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Abstract
proaches have demonstrated great success in in-

Classifier committee learning ap-

creasing the prediction accuracy of classifier learn-
ing, which is a key technique for datamining. These
approaches generate several classifiers to form a
committee by repeated application of a single base
learning algorithm. The committee members vote
to decide the final classification. It has been shown
that Boosting and Bagging, as two representative
methods of this type, can significantly decrease the
error rate of decision tree learning. Boosting is gen-
erally more accurate than Bagging, but the former
is more variable than the latter. In addition, Bag-
ging is amenable to parallel or distributed process-
ing, while Boosting is not. In this paper, we study
a new committee learning algorithm, namely MB
(Multiple Boosting). It creates multiple subcom-
mittees by combining Boosting and Bagging. FEi-
perimental results in a representative collection of
natural domains show that MB is, on average, more
accurate than either Bagging or Boosting alone. It
is more stable than Boosting, and is amenable to
parallel or distributed processing. These character-
istics make MB a good choice for parallel datamin-
ing.

Keywords: Parallel datamining, Boosting, Bag-
ging, Committee learning, Decision tree learning,
Machine learning

1 Introduction

Classifier learning is a key technique for
datamining. Prediction accuracy and com-
putational requirements are two primary con-
cerns with this type of learning. In order
to improve the prediction accuracy of classi-
fiers, classifier committee! learning techniques
have been developed with great success [Fre-
und, 1996; Freund and Schapire, 1996a; 1996b;
Quinlan, 1996; Breiman, 1996a; 1996b; Diet-
terich and Kong, 1995; Ali, 1996; Chan, Stolfo,
and Wolpert, 1996; Ali and Pazzani, 1996;
Schapire, Freund, Bartlett, and Lee, 1997;
Domingos, 1997; Bauer and Kohavi, 1998].
This type of technique generates several classi-
fiers to form a committee by using a single base
learning algorithm. At the classification stage,
the committee members vote to make the final
decision.

Bagging [Breiman, 1996a] and Boosting
[Schapire, 1990; Freund and Schapire, 1996a;
1996b; Freund, 1996; Schapire et al., 1997], as
two representative methods of this type, can
significantly decrease the error rate of deci-
sion tree learning [Quinlan, 1996; Freund and
Schapire, 1996b; Bauer and Kohavi, 1998].
They repeatedly build different classifiers us-
ing a base learning algorithm, such as a deci-

!Committees are also referred to as ensembles
[Dietterich, 1997].
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sion tree generator, by changing the distribu-
tion of the training set. Bagging generates dif-
ferent classifiers using different bootstrap sam-
ples. Boosting builds different classifiers se-
quentially. The weights of training examples
used for creating each classifier are modified
based on the performance of the previous clas-
sifiers. The objective is to make the generation
of the next classifier concentrate on the train-
ing examples that are misclassified by the pre-
vious classifiers. The main difference between
Bagging and Boosting is that the latter adap-
tively changes the distribution of the training
set based on the performance of previously cre-
ated classifiers and uses a function of the per-
formance of a classifier as the weight for vot-
ing, while the former stochastically changes the
distribution of the training set and uses equal
weight voting. Although Boosting is generally
more accurate than Bagging, the performance
of Boosting is more variable than that of Bag-
ging [Quinlan, 1996; Bauer and Kohavi, 1998].
Given an integer 7" as the committee size, both
Boosting and Bagging need approximately 7T’
times as long as their base learning algorithm
does for learning a single classifier. However,
Bagging has an advantage over Boosting. That
is, it is amenable to parallel and distributed
processing while Boosting is not, since the gen-
eration of each committee member, a classifier,
is independent for the former while it must oc-
cur sequentially for the latter. This makes Bag-
ging appropriate for parallel datamining.

While much recent attention has focused on
Boosting and Bagging, other classifier com-
mittee learning approaches have also been de-
veloped, including generating multiple trees
by manually changing learning parameters
[Kwok and Carter, 1990], error-correcting out-
put codes [Dietterich and Bakiri, 1995], gener-
ating different classifiers by randomizing the
base learning process [Dietterich and Kong,
1995; Ali, 1996], and learning option trees
[Kohavi and Kunz, 1997]. A collection of re-
cent research in this area and reviews of re-
lated methods can be found in [Chan et al.,
1996; Dietterich, 1997; Ali, 1996].

In this paper, we investigate an approach,

namely MB (Multiple Boosting),? to gener-
ating committees, which is more accurate than
Bagging and is more stable than Boosting. M B
creates multiple subcommittees by incorporat-
ing Bagging into Boosting using the multi-
boosting technique [Webb, 1998]. We expect
that splitting one committee into multiple sub-
committees, with each subcommittee being
created from a bootstrap sample of the train-
ing set, can reduce the variability of Boosting,
since the Boosting process is broken down into
several small processes. In addition, we expect
that introducing Bagging can further improve
the accuracy of learned committees, since it in-
creases the diversity and independence of com-
mittee members. Moreover, the new algorithm
is amenable to parallel and distributed process-
ing.

The next section presents the Boosting and
Bagging techniques. Then, Section 3 describes
the MB algorithm. Section 4 reports experi-
mental results for evaluating MB. We summa-
rize our findings in the final section.

2 Boosting and Bagging

MB can be considered as a combination
of Boosting and Bagging. We briefly dis-
cuss Boosting and Bagging in this section.
Their classification process is presented in
Section 2.3. Further details about Boosting
and Bagging are available elsewhere [Schapire,
1990; Quinlan, 1996; Schapire et al., 1997;
Bauer and Kohavi, 1998; Breiman, 1996a).

2.1 Boosting

Boosting is a general framework for improv-
ing base learning algorithms, such as decision
tree learning, rule learning, and neural net-
works. The key idea of Boosting was presented
in Section 1. Here, we describe our imple-
mentation of the Boosting algorithm with de-
cision tree learning, called BoosT. It follows
the Boosted C4.5 algorithm (AdaBoost.M1)

2The idea of multiple Boosting was originally pro-
posed by Webb [Webb, 1998].



[Quinlan, 1996] but uses a new Boosting equa-
tion as shown in Equation 1, derived from
Schapire et al. [Schapire et al., 1997].

Given a training set D consisting of m in-
stances and an integer T, the number of trials,
BoOST builds T pruned trees over T trials by
repeatedly invoking C4.5 [Quinlan, 1993]. Let
wy(z) denote the weight of instance z in D at
trial £. At the first trial, each instance has
weight 1; that is, wi(xz) = 1 for each z. At
trial ¢, decision tree H; is built using D under
the distribution w;. The error ¢; of Hy is, then,
calculated by summing up the weights of the
instances that H; misclassifies and divided by
m. If ¢ is greater than 0.5 or equal to 0, w;(x)
is re-initialized using bootstrap sampling, and
then the Boosting process continues. Note that
the tree with ¢; > 0.5 is discarded,® while the
tree with ¢, = 0 is accepted by the committee.
Otherwise, the weight w11 (z) of each instance
z for the next trial is computed using Equa-
tion 1. These weights are, then, renormalized
so that they sum to m.

w1y (2) = wyl@)eap((-1)"@er), (1)

where oy = 3In((1 — &) /€;); d(z) = 1
if Hy correctly classifies z and d(z) =
0 otherwise.

2.2 Bagging

The primary idea of Bagging [Breiman, 1996a]
is to generate a committee of classifiers with
each from a bootstrap sample of the original
training set. BAG, our implementation of Bag-
ging, uses C4.5 [Quinlan, 1993] as its base clas-
sifier learning algorithm.

Given a committee size 7" and a training
set D consisting of m instances, BAG generates
T — 1 bootstrap samples with each being cre-
ated by uniformly sampling m instances from
D with replacement. It, then, builds one deci-
sion tree using C4.5 from each bootstrap sam-
ple. Another tree is created from the original
training set.

3This step is limited to 10 x T times.

2.3 Decision Making in BoosT and
Bac

At the classification stage, for a given exam-
ple, both BOoOST and BAG make the final pre-
diction through committee voting. In this pa-
per, a voting method that uses the probabilistic
predictions produced by all committee mem-
bers without voting weights is adopted. With
this method, each decision tree returns a dis-
tribution over classes that the example belongs
to. This is performed by tracing the example
down to a leaf of the tree. The class distribu-
tion for the example is estimated using the pro-
portion of the training examples of each class
at the leaf, if the leaf is not empty. When
the leaf contains no training examples,* BOOST
and BAG estimate the class distribution using
the training examples at the parent node of
the empty leaf. The decision tree committee
members vote by summing up the class distri-
butions provided by all trees. The class with
the highest score (sum of probabilities) wins
the voting, and serves as the predicted class of
BoosT and BAG for this example. There is no
voting weight when summing up class distri-
butions. Class distribution provides more de-
tailed information than is obtained when each
committee member votes for a single class, and
this information is meaningful for committee
voting.

There are three other approaches to vot-
ing. One is using the categorical predictions
provided by all trees, without voting weights.
In this case, each tree produces a single pre-
dicted class for an example. Then, the commit-
tee predicts the most frequent class returned
by all trees. This voting method corresponds
to the method used in the original Bagging
[Breiman, 1996a].

The other two methods are the same as the
two mentioned above but each tree is given a
weight «; for voting, which is a function of the
performance of the decision tree on the train-
ing set, and is defined in Equation 1. The last
of these alternatives, weighted voting of cat-

*For multi-branch trees created by C4.5, some leaves
may contain no training instances [Quinlan, 1993].



egorical predictions, corresponds to the origi-
nal AdaBoost.M1. These three voting methods
perform either worse than or similarly to the
method that we use here.> We will address this
issue in Section 4.3.

3 MB: A Combination of
Boosting and Bagging

Figure 1 presents the details of the MB al-
gorithm. It results from incorporating BAc
into Boost. MB generates N subcommit-
tees. This process can be parallelized, since
the generation of one subcommittee is inde-
pendent from the generation of another. Each
subcommittee contains S decision trees built
using the BOOST procedure described in the
previous section. The generation of the first
subcommittee (or one of the subcommittees if
using parallel or distributed processing) starts
from the initial training set D with each train-
ing instance having the weight 1. The first
tree in this subcommittee is the same one as
that built by C4.5 using the entire training
set. The generation of every other subcom-
mittee starts from a bootstrap sample of D. A
bootstrap sample is created by uniformly sam-
pling |D| instances from D with replacement.
This is implemented through changing instance
weights, resulting in 0 weights for instances not
in the sample. Boosting propagates these val-
ues ensuring that these instances are not con-
sidered when inferring any member of the sub-
committee. Note that M B differs from Webb’s
MuLTiIBoOST [Webb, 1998] by using bootstrap
sampling in place of stochastic weighting at the
start of the generation of each subcommittee.
This difference is not expected to significantly
affect performance. Bootstrap sampling rather
than stochastic weighting is employed here to
enable direct comparison with Bagging.

®Quinlan [1996] uses categorical predictions with the
confidence with which a tree classifies a test instance as
the weight of this tree for voting in the Boosted C4.5
algorithm. In effect, this treatment is similar to us-
ing probabilistic predictions without weights discussed
here.

MB(D, S, N)
INPUT: D: a training set,
S': the size of each subcommittee,
N: the number of subcommittees.

OUTPUT: a committee, H, consisting of N
subcommittees with each having S trees.

Set T, the number of trials, = 5 x N
Set instance weight w1 (z) =1 for each z in D
t =1
WHILE (t <= T)
{ Ht = C4.5(D, ’U)t)
D' := cases in D being misclassified by H;

1
€& = 77 w(z)
P
IF (e > 1/2)
Reset we(z) using bootstrap sampling
ELSE
IF ((t modulus S = 0) or (e; = 0))
Set wyy1(z) using bootstrap sampling
t:=t+1
ELSE
Calculate wy41(z) from wy(z) using
Equation 1 and renormalize these
weights so that they sum to |D|
t:=t+1
}
RETURN H

Figure 1: The MB learning algorithm

At the classification stage, all the members
of all the subcommittees generated by M B vote
to predict a class for a given instance. M B uses
the same default voting method as BOOST and
BAG, since it, on average, performs better than
the other three voting approaches as mentioned
in Section 2.3.

4 Experiments

In this section, we empirically evaluate MB to
examine whether incorporating Bagging into
Boosting can increase stability and average ac-
curacy of learned committees. It is compared
with BoosT and Bag. (C4.5, the base deci-
sion tree learning algorithm of these committee
learning algorithms, is used as the base line for
the comparison.



4.1 Experimental Domains and

Methods

Forty natural domains from the UCI machine
learning repository [Merz and Murphy, 1997]
are used. They include all the domains used
by Quinlan [1996] for studying Boosting and
Bagging. Table 1 summarizes the characteris-
tics of these domains, including dataset size,
the number of classes, the number of contin-
uous attributes, and the number of discrete
attributes. This test suite covers a wide vari-
ety of different domains with respect to dataset
size, the number of classes, the number of at-
tributes, and types of attributes.

In every domain, two stratified 10-fold cross-
validations [Kohavi, 1995] were carried out for
each algorithm. The result reported for each
algorithm in each domain is an average value
over 20 trials. All the algorithms are run on
the same training and test set partitions with
their default option settings, except when oth-
erwise indicated. Pruned trees are used for all
the algorithms. All of BoosT, BAG, and MB
use probabilistic predictions (without voting
weights) for voting to decide the final classi-
fication in the following subsection. The num-
ber of trials (7) is set at 100 for BoosT and
BAG. The subcommittee size and the number
of subcommittees are set at 5 and 20 respec-
tively, resulting in 100 trees in total for MB.

4.2 Comparing MB with BoosrT,
BaAg, and C4.5

Table 2 shows the error rates of the four al-
gorithms. To facilitate pairwise comparisons
among these algorithms, error ratios are de-
rived from Table 2 and presented in Table 3.
An error ratio, for example for BOosT vs C4.5,
presents a result for BoosT divided by the cor-
responding result for C4.5 — a value less than
1 indicates an improvement due to BoosT. To
compare the error rates of two algorithms in a
domain, a two-tailed pairwise t-test on the er-
ror rates of the 20 trials is carried out. The dif-
ference is considered as significant, if the signif-
icance level of the t-test is better than 0.05. In

Table 1: Description of learning tasks

Domain Size | No. of | No. of Att.

Classes | Cont | Discr
Annealing 898 6 6 32
Audiology 226 24 0 69
Automobile 205 7 15 10
Breast cancer (W) 699 2 9 0
Chess (KR-KP) 3169 2 0 36
Chess (KR-KN) 551 2 0 39
Credit (Aust) 690 2 6 9
Credit (Ger) 1000 2 7 13
Echocardiogram 131 2 6 1
Glass 214 6 9 0
Heart (C) 303 2 13 0
Heart (H) 294 2 13 0
Hepatitis 155 2 6 13
Horse colic 368 2 7 15
House votes 84 435 2 0 16
Hypo 3772 5 7 22
Hypothyroid 3163 2 7 18
Image 2310 7 19 0
Iris 150 3 4 0
Labor 57 2 8 8
LED 24 200 10 0 24
Letter 20000 26 16 0
Liver disorders 345 2 6 0
Lung cancer 32 3 0 56
Lymphography 148 4 0 18
NetTalk(Letter) 5438 163 0 7
NetTalk(Phoneme) | 5438 52 0 7
NetTalk(Stress) 5438 5 0 7
Pima 768 2 8 0
Postoperative 90 3 1 7
Primary tumor 339 22 0 17
Promoters 106 2 0 57
Sick 3772 2 7 22
Solar flare 1389 2 0 10
Sonar 208 2 60 0
Soybean 683 19 0 35
Splice junction 3177 3 0 60
Vehicle 846 4 18 0
Waveform-21 300 3 21 0
Wine 178 3 13 0




Table 2: Error rates (%)

Table 3: Error rate ratios

Domain C4.5 | BoosT | Bacg MB
Annealing 7.40 4.90 5.73 4.67
Audiology 21.39 15.41 | 18.29 | 15.88
Automobile 16.31 13.42 | 17.80 | 16.10
Breast (W) 5.08 3.22 3.37 3.08
Chess (KR-KP) 0.72 0.36 0.59 0.39
Chess (KR-KN) 8.89 3.54 7.80 5.27
Credit (Aust) 14.49 13.91 | 13.84 | 12.82
Credit (Ger) 29.40 25.45 | 24.95 | 23.90
Echocardiogram | 37.80 36.24 | 33.57 | 31.68
Glass 33.62 21.09 | 27.38 | 24.33
Heart (C) 22.07 | 18.80 | 18.45 | 18.13
Heart (H) 21.09 21.25 | 20.38 | 19.20
Hepatitis 20.63 17.67 | 18.73 | 17.12
Horse colic 15.76 19.84 | 15.77 | 15.90
House votes 84 5.62 4.82 4.71 3.90
Hypo 0.46 0.32 0.45 0.33
Hypothyroid 0.71 114 | 071 | 0.82
Image 2.97 1.58 2.62 1.77
Iris 4.33 5.67 5.00 5.00
Labor 23.67 10.83 | 14.50 | 12.33
LED 24 36.50 32.75 | 31.00 | 32.00
Letter 12.16 2.95 5.93 3.45
Liver disorders 35.36 28.88 | 27.43 | 26.73
Lung cancer 57.50 53.75 | 42.50 | 47.08
Lymphography 21.88 16.86 | 18.50 | 16.86
NetTalk(Letter) | 25.88 22.14 | 22.98 | 21.37
NetTalk(Ph) 18.97 16.01 | 17.33 | 15.22
NetTalk(Stress) 17.25 11.91 | 14.97 | 12.26
Pima 23.97 26.57 | 23.37 | 23.31
Postoperative 29.44 38.89 | 30.00 | 32.22
Primary tumor | 59.59 55.75 | 55.46 | 55.02
Promoters 17.50 4.68 9.32 5.64
Sick 1.30 0.92 1.18 1.10
Solar flare 15.62 17.57 | 15.91 | 16.31
Sonar 26.43 14.64 | 21.12 | 19.68
Soybean 8.49 6.22 6.80 6.66
Splice junction 5.81 4.80 5.18 4.23
Vehicle 28.50 22.40 | 25.30 | 24.00
Waveform-21 23.83 18.33 | 19.67 | 18.00
Wine 8.96 3.35 5.29 3.07

average | 19.18 15.97 | 16.35 | 15.42

Domain Boost| Bac | MB MB vs
vs C4.5 BoosT | Bag

Annealing .66 T .63 .95 .82
Audiology 72 .86 .74 1.03 .87
Automobile .82 1.09 .99 1.20 .90
Breast (W) .63 .66 .61 .96 91
Chess (KR-KP) .50 82 54| 1.08 .66
Chess (KR-KN) .40 .88 59| 149 .68
Credit (Aust) .96 .96 .88 92 .93
Credit (Ger) .87 .85 .81 .94 .96
Echocardiogram .96 .89 .84 87 .94
Glass .63 .81 72 1.15 .89
Heart (C) .85 .84 .82 .96 .98
Heart (H) 1.01 97 91 .90 94
Hepatitis .86 91 .83 97 91
Horse colic 1.26 1.00 1.01 .80 1.01
House votes 84 .86 .84 .69 .81 .83
Hypo .70 .98 72 1.03 .73
Hypothyroid 1.61 1.00 1.15 72 1.15
Image .53 .88 .60 1.12 .68
Iris 1.31 1.15 1.15 .88 1.00
Labor .46 .61 .52 1.14 .85
LED 24 .90 .85 .88 .98 1.03
Letter .24 .49 .28 1.17 .58
Liver disorders .82 .78 .76 .93 97
Lung cancer .93 .74 .82 .88 1.11
Lymphography 7 .85 7 1.00 91
NetTalk(Letter) .86 .89 .83 .97 .93
NetTalk(Ph) .84 .91 .80 .95 .88
NetTalk(Stress) .69 .87 .71 1.03 .82
Pima 1.11 97 .97 .88 1.00
Postoperative 1.82 1.02 1.09 .83 1.07
Primary tumor .94 .93 .92 .99 .99
Promoters 27 .53 .32 1.21 .61
Sick .71 91 .85 1.20 .93
Solar flare 1.12 1.02 1.04 .93 1.03
Sonar .55 .80 74 1.84 .93
Soybean .73 .80 .78 1.07 .98
Splice junction .83 .89 .73 .88 .82
Vehicle .79 .89 .84 1.07 .95
Waveform-21 7 .83 .76 .98 .92
Wine .37 .59 .34 .92 .58
average .80 .86 .78 1.00 .89
w/t/1| 33/0/7| 34/1/5| 35/0/5|24/1/15| 33/1/6
p. of wtl|< .0001|< .0001|< .0001| .0998|< .0001
significant w/t/1| 27/8/5(23/17/0|29/10/1|12/22/6|13/27/0
p. of sign. wtl|< .0001|< .0001|< .0001| .1189| .0001




Table 3, boldface (italic) font, for example for
BoosT vs (4.5, indicates that BOOST is sig-
nificantly more (less) accurate than C4.5. The
second last row in Table 3 presents the numbers
of wins, ties, and losses between the error rates
of the corresponding two algorithms in the 40
domains, and the significance levels of a one-
tailed pairwise sign-test on these win/tie/loss
records. The last row presents similar compar-
ison results but treating insignificant wins and
losses as ties.

From Tables 2 and 3, we have the following

four observations.
(1) All the three committee learning algo-
rithms can significantly reduce the error rate
of the base tree learning algorithm, with MB
achieving the lowest average error rate and the
greatest average relative error reduction over
C4.5.

The average error rate of MB over the 40

domains is 15.42%. It is 15.97% and 16.35%
for BoosT and BAG respectively. While the
average relative error reductions of BOOST and
BAG over C4.5 in the 40 domains are 20% and
14% respectively, it is 22% for M B, the greatest
one. A one-tailed pairwise sign-test shows that
all these error reductions are significant at a
level better than 0.0001.
(2) BoosT is more accurate than BAG on av-
erage, but BAG is more stable than BOOST in
terms of less frequently obtaining significantly
higher error rates than C4.5. This confirms
previous findings [Quinlan, 1996; Bauer and
Kohavi, 1998].

The average error rate of BAG in the 40 do-
mains is 16.35%, while it is 15.97% for BoosT,
8% relatively lower, on average, than that of
BAG. However, a one-tailed sign-test fails to
show that the frequency of error reductions of
Boo0ST over BAG in the 40 domains is signifi-
cant (w/t/l =24/0/16, p = 0.1341).

While BooST significantly reduces the er-
ror of C4.5 in 27 out of the 40 domains, it also
significantly increases the error of C4.5 in 5 do-
mains. BAG achieves significantly lower error
rates than C4.5 in 23 domains, but does not
obtain any significantly higher error rate than
C4.5 in any of these domains.

(3) On average, MB is more accurate than ei-
ther BOOST or BAG alone.

MB achieves 11% average relative error re-
duction over BAG in the 40 domains. The for-
mer obtains significantly lower error rates than
the latter in 13 out of the 40 domains, but the
latter does not achieve significantly lower error
rates than the former in any of these domains.
A one-tailed sign-test shows that M B is signif-
icantly frequently more accurate than BAG in
the 40 domains at a level of 0.0001.

The average error rate of MB is 0.55 per-
centage points lower than that of BOOST in
the 40 domains, but their average error ratio
is 1.00. It might be thought that MB has
no advantage since the average error ratio to
BoosT is 1. However, it is noticed that the
average accuracy ratio of MB against BOOST
(the accuracy for MB divided by the corre-
sponding accuracy for BoosT) is 1.01. That is,
MB is 1% more accurate than BOOST on aver-
age. This discrepancy arises because error ra-
tio favors better performance at low error rates
while accuracy ratio rather favors better per-
formance at high error rates. Nevertheless, the
one-tailed sign-test shows that the frequency
of accuracy increases is not significant over the
40 domains at a level of 0.05.

(4) MB is more stable than BOOST.

MB achieves significantly lower error rates
than C4.5 in 29 domains, and significantly
higher error rates than C4.5 in only one do-
main. The biggest error increase of MB over
C4.5 is 15%. Given that BOOST makes signifi-
cant error reductions in 27 domains and signif-
icant error increases in 5 domains over (C4.5,
as well as that the biggest error increase of
BoosTt over C4.5 is 61%, MB is more stable
than BOOST in terms of less frequently obtain-
ing significantly higher error rates than C4.5
and obtaining lower error rate increases over

C4.5.

4.3 Voting Methods

As mentioned in Sections 2.3 and 3, BOOST,
BAG, and MB can use four voting meth-
ods, namely probabilistic predictions (without



Table 4: Average error rates (%) and ratios
over C4.5 of BoosT, BAG, and MB with dif-
ferent voting methods in the 40 domains

prob. cat. prob. & w| cat. & w

err. |ratio| err. |ratio| err. |ratio| err. |ratio

BoosT|(15.97| .80 |16.38| .83 [15.87| .80 [16.16| .81
Bac [16.35| .86 |16.33| .86 (16.76| .87 |16.75| .88
MB 15.42| .78 |15.51| .78 |16.16| .82 [16.20| .83

voting weights), categorical predictions (with-
out voting weights), probabilistic predictions
with voting weights, and categorical predic-
tions with voting weights, to make the final
classification.’ Table 4 presents the average er-
ror rates and the average error rate ratios over
C4.5 of BoosT, BAG, and MB with different
voting methods in the 40 domains.

While the previous research on Boosting
uses the categorical predictions with voting
weights as voting method (the last method in
the table) [Freund, 1996; Freund and Schapire,
1996b; Quinlan, 1996; Bauer and Kohavi,
1998], we found that the probabilistic predic-
tions without voting weights (the first method
in the table) method performs better than
it with respect to either lower average error
rate or higher average relative error reduction
over C4.5. The average relative error reduc-
tion of the latter over the former is 2% in the
40 domains. However, a one-tailed sign-test
fails to show that this error reduction is sig-
nificant (p = 0.0662). Note that the proba-
bilistic predictions with voting weights method
achieves the lowest average error rate in the 40
domains among the four voting methods for
BoosT. Nevertheless, the average error rate
ratio of the probabilistic predictions without
voting weights method against the probabilis-
tic predictions with voting weights method is
0.99 in the 40 domains. A one-tailed sign-test
shows that their differences are not significant
(p = 0.3601). Therefore, we choose proba-

5The voting weight of a tree without training errors
is set at a big value 1000000 for BoosT, BAG, and MB
in the experiments reported in this subsection.

bilistic predictions without voting weights as
the voting method for BOOST in the experi-
ments reported in the previous subsection. The
categorical predictions without voting weights
method obtains the highest average error rate
and the lowest average relative error reduction
over C4.5 in the 40 domains among the four
voting methods for BoosT. It performs sig-
nificantly worse than the probabilistic predic-
tions without voting weights method using a
one-tailed sign-test (p = 0.0401).

Bagging uses the categorical predictions
without voting weights method for voting in
the previous research [Breiman, 1996a; Quin-
lan, 1996; Bauer and Kohavi, 1998]. Our
experiments show that this voting method
achieves the lowest average error rate in the
40 domains among the four methods for BAG.
The probabilistic predictions without voting
weights method obtains an average error rate
just 0.02% higher than (absolute error rate
difference) that of this method for BAGc. A
two-tailed sign-test shows that their differences
in error rate are not significant (p = 0.7283)
in the 40 domains. In addition, their aver-
age relative error reductions over C4.5 are the
same in the 40 domains, and the average er-
ror ratio between them is 1.00. The other
two voting methods perform worse than these
two for BAG. A one-tailed sign-test shows
that the probabilistic predictions without vot-
ing weights method is, on average, significantly
more accurate than the categorical predictions
with voting weights method for BAG in the 40
domains (p = 0.0038). A one-tailed sign-test
shows that the error difference between any
other pair of these four methods is not signifi-
cant at a level of 0.05 for BAG. Therefore, BAG
uses the probabilistic predictions without vot-
ing weights method in the previous subsection,
which is the same as for BOOST.

For MB, the probabilistic predictions with-
out voting weights method achieves the lowest
average error rate and the highest average rel-
ative error reduction over C4.5 in the 40 do-
mains among the four voting methods. A one-
tailed sign-test shows that this method is, on
average, significantly more accurate than any



of the other three methods at a level of 0.01 or
better.

In short, these experimental results suggest
that using a function of the performance of a
tree on the training set as the voting weight
may provide very marginal advantage for clas-
sifier committee learning algorithms including
Boost, BAG, and MB. It seems that classi-
fier committee learning algorithms with prob-
abilistic predictions without weights for voting
perform reasonably well, better than or equal
to with the other voting methods on average.
This is consistent with Quinlan’s [1996] find-
ings. We argue that when using categorical
predictions for voting, the information of the
extent to which each committee member sup-
ports its vote (categorical prediction) is lost. If
this information is taken into account, the com-
mittee may make a different decision. For ex-
ample, committee member A gives 30%, 30%,
and 40% support for decision D1, D9, and D3
respectively. It is 25%, 35%, and 40% for mem-
ber B; 10%, 80%, and 10% for member C. Sup-
pose the committee has only these three mem-
bers. If the voting with categorical predictions
is used, the decision is D3, since two members
support it but with very low support. If taking
account of detailed support from each mem-
ber, the decision should be D,, since it gets
the highest total support from all the commit-
tee members. Therefore, the probabilistic pre-
diction voting method can utilize this informa-
tion, thus helping the committee to make bet-
ter decisions.

5 Conclusions

In this paper, we present a multiple committee
learning algorithm, namely M B, which incor-
porates Bagging into Boosting. Since the gen-
eration of subcommittees is independent from
each other, MB is amenable to parallel or dis-
tributed processing.

The empirical studies using a representa-
tive collection of natural domains show that
the probabilistic predictions without voting
weights is an appropriate voting method for

decision tree committee learning algorithms in-
cluding Boosting, Bagging, and MB. Its av-
erage performance is better than or equal to
that of the other voting methods: probabilistic
predictions with voting weights, or categorical
predictions with or without voting weights.

Experimental results show that MB is more
stable than BOOST. It is significantly more ac-
curate than BAG on average. Its average er-
ror rate is also lower than that of BoosT. All
these results suggest that Multiple Boosting is
a better choice than either Boosting or Bagging
alone for parallel datamining.
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