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Abstract. Averaged One-Dependence Estimators (AODE) classifies by
uniformly aggregating all qualified one-dependence estimators (ODESs).
Its capacity to significantly improve naive Bayes’ accuracy without undue
time complexity has attracted substantial interest. Forward Sequential
Selection and Backwards Sequential Elimination are effective wrapper
techniques to identify and repair harmful interdependencies which have
been profitably applied to naive Bayes. However, their straightforward
application to AODE has previously proved ineffective. We investigate
novel variants of these strategies. Our extensive experiments show that
elimination of child attributes from within the constituent ODEs results
in a significant improvement in probability estimate and reductions in
bias and error relative to unmodified AODE. In contrast, elimination
of complete constituent ODEs and the four types of attribute addition
are found to be less effective and do not demonstrate any strong advan-
tage over AODE. These surprising results lead to effective techniques for
improving AODE’s prediction accuracy.

1 Introduction

Semi-naive Bayesian techniques further improve naive Bayes’ accuracy by relax-
ing its assumption that the attributes are conditionally independent [1-16]. One
approach to weakening this assumption is to use an x-dependence classifier (7],
in which each attribute depends upon the class and at most x other attributes.
Examples include Tree Augmented Naive Bayes (TAN) [9], Super Parent TAN
(SP-TAN) [11], NBTree [5], Lazy Bayesian rules (LBR) [12] and Averaged One-
Dependence Estimators (AODE) [13]. Among these techniques, TAN, SP-TAN
and AODE restrict themselves to one-dependence classifiers, which readily ad-
mit to efficient computation. Another approach to remedying violations of the
attribute independence assumption is to apply naive Bayes with a new attribute
set by deleting or merging highly related attributes. Key such approaches in-
clude Backwards Sequential Elimination (BSE) [1], Forward Sequential Selection



(FSS) [4], Backward Sequential Elimination and Joining (BSEJ) [6] and Hierar-
chical Naive Bayes (HNB) [16]. An extensive comparative study of semi-naive
Bayes techniques [17] shows that AODE has a significant advantage in error
over many other semi-naive Bayesian algorithms, with the exceptions of LBR
and SP-TAN. It shares similar levels of error with these two algorithms, while
having considerably lower training time complexity relative to SP-TAN and test
time complexity relative to LBR. AODE is a powerful alternative to naive Bayes,
significantly reducing its error, while retaining much of its attractive simplicity
and efficiency. Consequently it has received substantial attention. Indeed, at the
time of writing, the paper introducing AODE [13] is the most cited paper from
2005 in the Machine Learning journal [18].

FSS and BSE use a simple heuristic wrapper approach that seeks to minimize
error on the training set. Starting from the empty attribute set, FSS operates
by iteratively adding attributes, each time adding the attribute whose addition
best reduces training set error. BSE uses the opposite search direction and oper-
ates by iteratively removing attributes, each time removing the attribute whose
elimination most improves training set accuracy. When applied to naive Bayes,
FSS and BSE have proved to be beneficial in domains with highly correlated at-
tributes. It is therefore surprising that two attempts to apply these approaches
to AODE have proved ineffective [15,19]. Where the training time overheads of
attribute selection are not a major concern, attribute selection has the potential
of two beneficial effects, both of improving accuracy and also of reducing test
time due to the need to process fewer attributes. This paper investigates why
previous approaches to attribute selection for AODE have proved ineffective,
and develops novel attribute selection algorithms that do prove effective when
applied to AODE and which have potential for wider application.

2 Averaged One-dependence Estimators (AODE)

The Bayesian classifier [20] predicts a class for an unseen example x = (21, ...,Zp)
by selecting

arg;nax (P(y | z1,... ,xn)) , (1)

where P(-) is an estimate of the probability P(-), z; is a value of the ith attribute
X;,and y € {c1,...,cr} is a value of the class variable Y. Naive Bayes estimates
P(y | z1,...,2,) by assuming that the attributes are independent given the
class, and hence classifies x by selecting

argmax <f’(y) 117G y)) : (2)

Y

Domingos and Pazzani (1996) point out that interdependencies between at-
tributes will not affect naive Bayes’ accuracy, so long as it can generate the
correct ranks of conditional probabilities for the classes. However, the success of



semi-naive Bayesian methods show that appropriate relaxation of the conditional
independence assumption is effective.

One natural extension to naive Bayes is to relax the independence assump-
tion by utilizing a one-dependence classifier (ODE) [7], such as TAN [9], in which
each attribute depends upon the class and at most one other attribute. To avoid
model selection, AODE [13] selects a limited class of ODEs and aggregates the
probability estimates of all qualified classifiers within this class. A single at-
tribute, called the parent attribute, is selected as the parent of all the other
attributes in each ODE. In order to avoid unreliable base probability estimates,
when classifying an object (z1,...,x,) the original AODE excludes ODEs with
parent x; where the frequency of the value z; is lower than limit m=30, a widely
used minimum on sample size for statistical inference purposes. However, subse-
quent research [14] shows that this constraint actually increases error and hence
the current research uses m=1.

From the definition of conditional probability we have

P(y | x) = P(y,x)/P(x) < P(y,x), (3)
and for any attribute value x;,
This equality holds for every x;. Therefore,

Zi:lgign/\F(mi)Zm P(y,xi)P(x | y, z)
Hi:1<i<nAF(z;)>m} ’

P(y,x) =

where F(z;) is the frequency of attribute-value z; in the training sample.
To this end, AODE classifies by selecting:

n

argmax Z y,ml H (x| y, i) |- (6)

v 1:1<i<nAF(x;)>m Jj=1

At training time AODE generates a three-dimensional table of probability
estimates for each attribute-value, conditioned by each other attribute-value
and each class. The resulting space complexity is O(k(nv)?), where v is the
mean number of values per attribute. The time complexity of forming this table
is O(tn?), where t is the number of training examples, as an entry must be
updated for every training case and every combination of two attribute-values
for that case. Classification requires the tables of probability estimates formed at
training time of space complexity O(k(nv)?). The time complexity of classifying
a single example is O(kn?) as we need to consider each pair of qualified parent
and child attribute within each class.

AODE maintains the robustness and much of the efficiency of naive Bayes,
and at the same time exhibits significantly higher classification accuracy for
many data sets. Therefore, it has the potential to be a valuable substitute for
naive Bayes over a considerable range of classification tasks.



3 Attribute Selection

In naive Bayes, all attributes are used during prediction, and hence all influence
classification. When two attributes are strongly related, the influence from these
two attributes may be given too much weight, and the influence of the other
attributes may be reduced, which can result in prediction bias. Selecting an
appropriate attribute subset, which excludes highly correlated attributes, might
alleviate this problem.

Since there are 2" candidate subsets of n attributes, an exhaustive search
of the space is prohibitive. This necessitates the use of heuristic search. Greedy
hill climbing is a simple and widely used technique, which adds or removes an
attribute irrevocably at each step. That is, once an attribute is added or removed,
it cannot be respectively removed from or added to the set. To measure the
goodness of alternative attribute subsets, we need an evaluation function, which
commonly measures the discriminating ability of an attribute or an attribute set
among classes. The Wrapper [22] approach uses accuracy estimates on the target
induction algorithm as the evaluation function. Leave-one-out cross validation is
an attractive technique for estimating accuracy from the training set in Bayesian
classifier, as it can be efficiently performed by simply modifying the frequency
tables.

Another two issues in hill climbing search are the direction of search and
stopping criteria. Forward Sequential Selection (FSS) [4] begins with the empty
attribute set and successively adds attributes, while Backwards Sequential Elim-
ination (BSE) [1] starts with the complete attribute set and successively removes
attributes. There are three commonly used options for halting the search. We
call the first strategy Stop on First Nonimprovement (SFN), as it terminates the
search when there is no classification accuracy improvement [1,6]. The second
option, called Stop on First Reduction (SFR), considers performing selection
continually so long as the accuracy is not reduced [4]. The third, called Continue
Search and Select Best (CSSB), continues the search until all attributes have
been added or removed and then selects the attribute subset with the highest
accuracy evaluation [19].

In the context of naive Bayes, FSS and BSE select a subset of attributes
using leave-one-out cross validation error as a selection criterion and apply naive
Bayes to the new attribute set. The subset of selected attributes is denoted as S.
Independence is assumed among the resulting attributes given the class. Hence,
FSS and BSE classify x by selecting

argmax (P(y) 11 P(xly)> : (7)

v zeS

4 Attribute Selection for AODE

In theory, AODE would appear to be a promising candidate for attribute selec-
tion. While an individual ODE can factor out harmful attribute inter-dependencies



in which the parent is involved, it will not help when the parent is not. When
there are many more attributes than those that participate in a particular inter-
dependency, the majority of ODEs will not factor out the inter-dependency, and
hence it is credible that deleting one of the attributes should be beneficial. Why
then have previous attempts [15,19] to apply attribute-selection to AODE proved
unfruitful?

One difference between applying attribute selection in NB compared to AODE
may be the greater complexity of an AODE model, resulting in greater variance
in estimates of performance as the model is manipulated through attribute elim-
ination and hence reduced reliability in these estimates. Another difference may
be that attributes play multiple roles in an AODE model (either a parent or a
child) whereas they play only a single role of child in an NB model.

To explore the first issue, we evaluate the use of a statistical test to assess
whether an observed difference in holdout evaluation scores should be accepted
as meaningful during the attribute selection process.

To explore the second issue, we investigate the separate selection of attributes
in each of the parent and child roles, as well as in both roles together.

In the context of AODE, FSS and BSE use leave-one-out cross validation
error on AODE as a selection criterion. Each available selection is attempted
and the one that results in the lowest error is implemented. The process is
repeated for successive attributes until the decrease in error fails a one-tailed
binomial sign test at a significance level of 0.05.

To formalize the various attribute selection strategies we introduce into AODE
the use of a parent (p) and a child (c) set, each of which contains the set of in-
dices of attributes that can be employed in respectively a parent or child role in
the AODE. The number of indices in each set is denoted respectively as ||p|| and
llc|l- We define AODE, . as

argmax Z P(y,xl) Hp(:cj |y, z;) |- (8)

4 i€p:F(xz;)>m Jjec

Assume that attribute z; is related to other attributes, and that these harmful
interdependencies can be detected and repaired by FSS or BSE. The exclusion
of z; from ¢ may have influence on ||p|| - 1 ODEs, while the exclusion of z;
from p may only factor out the effect of the single ODE in which z; is the
parent. In AODE, ., a linear function is used to combine constituent ODEs, and
a multiplicative function is used to combine attributes within each ODE. Large
improvements are possible because of the multiplicative influence, and hence
exclusion of a child may have greater effect than exclusion of a parent.

4.1 FSS for AODE

There are four different types of attribute addition. The first type of attribute
addition, called parent addition (PA), starts with p and ¢ initialized to the empty
and full sets of {1...n} respectively. It adds attribute indexes to p, effectively



Table 1. Data sets

No. Domain Case Att Class||No. Domain Case Att Class
1 Abalone 4177 9 3 29 Liver Disorders (bupa) 345 7 2
2 Adult 48842 15 2 30 Lung Cancer 32 57 3
3 Annealing 898 39 6 31 Lymphography 148 19 4
4 Audiology 226 70 24 32 Mfeat-mor 2000 7 10
5 Autos Imports-85 205 26 7 33 Mushrooms 8124 23 2
6 Balance Scale 625 5 3 34 Nettalk(Phoneme) 5438 8 50
7 Breast Cancer (Wisconsin) 699 10 2 35 New-Thyroid 215 6 3
8 Car Evaluation 1728 7 4 36 Optical Digits 5620 49 10
9 Chess 551 40 2 37 Page Blocks 5473 11 5

10 Contact Lenses 24 5 3 38 Pen Digits 10992 17 10
11 Credit Approval 690 16 2 39 Pima Indians Diabetes 768 9 2
12 Dmplexer 1000 15 2 40 Postoperative Patient 90 9 3
13 Echocardiogram 131 7 2 41 Primary Tumor 339 18 22
14 German 1000 21 2 42 Promoter Gene Sequences 106 58 2
15 Glass Identification 214 10 3 43 Satellite 6435 37 6
16 Heart 270 14 2 44 Segment 2310 20 7
17 Heart Disease (cleveland) 303 14 2 45 Sign 12546 9 3
18 Hepatitis 155 20 2 46 Sonar Classification 208 61 2
19 Horse Colic 368 23 2 47 Splice-junction Gene Sequences 3190 62 3
20 House Votes 84 435 17 2 48 Syncon 600 61 6
21 Hungarian 294 14 2 49 Sick-euthyroid 3772 30 2
22 Hypothyroid(Garavan Institute) 3772 30 4 50 Tic-Tac-Toe Endgame 958 10 2
23 Ionosphere 351 35 2 51 Vehicle 846 19 4
24 Iris Classification 150 5 3 52 Volcanoes 1520 4 4
25 King-rook-vs-king-pawn 3196 37 2 53 Vowel 990 14 11
26 Labor negotiations 57 17 2 54 Waveform-5000 5000 41 3
27 LED 1000 8 10 55 Wine Recognition 178 14 3
28 Letter Recognition 20000 17 26 56 Zoo 101 18 7

adding a single ODE at each step. The second type of attribute addition, called
child addition (CA), begins with p and ¢ initialized to the full and empty sets
respectively. It adds attribute indexes to ¢, effectively adding an attribute to
within every ODE at each step. Starting with the empty set for both p and ¢,
Parent and child addition (PACA) at each step adds the same value to both p
and ¢ , hence selecting it for use in any role in the classifier. Parent or child
addition (PVCA) performs any one of the other types of attribute additions in
each iteration, selecting the option that most improves the accuracy.

4.2 BSE for AODE

All four types of attribute elimination start with p and ¢ initialized to the full
set. The first approach, called parent elimination (PE), deletes attribute indexes
from p, effectively deleting a single ODE at each step. The second approach,
called child elimination (CE), deletes attribute indexes from ¢, effectively delet-
ing an attribute from within every ODE at each step. Parent and child elimina-
tion (PACE) [15] at each step deletes the same value from both p and ¢, thus
eliminating it from use in any role in the classifier. Parent or child elimination
(PVCE) performs any one of the other types of attribute eliminations in each
iteration, selecting the option that best reduces error.

4.3 Complexity

As child selection requires modifying the probability estimates for ||p|| ODEs at
each step, it has higher training time complexity than that of parent selection,



which only considers one ODE at each step. At training time PA and PE gen-
erate a three-dimensional table of probability estimates, as AODE does. They
must also store the training data, with additional space complexity O(tn), to
perform leave-one-out cross validation on AODE. A three-dimensional table, in-
dexed by instance, class and attribute, is introduced to speed up the process of
evaluating the classifiers, with space complexity O (tkn) Therefore, the resulting
space complexity is O(tlm + k(nv)g). Deleting attributes has time complexity
of O(tkn?), as a single leave-one-out cross validation is order O(tk) and it is
performed at most O(n2) times. They have identical time and space complexity
with AODE at classification time. For the strategies involving child selection,
they have identical space complexity and classification time complexity with PA
and PE, but higher training time complexity of O(tkn3), as a single leave-one-
out cross validation is order O(tkn).

4.4 Statistical test

It is quite likely that small improvements in leave-one-out error may be at-
tributable to chance. In consequence it may be beneficial to use a statistical test
to assess whether an improvement is significant. We employ a standard binomial
sign test. Treating the examples for which an attribute addition or deletion cor-
rects a misclassification as a win and one for which it misclassifies a previously
correct example as a loss, a change is accepted if the number of wins exceeds the
number of losses and the probability of obtaining the observed number of wins
and losses if they were equiprobable was no more than 0.05.

5 Empirical comparison

The main goal in this comparison is to assess the efficacy of the statistical test
and study the influence of the use of different types of attribute selection in
AODE. The fifty-six natural domains from the UCI Repository of machine learn-
ing [23] used in our experiments are shown in Table 1. Continuous attributes were
discretized using MDL discretization [24] and missing values were replaced with
the modes and means from the training data. The base probabilities were esti-
mated using Laplace estimation [25]. Algorithms are implemented in the Weka
workbench [26], and the experiments were performed on a dual-processor 1.7
GHz Pentium 4 Linux computer with 2 Gb RAM.

We compare the classification error of AODE with different attribute se-
lection techniques on AODE using the repeated cross-validation bias-variance
estimation method proposed by Webb (2000). This is preferred to the default
method in Weka, which uses 25% of the full data set as training sets, because
it results in the use of substantially larger training sets. In order to maximize
the variation in the training data from trial to trial we use two-fold cross vali-
dation. The training data are randomly divided into two folds. Each fold is used
as a test set for a classifier generated from the other fold. Hence, each available
example is classified once for each two-fold cross-validation. Bias and variance



are estimated by fifty runs of two-fold cross-validation in order to give a more
accurate estimation of the average performance of an algorithm. The advantage
of this technique is that it uses the full training data as the training set and test
set, and every case in the training data is used the same number of times in each
of the roles of training and test data. In addition to the classification error, we
use the information loss function to evaluate the probabilistic prediction of each
technique.

Two variants of attribute selection were evaluated, one employing a binomial
sign test and the other not. Algorithms using a binomial sign test are super-
scripted by © and those without by V5. We use Stop on First Reduction with
attribution addition algorithms and Stop on First Nonimprovement with at-
tribute elimination algorithms as these produce the best performance (results
not presented due to lack of space). The number of times that an algorithm
performs better, worse or equally to the others is summarized into pairwise
win/loss/draw records which are presented in Table 2. Algorithms are sorted in
descending order on the value of wins minus losses against AODE on each metric.
Each entry compares the algorithm with which the row is labelled (L) against
the algorithm with which the column is labelled (C'). We assess a difference as
significant if the outcome of a one-tailed binomial sign test is less than 0.05. For
space reason, we only present bias, variance and information loss results for the
attribute elimination algorithms.

5.1 Error

CE®, PVCE® and PACE?®, enjoy a significant advantage in error over AODE
(p = 0.011, p = 0.011 and p = 0.048 respectively), while attribute addition
(both with and without statistical test) always has a significant disadvantage to
AODE. The rest of the algorithms share a similar level of error with AODE.

The algorithms using attribute elimination share a similar level of error with
the exception that CE® and PVCE?® outperform PE®, PENS outperforms CSV*°
and PACE™® outperforms CEV®. The advantage of all the attribute elimination
algorithms is significant compared with all the attribute addition algorithms but
PANS. PANS has a significant advantage over CA, PACA and PVCA (with and
without statistical test). The reason the performances of CA, PACA and PVCA
are disappointing might be that they are susceptible to getting trapped into poor
selections by local minima during the first several child additions.

5.2 Bias and Variance

All the attribute elimination algorithms, except PE®, have a significant advan-
tage in bias over AODE and PES. PACENS, CENS and PVCEN? outperform
PEYS and the remaining four algorithms with statistical tests. The advantage
of PACEN? is significant compared with CEN®. AODE enjoys a significant ad-
vantage over all the algorithms with respect to variance. The algorithms with
statistical tests have a significant advantage over the algorithms without a sta-
tistical test. PE® has a significant advantage over PACE?.



5.3 Information Loss

Two algorithms, PACE® and CE®, significantly improve AODE’s probability
estimate. PENS is the only algorithm that has a significant disadvantage over
AODE. It also has a significant disadvantage over PACE®, CE®, PVCE® and
PE®. The advantage of PVCE® is marginal compared with AODE and is signif-
icant compared with CE® and PENS.

5.4 Continue Search and Select Best (CSSB)
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Fig. 1. Error ratio of parent and child selection using CSSB against AODE, as
function of the number of attributes

To observe the behaviors of parent and child selection, we also examine the
attribute selection techniques with CSSB. Due to the significantly increasing
variance, all of these selection approaches have proved ineffective. Figure 1 shows
the error ratio of PA [19], PE, CA and CE against AODE as a function of the
number of attributes on 3 data sets with more than 3000 instances, in which
both selection of parent and child have lower error compared with AODE (for
the space reason, the other 6 data sets are not presented). The values on the
x-axis are the number of attributes in the p set for PA and PE, and the number
of attributes in the ¢ set for CA and CE. The values on the y-axis are the
classification error of each selection algorithm divided by that for AODE. The
smaller the ratio, the more accuracy improvement will be.

Slight error differences between PA and PE are observed as shown in the
graph (win/draw/loss being 25/8/23). Notice that PA tends to achieve the min-
ima at an early stage, while PE appears to reach it at a late stage. CE has greater
error reduction compared with PE until there are a small number of children left,
after which it increases error sharply. The error ratios for PE and CE for the first
attribute elimination are 0.98 and 0.94, 0.99 and 0.96, 1 and 0.83, and 0.98 and
0.79 for Adult, Nettalk, Hypothyroid and King-rook-vs-king-pawn respectively.
The performance of CA fluctuates over the first several attribute additions for
King-rook-vs-king-pawn. Similar behavior is observed for many other data sets
in our collection.
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6 Conclusion

AODE efficiently induces classifiers that have competitive classification perfor-
mance with other state-of-the-art semi-naive Bayes algorithms. Its accuracy and
classification time complexity might be further improved if harmful ODEs are
excluded. In view of their effectiveness with naive Bayes, it is surprising that
previous applications of FSS and BSE to AODE have proved ineffective. In
this paper we explore two explanations of this phenomenon. One is that AODE
has higher variance compared with naive Bayes, and hence appropriate variance
management is required. Another is that child selection appears to have greater
effect than parent selection, as ODEs are combined using a linear function but
attributes within an ODE are combined using a multiplicative function.

Our extensive experiments suggest that the types of attribute elimination
that remove child attributes from within the constituent ODEs can significantly
reduce bias and error, but only if a statistical test is employed to provide variance
management. In contrast, elimination of complete constituent ODEs does not
consistently provide error reduction. CE and PACE also significantly improve
probability estimates when used with a statistical test. The types of attribute
addition that add child attributes to within the constituent ODEs do not pro-
vide any positive benefits, possibly due to being mislead early in the search by
local minima. These results suggest that the elimination of a child is more effec-
tive than the elimination of a parent, leading to effective approaches to further
enhance AODE’s accuracy.

References

1. Kittler, J.: Feature selection and extraction. In Young, T.Y., Fu, K.S., eds.:
Handbook of Pattern Recognition and Image Processing. Academic Press, New
York (1986) 60-81

2. Kononenko, I.: Semi-naive Bayesian classifier. In: Proc. 6th European Working
Session on Machine learning, Berlin: Springer-Verlag (1991) 206219

3. Langley, P.: Induction of recursive Bayesian classifiers. In: Proc. 1993 European
Conf. Machine Learning, Berlin: Springer-Verlag (1993) 153-164

4. Langley, P., Sage, S.: Induction of selective Bayesian classifiers. In: Proc. 10th
Conf. Uncertainty in Artificial Intelligence, Morgan Kaufmann (1994) 399-406

5. Kohavi, R.: Scaling up the accuracy of naive-Bayes classifiers: a decision-tree
hybrid. In: Proc. 2nd ACM SIGKDD Int. Conf. Knowledge Discovery and Data
Mining. (1996) 202—-207

6. Pazzani, M.J.: Constructive induction of Cartesian product attributes. ISIS: In-
formation, Statistics and Induction in Science (1996) 66-77

7. Sahami, M.: Learning limited dependence Bayesian classifiers. In: Proc. 2nd Int.
Conf. Knowledge Discovery in Databases, Menlo Park, CA: AAAI Press (1996)
334-338

8. Singh, M., Provan, G.M.: Efficient learning of selective Bayesian network classifiers.
In: Proc. 13th Int. Conf. Machine Learning, Morgan Kaufmann (1996) 453-461

9. Friedman, N., Geiger, D., Goldszmidt, M.: Bayesian network classifiers. Machine
Learning 29(2) (1997) 131-163



10.

11.

12.

13.

14.

15.

16.

17.

18.
19.

20.

21.

22.

23.

24.

25.

26.

27.

Webb, G.I., Pazzani, M.J.: Adjusted probability naive Bayesian induction. In:
Proc. 11th Australian Joint Conf. Artificial Intelligence, Berlin:Springer (1998)
285-295

Keogh, E.J., Pazzani, M.J.: Learning augmented Bayesian classifers: A comparison
of distribution-based and classification-based approaches. In: Proc. Int. Workshop
on Artificial Intelligence and Statistics. (1999) 225-230

Zheng, Z., Webb, G.I.: Lazy learning of Bayesian rules. Machine Learning 41(1)
(2000) 53-84

Webb, G.I., Boughton, J., Wang, Z.: Not so naive Bayes: Aggregating one-
dependence estimators. Machine Learning 58(1) (2005) 5-24

Cerquides, J., Mantaras, R.L.D.: Robust Bayesian linear classifier ensembles. In:
Proc. 16th European Conf. Machine Learning, Lecture Notes in Computer Science.
(2005) 70-81

Zheng, F., Webb, G.I.: Efficient lazy elimination for averaged-one dependence
estimators. In: Proc. 23th Int. Conf. Machine Learning (ICML 2006), ACM Press
(2006) 1113-1120

Langseth, H., Nielsen, T.D.: Classification using hierarchical naive Bayes models.
Machine Learning 63(2) (2006) 135 — 159

Zheng, F., Webb, G.I.: A comparative study of semi-naive Bayes methods in classi-
fication learning. In: Proc. 4th Australasian Data Mining Conference (AusDMO05).
(2005) 141-156

Thomson ISI: Web of science. http://scientific.thomson.com/products/wos/ (2007)
Yang, Y., Webb, G., Cerquides, J., Korb, K., Boughton, J., Ting, K.M.: To se-
lect or to weigh: A comparative study of model selection and model weighing for
SPODE ensembles. In: Proc. 18th European Conf. Machine Learning (ECML),
2006, Springer (2006) 533-544

Duda, R.O., Hart, P.E.: Pattern Classification and Scene Analysis. John Wiley
and Sons, New York (1973)

Domingos, P., Pazzani, M.J.: Beyond independence: Conditions for the optimality
of the simple Bayesian classifier. In: Proc. 13th Int. Conf. Machine Learning,
Morgan Kaufmann (1996) 105-112

John, G.H., Kohavi, R., Pfleger, K.: Irrelevant features and the subset selection
problem. In: Proc. 11th Int. Conf. Machine Learning, San Francisco, CA: Morgan
Kaufmann (1994) 121-129

Newman, D., Hettich, S., Blake, C., Merz, C.: UCI repository of machine learning
databases. [http://www.ics.uci.edu/ mlearn/mlrepository.html]. Irvine, CA: Uni-
versity of California, Department of Information and Computer Science. (1998)
Fayyad, U.M., Irani, K.B.: Multi-interval discretization of continuous-valued at-
tributes for classification learning. In: Proc. 13th Int. Joint Conf. Artificial Intel-
ligence (IJCAI-93), Morgan Kaufmann (1993) 1022-1029

Cestnik, B.: Estimating probabilities: A crucial task in machine learning. In: Proc.
9th European Conf. Artificial Intelligence, London: Pitman (1990) 147-149
Witten, I.H., Frank, E.: Data Mining: Practical Machine Learning Tools and
Techniques. Morgan Kaufmann (2005)

Webb, G.I.: Multiboosting: A technique for combining boosting and wagging.
Machine Learning 40(2) (2000) 159-196



