that introducing Bagging
can further improve the accuracy, since it increases the diversity and independence of
committee members. At the same time, the new algorithm is amenable to parallel and
distributed processing.

In the following section, we briefly describe the Boosting, SASC, and SASCB techniques
for decision tree learning. Section 2.3 presents the method of incorporating Bagging into



SascB. It is, then, empirically evaluated using a representative collection of natural
domains. Finally, we summarize our conclusions.

2 Boosting, Sasc, and SascB

Since the SASCMB technique is a combination of Bagging and SASCB which is, in turn,
a combination of Boosting and SAsc, we briefly discuss Boosting, SASC, and SASCB in
this section. The classification process of them is presented in Section 2.4, since it is the
same for all of them. For details about Boosting, see Schapire (1990), Quinlan (1996),
Schapire et al. (1997), and Bauer and Kohavi (1998); for SAsc, see Zheng and Webb
(1998); for SASCB, see Zheng et al. (1998).

2.1 Boosting

Boosting is a general framework for improving base learning algorithms, such as deci-
sion tree learning, rule learning, and neural networks. The key idea of Boosting was
presented in Section 1. Here, we describe our implementation of the Boosting algorithm
with decision tree learning, called BoosT. It follows the Boosted C4.5 algorithm (Ad-
aBoost.M1) (Quinlan 1996) but uses a new Boosting equation as shown in Equation 1,
derived from Schapire et al. (1997).

Given a training set D consisting of m instances and an integer 7, the number of trials,
BoosT builds T pruned trees over T trials by repeatedly invoking C4.5 (Quinlan 1993).
Let w;(z) denote the weight of instance x in D at trial . At the first trial, each instance
has weight 1; that is, w;(z) = 1 for each z. At trial ¢, decision tree H; is built using
D under the distribution w;. The error ¢; of H; is, then, calculated by summing up the
weights of the instances that H; misclassifies and divided by m. If € is greater than 0.5
or equal to 0, wy(z) is re-initialized using bootstrap sampling, and then the Boosting
process continues. Note that the tree with ¢, > 0.5 is discarded,® while the tree with
€; = 0 is accepted by the committee. Otherwise, the weight w;,1(z) of each instance x
for the next trial is computed using Equation 1. These weights are, then, renormalized
so that they sum to m.

w1 (z) = wt(x)%p((_l)d(z)at)a (1)

where oy = 2in((1 — &) /€); d(z) = 1 if H, correctly classifies z and d(z) =0
otherwise.

3To make the algorithm efficient, this step is limited to 10 x T times.



2.2 Sasc

During the growth of a decision tree, at each decision node, a decision tree learning
algorithm searches for the best attribute to form a test based on some test selection
functions (Quinlan 1993). The key idea of SASC is to vary the members of a decision
tree committee by stochastic manipulation of the set of attributes available for selection
at decision nodes. This creates decision trees that each partition the instance space
differently. In order to have a good quality tree in the sense that it can correctly cover
most parts of the instance space, the tests used at decision nodes should be as good as
possible with respect to the test selection function employed.

We use C4.5 (Quinlan 1993) with the modifications described below as the base classifier
learning algorithm in SASc. When building a decision node, by default C4.5 uses the
information gain ratio to search for the best attribute to form a test (Quinlan 1993). To
force C4.5 to generate different trees using the same training set, we modified C4.5 by
stochastically restricting the set of attributes available for selection at a decision node.
This is implemented by using a probability parameter P.* At each decision node, an
attribute subset is randomly selected with each available attribute having the probability
P of being selected. The available attributes refer to those attributes that have non-
negative gain values. For nominal attributes, they must not have been used in the path
from the root to the current node. Numeric attributes are always available for selection.
This stochastic attribute subset selection process will be repeated, if no attribute was
selected and there are some attributes available at this node. The objective is to make
sure that at least one available attribute is included in the subset if possible. After
attribute subset selection, the algorithm chooses the attribute with the highest gain
ratio to form a test for the decision node from the subset. A different random subset is
selected at each node of the tree. The modified version of C4.5 is called C4.5Sas (C4.5
Stochastic Attribute Selection).

The only difference between C4.5SAS and C4.5 is that when growing a tree, at a decision
node, C4.5SAS stochastically creates an attribute subset and uses the best attribute in it
to form a test as described above. All other parts are identical for these two algorithms.
With P =1, C4.5SAs generates the same tree as C4.5.

Having C4.5SAs, the design of SASC is very simple. C4.5SAS is invoked T times to
generate T different decision trees to form a committee. As in Boosting, the first tree
produced by SASC is the same as the tree generated by C4.5. The detailed description
of C4.5S8As and SAsC can be found in Zheng and Webb (1998).

2.3 SascB

The objective of combining Boosting and SASC to form SASCB is to combine the advan-
tages of both Boosting and SASC when generating different decision trees that partition
the instance space differently. The combination strategy adopted in SASCB employs,

4The value of P does not change during induction.



when generating decision trees, both the stochastic selection of attribute subsets of SASC
and the adaptive modification of the distribution of the training set of Boosting.

SASCB uses the same Boosting procedure as BOOST except that C4.5SAs, described
in the previous subsection, is used instead of C4.5 as the base tree generator. Another
difference is that when the weighted error rate of a tree is greater than 0.5 or equal to
0, SASCB does not change instance weights. Another tree will be built using the same
distribution of the training set. Since the stochastic attribute subset selection process is
involved, the tree generated this time should be different from the one created previously
even though the same distribution of the training set is used. As in BOoOSsT, the tree
with an error rate greater than 0.5 is discarded,”® while the tree with no errors on the
training set is kept.

SAsCB can be considered as introducing the stochastic attribute selection process into
the generation of each tree in the Boosting process. It can also be thought of as adap-
tively modifying the distribution of the training set after the generation of each decision
tree in the SASC process.

2.4 Decision Making in Boost, SAsc, and SascB

At the classification stage, for a given example, all of BoosT, SAsc, and SASCB make
the final prediction through committee voting. In this paper, a voting method that uses
the probabilistic predictions produced by all committee members without voting weights
is adopted. With this method, each decision tree returns a distribution over classes that
the example belongs to. This is performed by tracing the example down to a leaf of
the tree. The class distribution for the example is estimated using the proportion of the
training examples of each class at the leaf, if the leaf is not empty. This is the same as
in C4.5 (Quinlan 1993). When the leaf contains no training examples, C4.5 produces a
class distribution with the labeled class of the leaf having the probability 1, and all other
classes having the probability 0. In this case, the three committee learning algorithms
are different from C4.5. They estimate the class distribution using the training examples
at the parent node of the empty leaf. The decision tree committee members vote by
summing up the class distributions provided by all trees. The class with the highest
score (sum of probabilities) wins the voting, and serves as the predicted class of BOOST,
SAsc, and SASCB for this example. There is no voting weight when summing up class
distributions. Class distribution provides more detailed information than is obtained
when each committee member votes for a single class, and this information is meaningful
for committee voting.

There are three other approaches to voting. One is using the categorical predictions
provided by all trees, without voting weights. In this case, each tree produces a single
predicted class for an example. Then, the committee members vote by predicting the
most frequent class returned by all trees.

5This step is also limited to 10 x T times, where T is the number of Boosting trials.



SAascMB(Att, D, P, S, N)
INPUT: Att: a set of attributes,
D: a training set represented using Att and classes,
P: a probability value,
S: the size of each subcommittee,
N: the number of subcommittees.

OUTPUT: a committee, H, consisting of N subcommittees with each containing S trees.

Set T, the number of trials, = § X N
Set instance weight w;(z) = 1 for each z in D
H, := C4.5SAs(Att, D, wy, 1)
t =2
WHILE (¢t <= T)
{ D := tra,ilning cases in D that are misclassified by Hy_)

€(t—1) = ﬁ Z w(t—l)(iv)

zeD!
IF (et—1) > 1/2)
t:=t—1

ELSE IF (¢t modulus S = 1)

Reset wy(x) using bootstrap sampling, i.e., w¢(z) is set at 0 and
incremented 1 unit every time instance z is selected during uniformly
sampling | D| instances from D with replacement

ELSE IF (e(_1) # 0)
Calculate wy (), the weight of each z in D, from w;_1)(z) using
Equation 1 and renormalize these weights so that they sum to |D|
H, := C4.5SAs(Att, D, wy, P)
ti=t+1

}
RETURN H

Figure 1: The SASCMB learning algorithm

The other two methods are the same as the two mentioned above but each tree is given
a weight a; for voting, which is a function of the performance of the decision tree on
the training set, and is defined in Equation 1. The last of these alternatives, weighted
voting of categorical predictions, corresponds to the original AdaBoost.M1. These three
voting methods perform either worse than or similarly to the method that we use here
(Zheng and Webb 1998; Zheng et al. 1998).

3 SascMB: Incorporating Bagging into SascB

Figure 1 presents the details of the SASCMB algorithm. It is resulted from incorporating
Bagging into SASCB. SASCMB generates N subcommittees. This process can be paral-
lelized. Each subcommittee contains S decision trees built using the SASCB procedure
described in the previous section. The generation of the first subcommittee (or one of the
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subcommittees if using parallel or distributed processing) starts from the initial training
set, D with each training instance having the weight 1. The first tree in this subcommit-
tee is the same one as that built by C4.5 using the entire training set. The generation
of every other subcommittee starts from a bootstrap sample of D. A bootstrap sample
is created by uniformly sampling |D| instances from D with replacement.

At the classification stage, all the members of all the subcommittees generated by
SAsCMB vote to predict a class for a given instance. SASCMB uses the same de-
fault voting method as BoosT, SAsc, and SASCB, since it generally performs better
than the other three voting approaches (Zheng and Webb 1998; Zheng et al. 1998) as
mentioned in Section 2.4.

4 Experiments

In this section, we empirically evaluate SASCMB to examine whether incorporating
Bagging into SASCB can increase stability and average accuracy of learned committees.
It is compared with other committee learning algorithms: SAscB, BoosT, and SAscC.
In addition, a multiple Boosting algorithm MB is also included in the comparison. C4.5,
the base decision tree learning algorithm of all these committee learning algorithms, is
used as the base line for the comparison.

MB is the same as SASCMB except that it does not include the stochastic attribute
selection component. In other words, MB uses the same procedure as SASCMB for gen-
erating multiple decision tree committees, but the former uses C4.5 instead of C4.5SAs.
Another minor difference between them is that the instance weights are reset using boot-
strap sampling after building a tree with a weighted error rate equal to 0 or greater than
0.5 for M B, since without the stochastic attribute selection component, M B creates the
same tree on the same distribution of the training set. Note that Boosting cannot change
instance weights under this condition. MB differs from Webb’s (1998) MULTIBOOST by
using bootstrap sampling in place of stochastic weighting at the start of the generation
of each subcommittee. It is interesting to compare SASCMB with MB.

4.1 Experimental Domains and Methods

Forty natural domains from the UCI machine learning repository (Merz and Murphy
1997) are used. They include all the domains used by Quinlan (1996) for studying
Boosting. Table 1 summarizes the the characteristics of these domains, including dataset
size, the number of classes, the number of numeric attributes, and the number of discrete
attributes. This test suite covers a wide variety of different domains with respect to
dataset size, the number of classes, the number of attributes, and types of attributes.

In every domain, two stratified 10-fold cross-validations (Kohavi 1995) were carried
out for each algorithm. The result reported for each algorithm in each domain is an
average value over 20 trials. All the algorithms are run on the same training and test set



Table 1: Description of learning tasks

Domain Size | No. of No. of Att.
Classes | Numeric | Discr
Annealing 898 6 6 32
Audiology 226 24 0 69
Automobile 205 7 15 10
Breast cancer (W) 699 2 9 0
Chess (KR-KP) 3169 2 0 36
Chess (KR-KN) 551 2 0 39
Credit (Aust) 690 2 6 9
Credit (Ger) 1000 2 7 13
Echocardiogram 131 2 6 1
Glass 214 6 9 0
Heart (C) 303 2 13 0
Heart (H) 294 2 13 0
Hepatitis 155 2 6 13
Horse colic 368 2 7 15
House votes 84 435 2 0 16
Hypo 3772 5 7 22
Hypothyroid 3163 2 7 18
Image 2310 7 19 0
Iris 150 3 4 0
Labor 57 2 8 8
LED 24 200 10 0 24
Letter 20000 26 16 0
Liver disorders 345 2 6 0
Lung cancer 32 3 0 56
Lymphography 148 4 0 18
NetTalk(Letter) 5438 163 0 7
NetTalk(Phoneme) | 5438 52 0 7
NetTalk(Stress) 5438 5 0 7
Pima 768 2 8 0
Postoperative 90 3 1 7
Primary tumor 339 22 0 17
Promoters 106 2 0 57
Sick 3772 2 7 22
Solar flare 1389 2 0 10
Sonar 208 2 60 0
Soybean 683 19 0 35
Splice junction 3177 3 0 60
Vehicle 846 4 18 0
Waveform-21 300 3 21 0
Wine 178 3 13 0




partitions with their default option settings. Pruned trees are used for all the algorithms.
All BoosTt, Sasc, SAscB, MB, and SASCMB use probabilistic predictions (without
voting weights) for voting to decide the final classification. Schapire et al. (1997) show
that the test accuracy of Boosting increases as 7 increases even after the training error
reaches zero. It is interesting to see the performance improvement that can be achieved
with two orders of magnitude increase in computation. Therefore, the number of trials
(the parameter 7)) is set at 100 in the experiments for BOOsT, SASC, and SASCB. The
subcommittee size and the number of subcommittees are set at 5 and 20 respectively,
resulting in 100 trees in total for MB and SASCMB. The probability of each attribute
being selected into the subset (the parameter P) is set at the default, 33%, for SAsc,
SascB, and SAScMB.

4.2 Results

Table 2 shows the error rates of the six algorithms. To facilitate pairwise comparisons
among the six algorithms, error ratios are derived from Table 2 and presented in Table 3.
An error ratio, for example for BoosT vs C4.5, presents a result for BoosT divided by
the corresponding result for C4.5 — a value less than 1 indicates an improvement due to
BoosT. To compare the error rates of two algorithms in a domain, a two-tailed pairwise
t-test on the error rates of the 20 trials is carried out. The difference is considered as
significant, if the significance level of the t-test is better than 0.05. In Table 3, boldface
(italic) font, for example for BOosT vs C4.5, indicates that BOOST is significantly more
(less) accurate than C4.5. The last two rows in Table 3 present the numbers of wins, ties,
and losses between the error rates of the corresponding two algorithms in the 40 domains,
and the significance levels of a one-tailed pairwise sign-test on these win/tie/loss records.

From Tables 2 and 3, we have the following observations.

(1) Incorporating Bagging into SASCB can reduce variability of learned committees in
terms of decreasing the frequency of producing significantly higher error rate than the
base decision tree learning algorithm.

While both BoosT and SASCB obtain significantly higher error rates than C4.5 in five
out of the 40 domains, SASCMB only has significantly higher error rates than C4.5 in
two domains. The highest relative error increase of BOOST and SASCB over C4.5 is
61% and 38% respectively. It is 34% for SASCMB, the smallest one among the three
algorithms. Note that SASCc and MB are more stable than SASCMB, but they are less
accurate than SASCMB on average (see below, for the discussion).

(2) Incorporating Bagging into SASCB can also reduce average error rate of learned
committees. SASCMB outperforms BoosT, SAsc, SAscB, and MB in terms of lower
error rate.

All the five committee learning algorithms achieve significant error rate reduction over
C4.5 at a level better than 0.0001 using a one-tailed pairwise sign-test on the error
rates of these algorithms in the 40 domains. Among them, SASCMB obtains the lowest
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Table 2: Error rates (%)

Domain C4.5 | BoosT | SAasc | SAscB | MB | SascMB
Annealing 7.40 490 | 5.85 4.12 | 4.67 5.06
Audiology 21.39 15.41 | 18.73 15.19 | 15.88 15.43
Automobile 16.31 13.42 | 14.35 15.88 | 16.10 16.82
Breast (W) 5.08 3.22 | 3.4 3.08 | 3.08 3.15
Chess (KR-KP) 0.72 0.36 | 0.67 0.36 | 0.39 0.39
Chess (KR-KN) 8.89 3.504 | 9.26 4.09 | 5.27 5.63
Credit (Aust) 14.49 13.91 | 14.71 14.20 | 12.82 12.61
Credit (Ger) 29.40 25.45 | 25.10 25.15 | 23.90 23.50
Echocardiogram | 37.80 36.24 | 37.01 39.20 | 31.68 30.47
Glass 33.62 21.09 | 25.27 21.99 | 24.33 21.31
Heart (C) 22.07 18.80 | 16.65 18.63 | 18.13 18.29
Heart (H) 21.09 21.25 | 18.88 21.09 | 19.20 18.53
Hepatitis 20.63 17.67 | 18.40 15.79 | 17.12 17.12
Horse colic 15.76 19.84 | 17.39 19.43 | 15.90 16.04
House votes 84 5.62 4.82 | 4.59 4.25 | 3.90 4.25
Hypo 0.46 0.32 | 0.46 0.36 | 0.33 0.40
Hypothyroid 0.71 1.14 | 0.76 0.98 | 0.82 0.95
Image 2.97 1.58 | 2.06 1.58 | 1.77 1.93
Iris 4.33 5.67 | 5.00 5.67 | 5.00 5.00
Labor 23.67 10.83 | 18.83 9.83 | 12.33 10.50
LED 24 36.50 32.75 | 29.00 32.50 | 32.00 30.50
Letter 12.16 2.95 | 3.74 2.76 | 3.45 3.32
Liver disorders | 35.36 28.88 | 29.90 29.47 | 26.73 27.29
Lung cancer 57.50 53.75 | 45.83 53.75 | 47.08 49.17
Lymphography | 21.88 16.86 | 18.48 16.50 | 16.86 14.76
NetTalk(Letter) | 25.88 22.14 | 21.98 19.91 | 21.37 20.12
NetTalk(Ph) 18.97 16.01 | 18.03 14.60 | 15.22 14.73
NetTalk(Stress) | 17.25 11.91 | 12.44 11.30 | 12.26 10.54
Pima 23.97 26.57 | 23.76 26.43 | 23.31 23.18
Postoperative 29.44 38.89 | 28.89 38.89 | 32.22 34.44
Primary tumor | 59.59 55.75 | 54.72 55.02 | 55.02 55.30
Promoters 17.50 4.68 | 7.09 4.73 | 5.64 5.64
Sick 1.30 0.92 | 1.42 1.04 | 1.10 1.33
Solar flare 15.62 17.57 | 15.70 17.57 | 16.31 15.95
Sonar 26.43 14.64 | 16.32 13.93 | 19.68 17.79
Soybean 8.49 6.22 | 5.42 5.64 | 6.66 5.49
Splice junction 5.81 4.80 | 4.50 3.65 | 4.23 3.81
Vehicle 28.50 22.40 | 25.12 22.40 | 24.00 23.52
Waveform-21 23.83 18.33 | 19.83 17.50 | 18.00 17.67
Wine 8.96 3.35 | 4.48 1.96 | 3.07 1.68

average | 19.18 15.97 | 16.10 15.76 | 15.42 15.09
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Table 3: Error rate ratios

Domain Boost | Sasc [SascB| MB [SascMB SASCMB vs
vs C4.5 Boost | Sasc | SascB| MB

Annealing .66 .79 .56 .63 .68 1.03 .86 1.23 1.08
Audiology .72 .88 .71 .74 .72 1.00 .82 1.02 97
Automobile .82 .88 97 .99 1.03 1.25 1.17 1.06 1.04
Breast (W) .63 .68 .61 .61 .62 .98 .92 1.02 1.02
Chess (KR-KP) .50 .93 .50 .54 .54 1.08 .58 1.08 1.00
Chess (KR-KN) .40 1.04 .46 .59 .63 1.59 .61 1.58 1.07
Credit (Aust) .96 1.02 .98 .88 .87 91 .86 .89 .98
Credit (Ger) .87 .85 .86 .81 .80 .92 .94 .93 .98
Echocardiogram .96 .98 1.04 .84 .81 .84 .82 .78 .96
Glass .63 .75 .65 .72 .63 1.01 .84 .97 .88
Heart (C) .85 .75 .84 .82 .83 97 1.10 .98 1.01
Heart (H) 1.01 .90 1.00 91 .88 .87 .98 .88 .97
Hepatitis .86 .89 T .83 .83 97 .93 1.08 1.00
Horse colic 1.26 1.10 1.23 1.01 1.02 .81 .92 .83 1.01
House votes 84 .86 .82 .76 .69 .76 .88 .93 1.00 1.09
Hypo .70 1.00 .78 .72 .87 1.25 .87 1.11 1.21
Hypothyroid 1.61 1.07 1.38 1.15 1.34 .83 1.25 .97 1.16
Image .53 .69 .53 .60 .65 1.22 .94 1.22 1.09
Iris 1.31 1.15 1.31 1.15 1.15 .88 1.00 .88 1.00
Labor .46 .80 .42 .52 .44 .97 .56 1.07 .85
LED 24 .90 .79 .89 .88 .84 .93 1.05 .94 .95
Letter .24 31 .23 .28 .27 1.13 .89 1.20 .96
Liver disorders .82 .85 .83 .76 N4 .94 91 .93 1.02
Lung cancer .93 .80 .93 .82 .86 91 1.07 91 1.04
Lymphography N .84 75 7 .67 .88 .80 .89 .88
NetTalk(Letter) .86 .85 7 .83 .78 .91 .92 1.01 .94
NetTalk(Ph) .84 .95 7 .80 .78 .92 .82 1.01 .97
NetTalk(Stress) .69 .72 .66 .71 .61 .88 .85 .93 .86
Pima 1.11 .99 1.10 97 97 .87 .98 .88 .99
Postoperative 1.52 .98 1.82 1.09 1.17 .89 1.19 .89 1.07
Primary tumor .94 .92 .92 .92 .93 .99 1.01 1.01 1.01
Promoters 27 41 27 .32 .32 1.21 .80 1.19 1.00
Sick .71 1.09 .80 .85 1.02 1.45 94 1.28 1.21
Solar flare 1.12 1.01 1.12 1.04 1.02 .91 1.02 91 .98
Sonar .55 .62 .53 .74 .67 1.22 1.09 1.28 90
Soybean .73 .64 .66 .78 .65 .88 1.01 97 .82
Splice junction .83 7 .63 .73 .66 .79 .85 1.04 .90
Vehicle .79 .88 .79 .84 .83 1.05 94 1.05 .98
Waveform-21 7 .83 .73 .76 .74 .96 .89 1.01 .98
Wine 37 .50 .22 .34 .19 .50 37 .86 .55
average .80 .84 .78 .78 .17 .99 91 1.01 .98
w/t/1| 33/0/7| 32/1/7| 32/1/7| 35/0/5| 33/0/7|27/0/13|29/1/10|19/1/20(21/4/15
p. of wtl| < .0001|< .0001|< .0001|< .0001| < .0001 .0192 0017, .5000| .2025
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average error rate 15.09%. The average error rate is 19.18%, 15.97%, 16.10%, 15.76%,
and 15.42% for C4.5, BoosT, Sasc, SAscB, and MB respectively. SAascMB also
achieves the greatest average relative error reduction (23%) over C4.5 among these five
committee learning algorithms.

A direct comparison shows that the average relative error reduction of SASCMB over
BoosT and Sasc is 1% and 9% respectively. A one-tailed sign-test suggests that
SASCMB has significantly lower error rate than BoosT and SAsc (p = 0.0192 and
0.0017 respectively). The average relative error reduction of SASCMB over MB is 2%,
but a one-tailed sign-test fails to show that this reduction is significant at a level of
0.05. The average error ratio of SASCMB over SAsCB is 1.01, although the average
error rate of SASCMB is lower than that of SAsCB. This is because SASCB performs
better than SASCMB in domains in which they have relatively low error rates, and vice
versa in domains in which they have relatively high error rates. It might be thought
a disadvantage of SASCMB that the average error ratio compared to SASCB is greater
than 1. However, we argue that this is a statistical anomaly, due to SASCB’s superior
performance when C4.5 has lower error rates. Increasing accuracy is as important as
decreasing error. The average accuracy ratio, a measure that favors better performance
at large error rates, of SASCMB against SASCB (an accuracy for SASCMB divided by
the corresponding accuracy for SAscB) is also 1.01. Note that the average error rate of
SAscMB is 0.67 percentage points lower, a considerable reduction, than that of SASCB.

5 Conclusions

We have presented a new classifier committee learning method, SASCMB, for decision
tree learning. It generates multiple committees through incorporating Bagging into
SASCB. In the new algorithm, the Boosting process is broken down into several small
processes with each creating one subcommittee. The Bagging component of SAscMB
further increases the diversity and independence of committee members. Our aim is to
improve the stability and average accuracy of learned committees. Another advantage
of SASCMB over SASCB and Boosting is that SASCMB is amenable to parallel and
distributed processing, which is important for datamining in large datasets.

The results of experiments with a representative collection of natural domains suggest
that SASCMB is more stable than SAsCB and Boosting. It achieves the lowest error
rate among the five committee learning algorithms on average in the 40 domains under
investigation. It also achieves the greatest average relative error reduction over the base
decision tree learning algorithm among the five committee learning algorithms. The
experiments show that SASCMB can significantly outperform SASC and Boosting on
average in terms of lower error rate. At the very least, SASCMB is as accurate as
SAscB and M B, while demonstrating greater stability and amenability to parallel and
distributed processing.
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