Pre-publication draft of a paper which appeared in the Proceedings of the Tenth Australi
Conference on Artificial Intelligence (Al 98), pp 321-332.
Publisher: Springer-Verlag

Stochastic Attribute Selection Committees

Zijian Zheng and Geoffrey I. Webb

School of Computing and Mathematics
Deakin University, Geelong
Victoria 3217, Australia
{zijian,webb}@deakin.edu.au

Technical Report (TR C98/08)
March, 1998

Abstract. Classifier committee learning methods generate multiple clas-
sifiers to form a committee by repeatedly applying a single base learning
algorithm. The committee members vote to decide the final classification.
Two such methods, Bagging and Boosting, have shown great success with
decision tree learning. They create different classifiers by modifying the
distribution of the training set. This paper studies a different approach:
the Stochastic Attribute Selection Committee learning method with de-
cision tree learning. It generates classifier committees by stochastically
modifying the set of attributes but keeping the distribution of the train-
ing set unchanged. An empirical evaluation of a variant of this method,
namely SASC, in a representative collection of natural domains shows
that the SASC method can significantly reduce the error rate of deci-
sion tree learning. On average SASC is more accurate than Bagging and
less accurate than Boosting, although a one-tailed sign-test fails to show
that these differences are significant at a level of 0.05. In addition, it is
found that, like Bagging, SASC is more stable than Boosting in terms of
less frequently obtaining significantly higher error rates than C4.5 and
obtaining lower error rate increases over C4.5. Moreover, like Bagging,
SAsC is amenable to parallel and distributed processing while Boosting
is not.

Keywords: machine learning, decision tree learning, inductive learning, com-
mittee learning, datamining

1 Introduction

Classifier committees have been the focus of much recent attention (Freund,
1996; Freund and Schapire, 1996a; 1996b; Quinlan, 1996; Breiman, 1996a; 1996b;
Dietterich and Kong, 1995; Ali, 1996; Chan, Stolfo, and Wolpert, 1996; Ali and
Pazzani, 1996; Schapire, Freund, Bartlett, and Lee, 1997; Domingos, 1997; Bauer
and Kohavi, 1998). With this type of approach, a set of classifiers is generated
using a single base learning algorithm to form a committee. The committee
members vote to decide the final classification.


michelle
Pre-publication draft of a paper which appeared in the Proceedings of the Tenth Australian Joint Conference on Artificial Intelligence (AI 98), pp 321-332. 
Publisher: Springer-Verlag


Given a training set described using a set of attributes, conventional classifier
learning algorithms such as decision tree learning algorithms (Quinlan, 1993;
Breiman, Friedman, Olshen, and Stone, 1984) build one classifier. Usually, the
classifier is correct for most parts of the instance space, but incorrect for some
small parts of the instance space. If classifiers in a committee partition the
instance space differently, and most points in the instance space are correctly
covered by the majority of the committee, the committee has a lower error rate
than the individual classifiers.

Bagging (Breiman, 1996a) and Boosting (Schapire, 1990; Freund, 1996; Fre-
und and Schapire, 1996a; 1996b; Schapire et al., 1997), as two representative
methods of this type, can significantly decrease the error rate of decision tree
learning (Quinlan, 1996; Freund and Schapire, 1996b; Bauer and Kohavi, 1998).
They repeatedly build different classifiers using a base learning algorithm, such
as a decision tree generator, by changing the distribution of the training set.
Bagging generates different classifiers using different bootstrap samples. Boost-
ing builds different classifiers sequentially. The weights of training examples used
for creating each classifier are modified based on the performance of the previous
classifiers. The objective is to make the generation of the next classifier concen-
trate on the training examples that are misclassified by the previous classifiers.
The main difference between Bagging and Boosting is that the latter adaptively
changes the distribution of the training set based on the performance of previ-
ously created classifiers and uses a function of the performance of a classifier as
the weight for voting, while the former stochastically changes the distribution
of the training set and uses equal weight voting. Although Boosting is generally
more accurate than Bagging, the performance of Boosting is more variable than
that of Bagging (Quinlan, 1996; Bauer and Kohavi, 1998). Given an integer T as
the committee size, both Boosting and Bagging need approximately 7' times as
long as their base learning algorithm does for learning a single classifier. How-
ever, Bagging has an advantage over Boosting. That is, it is amenable to parallel
and distributed processing while Boosting is not, since the generation of each
committee member, a classifier, is independent for the former while it must occur
sequentially for the latter. This makes Bagging appropriate for parallel machine
learning and datamining.

While much recent attention has focused on Boosting and Bagging, other
classifier committee learning approaches have also been developed, including
generating multiple trees by manually changing learning parameters (Kwok and
Carter, 1990), error-correcting output codes (Dietterich and Bakiri, 1995), gen-
erating different classifiers by randomizing the base learning process (Dietterich
and Kong, 1995; Ali, 1996), learning option trees (Buntine, 1990; Kohavi and
Kunz, 1997), training a committee of neural networks by manually selecting
attribute subsets (Cherkauer, 1996; Tumer and Ghosh, 1996), learning naive
Bayesian classifier committees by randomly choosing attribute subsets (Zheng,
1998), creating Gaussian classifier committees by varying attribute sets (Asker
and Maclin, 1997), and creating committees for first-order learning by adding
random selection of conditions to FOIL (Ali and Pazzani, 1996). Finally, dif-



ferent base learning algorithms can be used for learning different classifiers in
committees (Wolpert, 1992; Zhang, Mesirov, and Waltz, 1992). A collection of
recent research in this area and reviews of related methods can be found in Chan,
Stolfo, and Wolpert (1996), Dietterich (1997), and Ali (1996).

In contrast to Bagging and Boosting, this paper studies an alternative ap-
proach to generating different classifiers to form a committee, namely SASC
(Stochastic Attribute Selection Committees). SASC builds different classifiers
by stochastically modifying the set of attributes considered during induction,
while the distribution of the training set is kept unchanged. Two variants of this
method which have been proposed are Dietterich and Kong’s (1995) randomiza-
tion trees and Ali’s (1996) decision tree ensembles. The former generates decision
tree committees through repeatedly applying a base learning algorithm that is
derived by modifying C4.5 (Quinlan, 1993) to choose randomly among the top
20 tests in terms of information gain ratio at each decision node. The latter
employs a very similar technique. At each decision node when building a tree,
it chooses a test from those tests whose entropy is within 1/0.8 of the entropy
of the best test. The probability that a test, s, in this set is chosen is propor-
tional to 1/Entropy(s). Dietterich and Kong (1995) compare the randomization
tree method with Bagging but only in 5 domains. Ali (1996) only compares the
decision tree ensemble method with its base decision tree generator.

In this paper, we use another variant of this stochastic approach for deci-
sion tree committee learning to empirically compare the SASC approach with
Boosting and Bagging. Although these three variants may perform differently,
we do not expect that their performance differences are significant. The objective
of this study is to empirically investigate the advantages and disadvantages of
committee learning methods by stochastically changing attribute sets over com-
mittee learning methods by varying the distribution of the training set. We do
not claim that the variant used here is better than the other two variants men-
tioned above. Indeed, our (untested) expectation is that all the three variants
will offer comparable performance.

The following section describes the new variant of the SASC method. The im-
plemented algorithm is called SASC. Section 3 reports experiments for evaluating
the SAsc algorithm. Finally, we conclude with future work.

2 SASC for Decision Tree Learning

During the growth of a decision tree, at each decision node, a decision tree
learning algorithm searches for the best attribute to form a test based on some
test selection functions (Quinlan, 1993). The key idea of SASC is to vary the
members of a decision tree committee by stochastic manipulation of the set of
attributes available for selection at decision nodes. This creates decision trees
that each partition the instance space differently. In order to have a good quality
tree in the sense that it can correctly cover most parts of the instance space, the
tests used at decision nodes should be as good as possible with respect to the
test selection function employed.



CA4.5SAS(Att, D, P)

INPUT: Att: a set of attributes,
D: a training set represented using Att and classes,
P: a probability value.

OUTPUT: a pruned tree.

C := the majority class in D

RawTree := Grow-Tree-SAs(Att, D, C, P)

PrunedTree := Prune-Tree(RawTree, Att, D)

RETURN PrunedTree

Fig. 1. The C4.5SAs decision tree learning algorithm

We use C4.5 (Quinlan, 1993) with the modifications described below as the
base classifier learning algorithm in our stochastic attribute selection committee
learning algorithm, SAsc, although any conventional decision tree learning algo-
rithm can be used. When building a decision node, by default C4.5 uses the infor-
mation gain ratio to search for the best attribute to form a test (Quinlan, 1993).
To force C4.5 to generate different trees using the same training set, we modify
C4.5 by stochastic restriction of the attributes available for selection at a deci-
sion node. This is implemented by using a probability parameter P.! At each
decision node, an attribute subset is randomly selected with each available at-
tribute having the probability P of being selected. The available attributes refer
to those attributes that have non-negative gain values. For nominal attributes,
they must not have been used in the path from the root to the current node.
Numeric attributes are always available for selection. This stochastic attribute
subset selection process will be repeated, if no attribute was selected and there
are some attributes available at this node. The objective is to make sure that at
least one available attribute is included in the subset if possible. After attribute
subset selection, the algorithm chooses the attribute with the highest gain ratio
to form a test for the decision node from the subset. A different random subset is
selected at each node of the tree. The modified version of C4.5 is called C4.5SAs
(C4.5 Stochastic Attribute Selection). The probability of each attribute being
included in a subset is specified by the parameter P with a default value of 33%.
That is, by default, each available attribute has at least one third of chance
of being selected into the subset. This allows C4.5SAS to have a chance to use
different alternative attributes to form tests at decision nodes when building
trees at different trials using the same training set. C4.5SAS still uses the best
attribute from the subset to form a test each time, although it may not use the
best one among all the attributes available at a node every time.

Figures 1 and 2 provide a description of the C4.5SAs algorithm. The only
difference between C4.5SAs and C4.5 is that when growing a tree, at a decision
node, C4.5SAS creates an attribute subset Attsupser and uses the best attribute

! The value of P does not change during induction.



Grow-Tree-SAs(Att, D, C, P)
INPUT: Att: a set of attributes,
D: a training set,
C: the majority class at the parent node,
P: a probability value.
OUTPUT: a decision tree.
IF (D is empty)
RETURN a leaf node labeled with C
ELSE
{ C:= the majority class in D
IF (the stopping criterion is satisfied)
RETURN a leaf node labeled with C
ELSE
{ Attsupser:= select a subset from Att in which each available attribute
has the probability P of being selected.
Testpest := Find-Best-Test(Attsybset, D)
IF (Testpes: is reasonable (with a positive test evaluation function value))
{ Use Testpest to partition D into n subsets Dy, Da, - -, Dy, one for
each outcome of the test
RETURN the tree formed by a decision node
with the test Testpest and subtrees:
Grow-Tree-SAS(Att, D1, C, P ),
Grow-Tree-SAs(Att, D2, C, P),

ér,ow-Tree-SAS(Att, D,, C, P)
}
ELSE
RETURN a leaf node labeled with C

Fig. 2. The algorithm for growing a tree with stochastic attribute selection

in it to form a test as described above. All other parts are identical for these two
algorithms. With P = 1, C4.5SAsS generates the same tree as C4.5.

Having C4.5SAs, the design of SASC is very simple. As described in Fig-
ure 3, C4.5S4s is invoked T times to generate T different decision trees to form
a committee. Here, all the trees are pruned trees. As in Boosting, the first tree
produced by SASC is the same as the tree generated by C4.5. It is worth men-
tioning that SASC is amenable to parallel and distributed processing, since the
generation of each tree in SASC is independent from that of another.

At the classification stage, for a given example, SASC makes the final pre-
diction through committee voting. In this paper, a voting method that uses the
probabilistic predictions produced by all committee members without voting
weights is adopted.? With this method, each decision tree returns a distribution
over classes that the example belongs to. This is performed by tracing the exam-

2 The default setting of the SASC algorithm.



SAasc(Att, D, P, T')

INPUT: Att: a set of attributes,
D: a training set represented using Att and classes,
P: a probability value,
T: the number of trials.

OUTPUT: a committee, H, consisting of T trees.

H, := C4.5SAS(Att, D, 1)

FOR each t from 2 to T

{ H; := C4.5SAS(Att, D, P) }

RETURN H

Fig. 3. The Sasc learning algorithm

ple down to a leaf of the tree. The class distribution for the example is estimated
using the proportion of the training examples of each class at the leaf, if the leaf
is not empty. This is the same as C4.5 (Quinlan, 1993). When the leaf contains
no training examples,? C4.5 produces a class distribution with the labeled class
of the leaf having the probability 1, and all other classes having the probability
0. In this case, SAsSC is different from C4.5. It estimates the class distribution
using the training examples at the parent node of the empty leaf. The decision
tree committee members vote by summing up the class distributions provided by
all trees. The class with the highest score (sum of probabilities) wins the voting,
and serves as the predicted class of SASC for this example. There is no voting
weight when summing up class distributions. Class distribution provides more
detailed information than is obtained when each committee member votes for a
single class, and this information is meaningful for committee voting.

There are three other approaches to voting. One is using the categorical
predictions provided by all trees, without voting weights. In this case, each tree
produces a single predicted class for an example. Then, the committee predicts
the most frequent class returned by all trees.

The other two methods are the same as the two mentioned above but each
tree is given a weight a; for voting, which is a function of the performance of
the decision tree on the training set, and is defined in Equation 1 later.* These
three voting methods perform either worse than or similarly to the method that
we use here.® This issue will be addressed in Section 3.4.

3 For multi-branch trees created by C4.5, some leaves may contain no training instances
(Quinlan, 1993).

* The weight of each training example at any trial ¢ is 1 when computing o in SAsc.

5 Quinlan (1996) uses categorical predictions with the confidence with which a tree
classifies a test instance as the weight of this tree for voting in the Boosted C4.5 al-
gorithm. In effect, this treatment is similar to using probabilistic predictions without
weights discussed here.



3 Experiments

In this section, we use experiments in a representative collection of natural do-
mains to explore whether the SASC algorithm can significantly reduce the error
rate of C4.5. SASC is also compared with a Boosting algorithm, namely BOOST,
and a Bagging algorithm, namely BAG. The reason for comparing SASC with
Boosting and Bagging is, as mentioned before, to explore the advantages and
disadvantages of generating decision tree committees by stochastically changing
the set of attributes over that by changing the distribution of the training set
with respect to reducing the error rate of decision tree learning. At the current
stage, the prediction accuracy is our primary concern about classifier committee
learning.

3.1 The Comparison Algorithms: BoosT and Bac

Boo0sT is our implementation of the Boosting algorithm with decision tree learn-
ing. It follows the Boosted C4.5 algorithm (AdaBoost.M1) (Quinlan, 1996) but
uses a new Boosting equation as shown in Equation 1, derived from Schapire et
al. (1997).

Given a training set D consisting of m instances and an integer T, the number
of trials, BOOST builds T pruned trees over T trials by repeatedly invoking C4.5
(Quinlan, 1993). Let w;(z) denote the weight of instance z in D at trial t. At the
first trial, each instance has weight 1; that is, wi(x) = 1 for each z. At trial ¢,
decision tree Hy is built using D under the distribution w;. The error €; of H; is,
then, calculated by summing up the weights of the instances that H; misclassifies
and divided by m. If ¢ is greater than 0.5 or equal to 0, w;(z) is re-initialized
using bootstrap sampling, and then the Boosting process continues. Note that
the tree with e; > 0.5 is discarded,® while the tree with ¢; = 0 is accepted by the
committee. Otherwise, the weight w1 (x) of each instance z for the next trial is
computed using Equation 1. These weights are, then, renormalized so that they
sum to m.

wie1) (@) = wi(@)eap((=1)" ay), (1)

where oy = $In((1 — €)/e); d(z) = 1 if Hy correctly classifies z and
d(x) = 0 otherwise.

The primary idea of Bagging (Breiman, 1996a) is to generate a committee of
classifiers with each from a bootstrap sample of the original training set. BAg,
our implementation of Bagging, uses C4.5 (Quinlan, 1993) as its base classifier
learning algorithm.

Given a committee size 7" and a training set D consisting of m instances,
BAG generates T' — 1 bootstrap samples with each being created by uniformly
sampling m instances from D with replacement. It, then, builds one decision tree
using C4.5 from each bootstrap sample. Another tree is created from the original
training set.

6 This step is limited to 10 x T times.



As Sasc, BoosT and BAG also have four voting methods to decide the final
classification. The first one is using the probabilistic predictions produced by all
H;s, without voting weights. The second one is using the categorical predictions
provided by all Hys, without voting weights. This voting method corresponds
to the method used in the original Bagging (Breiman, 1996a). The other two
methods are the same as these two but each tree H is given a weight a; for
voting. The last of these alternatives, weighted voting of categorical predictions,
corresponds to the original AdaBoost.M1 (Schapire, 1990; Freund and Schapire,
1996a; 1996b; Freund, 1996; Schapire et al., 1997). The first method is set as the
default in BOOST and BAG, since it performs either better than or similarly to
the others on average. We will empirically compare these four voting methods
later in this section.

3.2 Experimental Domains and Methods

Forty natural domains from the UCI machine learning repository (Merz and
Murphy, 1997) are used. They include all the domains used by Quinlan (1996) for
studying Boosting and Bagging. Table 1 summarizes the characteristics of these
domains, including dataset size, the number of classes, the number of continuous
attributes, and the number of discrete attributes. This test suite covers a wide
variety of different domains with respect to dataset size, the number of classes,
the number of attributes, and types of attributes.

In every domain, two stratified 10-fold cross-validations (Kohavi, 1995) are
carried out for each algorithm. The result of each algorithm in each domain
reported is an average value over 20 trials. All the algorithms are run on the
same training and test set partitions with their default option settings except
when otherwise indicated. All of BoosT, BAG, and SASC use probabilistic pre-
dictions (without voting weights) for voting to decide the final classification in
the following subsection. Schapire et al. (1997) show that the test accuracy of
Boosting increases as T increases even after the training error reaches zero. It is
interesting to see the performance improvement that can be achieved with two
orders of magnitude increase in computation. Therefore, the number of trials
(the parameter T) is set at 100 for BoosT, BAG, and Sasc. The probability
of each attribute being selected into the subset (the parameter P) is set at the
default, 33%, for Sasc.

3.3 Comparing Sasc with BoosT, Bag, and C4.5

Table 2 shows the error rates of the four algorithms. To facilitate the pairwise
comparisons among these algorithms, error ratios are derived from Table 2 and
presented in Table 3. An error ratio, for example for BOosT vs C4.5, presents
a result for BoosT divided by the corresponding result for C4.5 — a value less
than 1 indicates an improvement due to BOOST. To compare the error rates
of two algorithms in a domain, a two-tailed pairwise t-test on the error rates
of the 20 trials is carried out. The difference is considered as significant, if the
significance level of the t-test is better than 0.05. In Table 3, boldface (italic)



Table 1. Description of learning tasks

Domain Size | No. of | No. of Attributes

Classes | Cont Discr
Annealing 898 6 6 32
Audiology 226 24 0 69
Automobile 205 7 15 10
Breast cancer (W) 699 2 9 0
Chess (KR-KP) 3169 2 0 36
Chess (KR-KN) 551 2 0 39
Credit (Aust) 690 2 6 9
Credit (Ger) 1000 2 7 13
Echocardiogram 131 2 6 1
Glass 214 6 9 0
Heart (C) 303 2 13 0
Heart (H) 294 2 13 0
Hepatitis 155 2 6 13
Horse colic 368 2 7 15
House votes 84 435 2 0 16
Hypo 3772 5 7 22
Hypothyroid 3163 2 7 18
Image 2310 7 19 0
Iris 150 3 4 0
Labor 57 2 8 8
LED 24 200 10 0 24
Letter 20000 26 16 0
Liver disorders 345 2 6 0
Lung cancer 32 3 0 56
Lymphography 148 4 0 18
NetTalk(Letter) 5438 163 0 7
NetTalk(Phoneme) | 5438 52 0 7
NetTalk(Stress) 5438 5 0 7
Pima 768 2 8 0
Postoperative 90 3 1 7
Primary tumor 339 22 0 17
Promoters 106 2 0 57
Sick 3772 2 7 22
Solar flare 1389 2 0 10
Sonar 208 2 60 0
Soybean 683 19 0 35
Splice junction 3177 3 0 60
Vehicle 846 4 18 0
Waveform-21 300 3 21 0
Wine 178 3 13 0




Table 2. Error rates (%)

Domain C4.5 | BoosT | BAG | Sasc
Annealing 7.40 490 | 5.73 | 5.85
Audiology 21.39 15.41 | 18.29 | 18.73
Automobile 16.31 13.42 | 17.80 | 14.35
Breast (W) 5.08 3.22 | 337 | 3.44
Chess (KR-KP) 0.72 0.36 | 0.59 | 0.67
Chess (KR-KN) | 8.89 354 | 7.80| 9.26
Credit (Aust) 14.49 | 13.91 | 13.84 | 14.71
Credit (Ger) 29.40 25.45 | 24.95 | 25.10
Echocardiogram | 37.80 36.24 | 33.57 | 37.01
Glass 33.62 21.09 | 27.38 | 25.27
Heart (C) 22.07 18.80 | 18.45 | 16.65
Heart (H) 21.09 | 21.25 | 20.38 | 18.88
Hepatitis 20.63 17.67 | 18.73 | 18.40
Horse colic 15.76 19.84 | 15.77 | 17.39
House votes 84 5.62 482 | 4.71 | 4.59
Hypo 0.46 0.32 | 045 | 0.46
Hypothyroid 0.71 1.14 | 071 | 0.76
Image 2.97 1.58 2.62 2.06
Iris 4.33 5.67 | 5.00 | 5.00
Labor 23.67 10.83 | 14.50 | 18.83
LED 24 36.50 32.75 | 31.00 | 29.00
Letter 12.16 295 | 593 | 3.74
Liver disorders | 35.36 28.88 | 27.43 | 29.90
Lung cancer 57.50 53.75 | 42.50 | 45.83
Lymphography | 21.88 16.86 | 18.50 | 18.48
NetTalk(Letter) | 25.88 22.14 | 22.98 | 21.98
NetTalk(Ph) 18.97 16.01 | 17.33 | 18.03
NetTalk(Stress) | 17.25 11.91 | 14.97 | 12.44
Pima 23.97 26.57 | 23.37 | 23.76
Postoperative 29.44 38.89 | 30.00 | 28.89
Primary tumor | 59.59 55.75 | 55.46 | 54.72
Promoters 17.50 468 | 9.32| 7.09
Sick 1.30 092 | 1.18 | 1.42
Solar flare 15.62 17.57 | 15.91 | 15.70
Sonar 26.43 14.64 | 21.12 | 16.32
Soybean 8.49 6.22 | 6.80 | 5.42
Splice junction 5.81 480 | 5.18 | 4.50
Vehicle 28.50 22.40 | 25.30 | 25.12
Waveform-21 23.83 18.33 | 19.67 | 19.83
Wine 8.96 335 | 529 | 4.48

average | 19.18 15.97 | 16.35 | 16.10

10




Table 3. Error rate ratios

Domain Boost | BaGg | Sasc SAsC vs
vs C4.5 BoosT Baa

Annealing .66 ST .79 1.19 1.02
Audiology .72 .86 .88 1.22 1.02
Automobile .82 1.09 .88 1.07 .81
Breast (W) .63 .66 .68 1.07 1.02
Chess (KR-KP) .50 82 93 1.86 1.14
Chess (KR-KN) .40 88 1.04 2.62 1.19
Credit (Aust) .96 .96 1.02 1.06 1.06
Credit (Ger) .87 .85 .85 .99 1.01
Echocardiogram .96 -89 .98 1.02 1.10
Glass .63 .81 .75 1.20 .92
Heart (C) .85 .84 .75 .89 .90
Heart (H) 1.01 .97 .90 .89 .93
Hepatitis .86 91 .89 1.04 .98
Horse colic 1.26 1.00 1.10 .88 1.10
House votes 84 .86 .84 .82 .95 97
Hypo .70 98 1.00 1.4 1.02
Hypothyroid 1.61 1.00 1.07 .67 1.07
Image .53 .88 .69 1.30 .79
Iris 1.31 1.15 1.15 .88 1.00
Labor .46 .61 .80 1.7 1.30
LED 24 .90 .85 .79 .89 .94
Letter .24 .49 .31 1.27 .63
Liver disorders .82 .78 .85 1.04 1.09
Lung cancer .93 .74 .80 .85 1.08
Lymphography N .85 .84 1.10 1.00
NetTalk(Letter) .86 .89 .85 .99 .96
NetTalk(Ph) .84 91 .95 1.18 1.04
NetTalk(Stress) .69 .87 72 1.04 .83
Pima 1.11 97 .99 .89 1.02
Postoperative 1.52 1.02 .98 .74 .96
Primary tumor .94 .93 .92 .98 99
Promoters 27 .53 .41 1.51 .76
Sick .71 91 1.09 1.54 1.20
Solar flare 1.12 1.02 1.01 .89 .99
Sonar .55 .80 .62 1.11 ST
Soybean .73 .80 .64 .87 .80
Splice junction .83 .89 77 94 87
Vehicle .79 .89 .88 1.12 .99
Waveform-21 Nid .83 .83 1.08 1.01
Wine .37 .59 .50 1.34 .85
average 0.80 .86 .84 1.13 .98
w/t/l| 33/0/7 | 34/1/5 | 32/1/7 | 16/0/24 | 21/1/18
p. of wtl | < .0001 | < .0001 | < .0001 .1341 .3746
significant w/t/1 | 27/8/5 | 23/17/0 | 23/17/0 | 5/24/11 | 9/28/3
p. of sign. wtl | < .0001 | < .0001 | < .0001 .1051 .0730

11




font, for example for BoosT vs C4.5, indicates that BOOST is significantly more
(less) accurate than C4.5. The second last row in Table 3 presents the numbers of
wins, ties, and losses between the error rates of the corresponding two algorithms
in the 40 domains, and the significance levels of a one-tailed pairwise sign-test
on these win/tie/loss records. The last row presents similar comparison results
but treating insignificant wins and losses as ties.

From Tables 2 and 3, we have the following four observations.

(1) All the three committee learning algorithms can significantly reduce the
error rate of the base tree learning algorithm.

The average error rate of C4.5 in the 40 domains is 19.18%. BoosT, BAG,

and Sasc reduce the average error rate to 15.97%, 16.35%, and 16.10% respec-
tively. The average relative error reductions of these three committee learning
algorithms over C4.5 in the 40 domains are 20%, 14%, and 16% respectively. A
one-tailed pairwise sign-test shows that all these error reductions are significant
at a level better than 0.0001.
(2) BoosT is more accurate than BAG on average, but BAG is more stable
than BOOST in terms of less frequently obtaining significantly higher error rates
than C4.5. This is consistent with previous findings (Quinlan, 1996; Bauer and
Kohavi, 1998).

The average error rate of BAG in the 40 domains is 16.35%, while it is 15.97%
for BoosT, 8% relatively lower, on average, than that of BAG. However, a one-
tailed sign-test fails to show that the frequency of error reductions of BoosT
over BAG in the 40 domains is significant (w/t/l = 24/0/16, p = 0.1341).

While BoosT significantly reduces the error of C4.5 in 27 out of the 40
domains, it also significantly increases the error of C4.5 in 5 domains. BAG
achieves significantly lower error rates than C4.5 in 23 domains, but does not
obtain any significantly higher error rate than C4.5 in any of these domains.
(3) On average, SASC is more accurate than BAG, but less accurate than BOOST.

Sasc achieves 2% average relative error reduction over BAG in the 40 do-
mains. The former obtains significantly lower error rates than the latter in 9
out of the 40 domains, and significantly higher error rates in 3 domains. SAsc
demonstrates its advantage over BAG in terms of lower error rate, although a
one-tailed sign-test fails to show that the frequency of the error reductions in
the 40 domains is significant at a level of 0.05.

The average error ratio of SASC over BOOST is 1.13 in the 40 domains. It
might be thought a serious disadvantage of SASC that the average error ratio
compared to BOOST is greater than 1. However, it is noticed that the average
accuracy ratio of SASC against BOOST (the accuracy for SAsc divided by the cor-
responding accuracy for BoosT) is 1.00. That is, on average SASC is as accurate
as BoosT. This discrepancy arises because error ratio favors better performance
at low error rates while accuracy ratio rather favors better performance at high
error rates. The one-tailed sign-test shows that the frequency of error decreases
is not significant over the 40 domains at a level of 0.05. In addition, it is found
that SASC is likely to outperform BoOST when BOOST cannot obtain large error
reductions over C4.5, for example, when the reduction is less than or equal to

12



Table 4. Average error rates (%) and ratios over C4.5 of BoosT, BAG, and SASC with
different voting methods in the 40 domains

prob. cat. prob. & w cat. & w
err. | ratio | err. | ratio | err. | ratio | err. | ratio
Boost | 15697 | .80 | 16.38 | .83 | 15.87 | .80 | 16.16 | .81
Baag 1635 | .86 | 16.33 | .86 | 16.76 | .87 | 16.75 | .88
SAsC 16.10 | .84 | 1641 | 86 | 16.64 | .86 | 16.44 | .85

15%.
(4) Sasc is more stable than BoosT

The performance stability of SASC is very similar to that of BAG, although
SAScC is more accurate than BAG on average. Both of them obtain significantly
lower error rates than C4.5 in 23 domains and significantly higher error rates than
C4.5 in no domains, whereas BOOST is significantly more accurate than C4.5
in 27 domains, but is significantly less accurate in 5 domains. In addition, the
highest relative error increase of both SAsC and BAG over C4.5 in the 40 domains
is 15% which is not significant. It is 61% for BOOST, which is significant. These
results indicate that, like BAG, SASC is more stable than BOOST in terms of
less frequently obtaining significantly higher error rates than C4.5 and obtaining
lower error rate increases over C4.5. Our analysis suggests that the stochastic
component of SASC and BAG contributes to their stable behavior.

3.4 Voting Weights

As mentioned before, BoosT, BAG, and SASC can use four voting methods,
namely probabilistic predictions (without voting weights), categorical predic-
tions (without voting weights), probabilistic predictions with voting weights,
and categorical predictions with voting weights, to make the final classification.”
Table 4 presents the average error rates and the average error rate ratios over
C4.5 of BoosT, BAG, and SAsc with different voting methods in the 40 domains.

While the previous research on Boosting uses the categorical predictions with
voting weights as voting method (the last method in the table) (Freund, 1996;
Freund and Schapire, 1996b; Quinlan, 1996; Bauer and Kohavi, 1998), we found
that the probabilistic predictions without voting weights (the first method in
the table) method outperforms it with respect to either lower average error rate
or higher average relative error reduction over C4.5. The average relative error
reduction of the latter over the former is 2% in the 40 domains. However, a one-
tailed sign-test fails to show that this error reduction is significant (p = 0.0662).
Note that the probabilistic predictions with voting weights method achieves the
lowest average error rate in the 40 domains among the four voting methods for

" The voting weight of a tree without training errors is set at a big value 1000000 for
BoosT, BAG, and SASC in the experiments reported in this subsection.

13



BoosT. Nevertheless, the average error rate ratio of the probabilistic predictions
without voting weights method against the probabilistic predictions with vot-
ing weights method is 0.99 in the 40 domains. A one-tailed sign-test shows that
their differences are not significant (p = 0.3601). Therefore, we choose proba-
bilistic predictions without voting weights as the voting method for BOOST in
the experiments reported in the previous subsection. The categorical predictions
without voting weights method obtains the highest average error rate and the
lowest, average relative error reduction over C4.5 in the 40 domains among the
four voting methods for BoosT. It performs significantly worse than the prob-
abilistic predictions without voting weights method using a one-tailed sign-test
(p = 0.0401). Substituting the probabilistic predictions with voting weights re-
sults (the lowest average error rate for BoosT) for the BOOST results presented
in Tables 2 and 3 does not significantly affect any of the comparative outcomes
with respect to SASC (error ratio = 1.12, w/t/l = 16/1/23, p = 0.1684).

Bagging uses the categorical predictions without voting weights method for
voting in the previous research (Breiman, 1996a; Quinlan, 1996; Bauer and Ko-
havi, 1998). Our experiments show that this voting method achieves the lowest
average error rate in the 40 domains among the four methods for BAG. The
probabilistic predictions without voting weights method obtains an average er-
ror rate just 0.02 percentage points higher than that of this method for BAG.
A two-tailed sign-test shows that their differences in error rate are not signif-
icant (p = 0.7283) in the 40 domains. In addition, their average relative error
reductions over C4.5 are the same in the 40 domains, and the average error
ratio between them is 1.00. The other two voting methods perform worse than
these two for BAG. A one-tailed sign-test shows that the probabilistic predic-
tions without voting weights method is, on average, significantly more accurate
than the categorical predictions with voting weights method for BAG in the 40
domains (p = 0.0038). A one-tailed sign-test shows that the error difference be-
tween any other pair of these four methods is not significant at a level of 0.05 for
BAG. Therefore, BAG uses the probabilistic predictions without voting weights
method in the previous subsection, which is the same as for BOOST.

For SAsc, the probabilistic predictions without weights method achieves the
lowest average error rate and the highest average relative error reduction over
C4.5 in the 40 domains among the four voting methods. A one-tailed sign-test
shows that this method is, on average, significantly more accurate than the
categorical predictions with voting weights method (p = 0.0288). The error
difference between any other pair of these four voting methods for SASC over
the 40 domains is not significant at a level of 0.05 using a one-tailed sign-test.

In short, these experimental results suggest that using a function of the per-
formance of a tree on the training set as the voting weight provide very marginal
advantage for classifier committee learning algorithms including BoosT, BAG,
and SASC. It seems that classifier committee learning algorithms with probabilis-
tic predictions without weights for voting perform reasonably well, better than
or equal to with the other voting methods on average. This is consistent with
Quinlan’s (1996) findings. We argue that when using categorical predictions for

14



voting, the information of the extent to which each committee member supports
its vote (categorical prediction) is lost. If this information is taken into account,
the committee may make a different decision. For example, committee member
A gives 30%, 30%, and 40% support for decision D1, Dy, and D3 respectively.
It is 25%, 35%, and 40% for member B; 10%, 80%, and 10% for member C.
Suppose the committee has only these three members. If the voting with cate-
gorical predictions is used, the decision is D3, since two members support it but
with very low support. If taking account of detailed support from each member,
the decision should be Dj, since it gets the highest total support from all the
committee members. Therefore, the probabilistic prediction voting method can
utilize this information, thus helping the committee to make better decisions.

4 Conclusions and Future Work

In this paper, we have studied the Stochastic Attribute Selection Committee
learning method with decision tree learning by using a variant of it, namely
Sasc. This approach generates different trees by stochastically varying the set
of attributes available for creating a test at each decision node, but keeping the
distribution of the training set unchanged. Like Bagging, SASC is amenable to
parallel and distributed processing while Boosting is not. This gives SASC an
advantage over Boosting for parallel machine learning and datamining. Since
Breiman (1996b) argues that the adaptive property makes Boosting work well,
introducing some adaptive property to the change of the attribute set might
further reduce the error rate of the SASC method. However, adaptive SASC
may not be amenable to parallel processing.

We have conducted a set of experiments in a wide variety of natural domains.
From the experiments, we found that using probabilistic predictions without
weights for voting is more appropriate and provides more advantages for com-
mittee learning, including Boosting, Bagging, and SAsc, (at least not worse)
than using categorical predictions with or without a function of the performance
of individual classifiers as voting weight. The results showed that on average
SAsc is more accurate than Bagging and less accurate than Boosting, although
a one-tailed sign-test shows that these differences are not significant at a level of
0.05. In addition, it is found that, like Bagging, SASC is more stable than Boost-
ing in terms of less frequently obtaining significantly higher error rates than
C4.5 and obtaining lower error rate increases over C4.5. Our analysis suggests
that the stochastic component of SASC and Bagging contributes to their stable
behavior.

Acknowledgements

The authors are grateful to J. Ross Quinlan for providing C4.5. Thanks to Kai
Ming Ting for his helpful comments.

15



References

Ali, K.M.: Learning Probabilistic Relational Concept Descriptions. PhD. Thesis, Dept
of Info. and Computer Science, Univ. of California, Irvine (1996).

Ali, K.M. and Pazzani, M.J.: Error reduction through learning multiple descriptions.
Machine Learning 24 (1996) 173-202.

Asker, L. and Maclin, R.: Ensembles as a sequence of classifiers. Proceedings of the
Fifteenth International Joint Conference on Artificial Intelligence. San Francisco,
CA: Morgan Kaufmann (1997) 860-865.

Bauer, E. and Kohavi, R.: An empirical comparison of voting classification algorithms:
Bagging, Boosting, and variants. Submitted to Machine Learning (1998) (available
at: http://reality.sgi.com/ronnyk/vote.ps.gz).

Breiman, L.: Bagging predictors. Machine Learning 24 (1996a) 123-140.

Breiman, L.: Arcing classifiers. Technical Report (available at: http://www.stat.
Berkeley. EDU /users/breiman/). Department of Statistics, University of California,
Berkeley, CA (1996D).

Breiman, L., Friedman, J.H., Olshen, R.A., and Stone, C.J.: Classification And Regres-
sion Trees. Belmont, CA: Wadsworth (1984).

Buntine, W.: A Theory of Learning Classification Rules. PhD. Thesis, School of Com-
puting Science, University of Technology, Sydney (1990).

Chan, P., Stolfo, S., and Wolpert, D. (eds): Working Notes of AAAI Workshop on
Integrating Multiple Learned Models for Improving and Scaling Machine Learn-
ing Algorithms (available at http://www.cs.fit.edu/~imlm /papers.html), Portland,
Oregon (1996).

Cherkauer, K.J.: Human expert-level performance on a science image analysis task
by a system using combined artificial neural networks. Chan, P., Stolfo, S., and
Wolpert, D. (eds) Working Notes of AAAI Workshop on Integrating Multiple
Learned Models for Improving and Scaling Machine Learning Algorithms (available
at http://www.cs.fit.edu/~imlm /papers.html), Portland, Oregon (1996) 15-21.

Dietterich, T.G. and Bakiri, G.: Solving multiclass learning problems via error-
correcting output codes. Journal of Artificial Intelligence Research 2 (1995) 263-
286.

Dietterich, T.G. and Kong, E.B.: Machine learning bias, statistical bias, and statis-
tical variance of decision tree algorithms. Technical Report, Dept of Computer
Science, Oregon State University, Corvallis, Oregon (1995) (available at ftp://ftp.
cs.orst.edu/pub/tgd/papers/tr-bias.ps.gz).

Dietterich, T.G.: Machine learning research. AI Magazine 18 (1997) 97-136.

Domingos, P.: Why does Bagging work? a Bayesian account and its implications. Pro-
ceedings of the Third International Conference on Knowledge Discovery and Data
Mining. AAAT Press (1997) 155-158.

Freund, Y.: Boosting a weak learning algorithm by majority. Information and Compu-
tation 121 (1996) 256-285.

Freund, Y. and Schapire, R.E.: A decision-theoretic generalization of on-line learn-
ing and an application to Boosting. Unpublished manuscript (1996a) (available at
http://www.research.att.com/~yoav).

Freund, Y. and Schapire, R.E.: Experiments with a new Boosting algorithm. Proceed-
ings of the Thirteenth International Conference on Machine Learning. San Fran-
cisco, CA: Morgan Kaufmann (1996b) 148-156.

16



Kohavi, R.: A study of cross-validation and bootstrap for accuracy estimation and
model selection. Proceedings of the Fourteenth International Joint Conference on
Artificial Intelligence. San Mateo, CA: Morgan Kaufmann (1995) 1137-1143.

Kohavi, R. and Kunz, C.: Option decision trees with majority votes. Proceedings of
the Fourteenth International Conference on Machine Learning. San Francisco, CA:
Morgan Kaufmann (1997) 161-169.

Kwok, S.W. and Carter, C.: Multiple decision trees. Schachter, R.D., Levitt, T.S.,
Kanal, L.N.; and Lemmer, J.F. (eds) Uncertainty in Artificial Intelligence. Elsevier
Science (1990) 327-335.

Merz, C.J. and Murphy, P.M.: UCI Repository of machine learning databases
[http://www.ics.uci.edu/~mlearn/MLRepository.html]. Irvine, CA: Univ of Cali-
fornia, Dept of Info and Computer Science (1997).

Quinlan, J.R.: C4.5: Program for Machine Learning. San Mateo, CA: Morgan Kauf-
mann (1993).

Quinlan, J.R.: Bagging, Boosting, and C4.5. Proceedings of the Thirteenth National
Conference on Artificial Intelligence. Menlo Park, CA: AAAI Press (1996) 725-
730.

Schapire, R.E.: The strength of weak learnability. Machine Learning 5 (1990) 197-227.

Schapire, R.E., Freund, Y., Bartlett, P., and Lee, W.S.: Boosting the margin: A new
explanation for the effectiveness of voting methods. Proceedings of the Fourteenth
International Conference on Machine Learning. Morgan Kaufmann (1997) 322-330.

Tumer, K. and Ghosh, J.: Error correction and error reduction in ensemble classifiers.
Connection Science 8 (1996) 385-404.

Wolpert, D.H.: Stacked generalization. Neural Networks 5 (1992) 241-259.

Zhang, X., Mesirrov, J.P., and Waltz, D.L.: Hybrid system for protein secondary struc-
ture prediction. Journal of Molecular Biology 225 (1992) 1049-1063.

Zheng, Z.: Naive Bayesian classifier committees. To appear in Proceedings of the Tenth
European Conference on Machine Learning (ECML-98). Berlin: Springet-Verlag
(1998).

17





