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Abstract

Semi-naive Bayesian classifiers seek to re-
tain the numerous strengths of naive Bayes
while reducing error by weakening the at-
tribute independence assumption. Back-
wards Sequential Elimination (BSE) is a
wrapper technique for attribute elimination
that has proved effective at this task. We
explore a new efficient technique, Lazy Elim-
ination (LE), which eliminates highly related
attribute-values at classification time with-
out the computational overheads inherent in
wrapper techniques. We analyze the effect of
LE and BSE on Averaged One-Dependence
Estimators (AODE), a state-of-the-art semi-
naive Bayesian algorithm. Our extensive
experiments show that LE significantly re-
duces bias and error without undue addi-
tional computation, while BSE significantly
reduces bias but not error, with high training
time complexity. In the context of AODE,
LE has a significant advantage over BSE in
both computational efficiency and error.

1. Introduction

Naive Bayes (NB) is a simple, efficient and effective
approach to classification learning built on the as-
sumption of conditional independence between the at-
tributes given the class. Although the assumption is
unrealistic in many practical scenarios, NB has ex-
hibited competitive accuracy with other learning al-
gorithms. There are many attempts to explain NB’s
surprising degree of competitiveness, and to develop
semi-naive Bayes techniques that further improve its
accuracy by alleviating the attribute interdependence
problem while at the same time retaining NB’s sim-
plicity and efficiency (Kittler, 1986; Kononenko, 1991;
Langley, 1993; Langley & Sage, 1994; Kohavi, 1996;
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Pazzani, 1996; Sahami, 1996; Singh & Provan, 1996;
Friedman et al., 1997; Webb & Pazzani, 1998; Keogh
& Pazzani, 1999; Zheng et al., 1999; Zheng & Webb,
2000; Webb, 2001; Frank et al., 2003; Webb et al.,
2005; Jing et al., 2005; Cerquides & Mántaras, 2005;
Zhang et al., 2005b).

Many semi-naive Bayes techniques identify and repair
harmful inter-dependencies by a simple heuristic wrap-
per approach that seeks to minimize error on the train-
ing set (Kittler, 1986; Langley & Sage, 1994; Pazzani,
1996; Kohavi, 1996; Keogh & Pazzani, 1999; Zheng
& Webb, 2000). Backwards Sequential Elimination
(BSE) (Kittler, 1986) achieves this by eliminating at-
tributes using leave-one-out cross validation error on
the target learning algorithm as the elimination cri-
terion. This approach has proved to be beneficial in
domains with highly correlated attributes. However,
BSE has high computational overheads, especially on
learning algorithms with high classification time com-
plexity, as it applies the algorithms themselves repeat-
edly until there is no accuracy improvment. In this pa-
per we present a new type of semi-naive Bayesian oper-
ation, a Lazy Elimination (LE) technique that utilizes
the tables of probability estimates formed at training
time to efficiently detect and address a special form of
dependency between two attribute-values at classifica-
tion time. Such dependencies can degrade NB’s ac-
curacy. This technique identifies at classification time
attribute-values pairs such that one is a generalization
of the other. The technique deletes the generalization,
which we show is the theoretically correct adjustment
for such an inter-dependence relationship.

Previous research (Zheng & Webb, 2005) indicates
that Averaged One-Dependence Estimators (AODE)
(Webb et al., 2005) has a significant advantage in error
over many other semi-naive Bayesian algorithms, with
the exceptions of Lazy Bayesian rules (LBR) (Zheng
& Webb, 2000) and SuperParent Tree Augment Naive
Bayes (SP-TAN) (Keogh & Pazzani, 1999). It shares
similar levels of error with these two algorithms with-
out the prohibitive training time of SP-TAN or test
time of LBR. As AODE substantially improves upon
the error of NB without incurring undue computa-
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tional overheads, it can be used as an alternative to
NB in many cases and has attracted substantial inter-
est (Frank et al., 2003; Nikora, 2005; Jing et al., 2005;
Cerquides & Mántaras, 2005; Zhang et al., 2005a;
Zhang et al., 2005b; Su & Zhang, 2005). We inves-
tigate the effect of LE and BSE on AODE using bias-
variance decomposition, a key tool for understanding
machine learning algorithms. LE imposes no extra
training time overheads on AODE and at most mod-
est test time overheads, while BSE imposes very high
training time overheads accompanied by varying de-
creases in classification time overheads. Our extensive
experimental comparison of performance on 56 UCI
data sets shows that the accuracy of AODE can be
significantly improved by the addition of LE, but not
BSE. In the context of AODE, BSE has a significant
advantage in bias over LE, while LE has a significant
advantage in variance and error over BSE. Like other
wrapper techniques, BSE is not suited to incremental
learning. LE delays computation until classification
time, and hence does not affect AODE’s capacity for
incremental learning.

2. AODE

The Bayesian classifier (Duda & Hart, 1973) classifies
an example x = 〈x1, . . . , xn〉 by selecting

argmax
y

(P (y | x1, . . . , xn)) , (1)

where xi is the value of the ith attribute, and y ∈
c1, . . . ck are the k classes. Under the attribute inde-
pendence assumption, this equals:

argmax
y

(
P (y)

n∏

i=1

P (xi | y)

)
. (2)

Naive Bayes uses this formula for classification.
Domingos and Pazzani (1996) point out that interde-
pendences between attributes will not affect NB’s ac-
curacy performance, so long as it can generate the cor-
rect ranks of conditional probabilities for the classes.
However, the success of semi-naive Bayesian methods
show that appropriate weakening of the attribute inde-
pendence assumption is effective (Kittler, 1986; Lan-
gley & Sage, 1994; Kohavi, 1996; Pazzani, 1996; Sa-
hami, 1996; Singh & Provan, 1996; Friedman et al.,
1997; Webb & Pazzani, 1998; Keogh & Pazzani, 1999;
Zheng & Webb, 2000; Webb, 2001; Webb et al., 2005).

One approach to weakening the attribute indepen-
dence assumption is to use a one-dependence classi-
fier (Sahami, 1996), such as TAN (Friedman et al.,

1997), in which each attribute depends upon the class
and at most one other attribute. AODE (Webb et al.,
2005) selects a limited class of 1-dependence classifiers
and aggregates the predictions of all qualified classi-
fiers within this class. A single attribute is selected as
the parent of all other attributes in each 1-dependence
classifier. There is no model selection, which may
minimize the variance component of a classifier’s er-
ror (Hastie et al., 2001). In order to avoid unreli-
able base probability estimates, the original AODE
excludes models where the frequency of the value for
classified object of the parent attribute in the training
data is fewer than limit m=30, a widely used minimum
on sample size for statistical inference purposes. How-
ever, subsequent (unpublished) research shows that
this constraint actually increases error and hence the
current research uses m=1. As AODE makes a weaker
attribute independence assumption, and avoids model
selection, it has substantially lower bias than NB with
a very small increase in variance.

From the definition of conditional probability we have

P (y | x) = P (y,x)/P (x) ∝ P (y,x), (3)

and for any attribute value xi,

P (y,x) = P (y, xi)P (x | y, xi). (4)

This equality holds for every xi. Therefore, for any
I ⊆ {1, . . . , n},

P (y,x) =
∑

i∈I P (y, xi)P (x | y, xi)
|I| . (5)

Thus,

P (y,x) =

∑
i:1≤i≤n∧F (xi)≥m P (y, xi)P (x | y, xi)

|{i : 1 ≤ i ≤ n ∧ F (xi) ≥ m}| ,

(6)
where F (xi) is the frequency of attribute-value xi in
the training sample.

To this end, AODE classifies by selecting:

argmax
y


 ∑

i:1≤i≤n∧F (xi)≥m

P (y, xi)
n∏

j=1

P (xj | y, xi)


.

(7)

At training time AODE generates a three-dimensional
table of probability estimates for each attribute-value,
conditioned by each other attribute-value and each
class. The resulting space complexity is O(k(nv)2),
where v is the mean number of values per attribute.
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The time complexity of forming this table is O(tn2),
where t is the number of training examples, as an en-
try must be updated for every training case and ev-
ery combination of two attribute-values for that case.
Classification requires the tables of probability esti-
mates formed at training time of space complexity
O(k(nv)2). The time complexity of classifying a single
example is O(kn2) as we need to consider each pair of
qualified parent and child attribute within each class.

3. Related attribute-values and Lazy
Elimination (LE)

In many real world problems the attribute indepen-
dence assumption is violated. Correlations among at-
tributes are common. When two attributes are re-
lated, NB may place too much weight on the influence
from the two attributes, and too little on the other at-
tributes, which can result in classification bias. Delet-
ing one of these attributes may have the effect of allevi-
ating the problem. Note that the dependence between
two attributes comes from the relationship of their val-
ues.

One extreme type of interdependence is the
specialization–generalization relationship. For
two attribute values xi and xj , if P (xj | xi) = 1.0
then xj is a generalization of xi and xi a specialization
of xj .

Theorem. If xj is a generalization of xi, 1 ≤ i ≤
n, 1 ≤ j ≤ n, i 6= j then P (y | x1, . . . , xn) = P (y |
x1, . . . , xj−1, xj+1, . . . xn).

Proof. Note, ∀Z, if P (xj | xi) = 1.0, then
P (xi, xj , Z) = P (xi, Z). Hence,

P (y | x1, . . . , xn)

=
P (y, x1, . . . , xn)
P (x1, . . . , xn)

(8)

=
P (y, x1, . . . , xj−1, xj+1, . . . xn)
P (x1, . . . , xj−1, xj+1, . . . xn)

(9)

= P (y | x1, . . . , xj−1, xj+1, . . . xn) (10)

Hence, deleting the generalization xj from a Bayesian
classifier should not be harmful, and if that classifier
makes unwarranted assumptions about the relation-
ship of xj to the other attributes, such as NB’s inde-
pendence assumption, it may be positive.

To illustrate this, consider the data presented in
Table 1 for hypothetical example with the three
attributes Gender, Pregnant and MaleHormone

and the class Normal. Pregnant=yes is a spe-
cialization of Gender=female and Gender=male
is a specialization of Pregnant=no. These two
attributes are highly related. Given a test instance
〈Gender=male, Pregnant=no,MaleHormone=3〉,
which occurred in the training data, NB misclassifies
it as Normal=no. The reason is that NB in effect
double counts the evidence from Pregnant=no. The
new object can be correctly classified as Normal=yes
by deleting attribute-value Pregnant=no.

Table 1. An example

Gender Pregnant MaleHormone Normal
male no 3 yes

female yes 3 yes
female yes 2 yes
female yes 2 yes
male no 1 no

female no 3 no
female no 4 no
female yes 4 no

However, if Pregnant=no, we cannot make any def-
inite conclusion of the value of Gender, nor about
the value of Pregnant if Gender = female. Delet-
ing one of the attribute-values Pregnant=no and
Gender=female will lose information. Hence, we use
both if neither attribute-value is a generalization of the
other. Such dependence is determined by the values
of two attributes.

Note that the generalization relation is transitive. If
P (xj | xi) = 1.0, and P (xh | xj) = 1.0, then P (xh |
xi) = 1.0. Hence, we can delete two attribute-values xj

and xh. Another two cases are illustrated in Figure 1.
The parent nodes are specializations of the child nodes.

Figure 1. (a) Multiple children, (b) Multiple parents

In the former case, we delete two attribute-values xj

and xh. In the latter case, we delete attribute value
xj . Eliminating attribute-values in this way, we only
use the nodes without parents in the graph to classify
an object.

However, the transitive property does not hold for a
near generalization relation. For instance, if P (xj |
xi) = 0.9 and P (xh | xj) = 0.9, we can not infer that
P (xh | xi) = 0.9. In an extreme case, P (xh | xi)
may equal zero. Hence, we only consider the perfect
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generalization relation, which is a common relation in
real world problems.

It is superficially attractive to pre-check the generaliza-
tion relation at training time. The complexity of cre-
ating the dependency matrix is O(n2v2), as it requires
each pair of attributes, every pairwise combination of
their respective values to be considered. At classifica-
tion time, scanning the dependency matrix to delete
attributes has time complexity of O(n2). However, if
we check attribute-value pairs for generalization rela-
tionships at classification time (so there is no addi-
tional computation for dependency matrix at training
time), time complexity is O(n2) as well. Hence, we in-
fer the generalization relation at classification time by
utilizing the tables of probability estimates formed at
training time. We call the technique Lazy Elimination
(LE), as it delays the computation of elimination until
classification time, and deletes different attributes de-
pending upon which attribute values are instantiated
in the object being classified.

4. LE for AODE

AODE has very competitive prediction accuracy, low
variance, and high computational efficiency. We ex-
plore the effect of LE on AODE, which deletes general-
ization attribute-values if a specialization is detected,
and aggregates the predictions of all qualified classi-
fiers using resulting attribute-values. For brevity and
clarity, we call the resulting classifier LE, and AODE
without LE as NE (No Elimination).

Classification consists of two steps:

1. Check for dependence between each pair of at-
tribute values. If P (xj | xi) = 1.0, delete xj . The
resulting attribute value set is denoted as Atts =
{xi1 , . . . , xip}.
2. Classify the instance by selecting:

argmax
y


 ∑

i:i1≤i≤ip∧F (xi)≥m

P (y, xi)
ip∏

j=i1

P (xj | y, xi)


.

(11)

LE requires a criterion for inferring from sample data
when P (xj | xi) = 1.0. Clearly it would be dangerous
to infer that this condition holds if the data contains
only a small number of examples of xj . We use the
criterion that xi for all cases for which xj , and that
xi for at least 30 cases, 30 being a widely used mini-
mum on sample size for statistical inference purposes.
We use m=1 as the frequency limit to accept a condi-
tional probability estimate of 1-dependence classifiers
as AODE does.

LE has identical time and space complexity to AODE.
At training time it behaves identically to AODE, sim-
ply computing the required three dimensional joint fre-
quency table mentioned in Section 2. At classification
time, it must check all attribute-value pairs for gener-
alization relationships, an additional operation of time
complexity O(n2). However, the time complexity of
AODE at classification time is O(kn2) and so this ad-
ditional computation does not increase the time com-
plexity. LE inherits AODE’s capacity for incremental
learning, as updating the classifier with evidence from
a new example requires only incrementing the relevant
entries in the tables of probability estimates.

5. BSE for AODE

Backwards Sequential Elimination (BSE) (Kittler,
1986) selects a subset of attributes using leave-one-out
cross validation error as a selection criterion. Starting
from the full set of attributes, BSE successively elim-
inates the attribute whose elimination most improves
accuracy, until there is no further accuracy improve-
ment. In the context of AODE, BSE uses leave-one-out
cross validation error on AODE as deleting criterion,
and averages the predictions of all qualified classifiers
using resulting attribute set. The subset of selected
attributes is denoted as Atts = {Xi1 , . . . , Xiq}. BSE
Classifies the instance by selecting

argmax
y


 ∑

i:i1≤i≤iq∧F (xi)≥m

P (y, xi)
iq∏

j=i1

P (xj | y, xi)


.

(12)

The same frequency limit m=1 is used as for AODE.
At training time BSE generates a three-dimensional
table of probability estimates, as AODE does. It must
also store the training data, with additional space
complexity O

(
tn

)
, to perform leave-one-out cross val-

idation on AODE. The resulting space complexity is
O

(
tn + k(nv)2

)
. Deleting attributes has time com-

plexity of O
(
tkn4

)
, as a single leave-one-out cross val-

idation is order O(tkn2) and it is performed at most
O

(
n2

)
times. BSE has identical time and space com-

plexity with AODE at classification time. However, it
does not support incremental learning, as it has to up-
date the classifier by re-performing leave-one-out cross
validation using all examples available in the past.

6. Bias and variance

Bias-variance decomposition provides valuable insights
into the components of the error of classifiers learned
by learning algorithms. Bias denotes the systematic
component of error, which describes how closely the
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Table 2. Data sets

No. Domain Cases Atts Class

1 Abalone 4,177 9 3
2 Adult 48,842 15 2
3 Annealing 898 39 6
4 Audiology 226 70 24
5 Autos Imports-85 205 26 7
6 Balance Scale 625 5 3
7 Breast Cancer (Wisconsin) 699 10 2
8 Chess 551 40 2
9 Connect-4 Opening 67,557 43 3
10 Credit Approval 690 16 2
11 Diabetes 768 9 2
12 Echocardiogram 131 7 2
13 German 1,000 21 2
14 Glass Identification 214 10 3
15 Heart 270 14 2
16 Heart Disease (cleveland) 303 14 2
17 Hepatitis 155 20 2
18 Horse Colic 368 23 2
19 House Votes 84 435 17 2
20 Hungarian 294 14 2
21 Hypothyroid 3,163 26 2
22 Hypothyroid(Garavan Institute) 3,772 30 4
23 Ionosphere 351 35 2
24 Iris Claasification 150 5 3
25 King-rook-vs-king-pawn 3,196 37 2
26 Labor negotiations 57 17 2
27 LED 1,000 8 10
28 Letter Recognition 20,000 17 26
29 Liver Disorders (bupa) 345 7 2
30 Lung Cancer 32 57 3
31 Lymphography 148 19 4
32 mfeat-mor 2,000 7 10
33 Mushrooms 8,124 23 2
34 Nettalk(Phoneme) 5,438 8 46
35 New-Thyroid 215 6 3
36 Optical Digits 5,620 50 10
37 Page Blocks 5,473 11 5
38 Pen Digits 10,992 17 10
39 Pima Indians Diabetes 768 9 2
40 Postoperative Patient 90 9 3
41 Primary Tumor 339 18 22
42 Promoter Gene Sequences 106 58 2
43 Satellite 6,435 37 6
44 Segment 2,310 20 7
45 Sign 12,546 9 3
46 Solar Flare 1,389 10 2
47 Sonar Classification 208 61 2
48 Splice-junction Gene Sequences 3,190 62 3
49 Syncon 600 61 6
50 Thyroid Disease(Garavan Institute) 3,772 30 2
51 Tic-Tac-Toe Endgame 958 10 2
52 Vehicle 846 19 4
53 Waveform-5000 5,000 41 3
54 Wine Recognition 178 14 3
55 Vowel 990 14 11
56 Zoo 101 18 7

learner is able to describe the decision surfaces for a
domain. Variance describes the component of error
that stems from sampling, which reflects the sensitiv-
ity of the learner to variations in the training sample
(Kohavi & Wolpert, 1996). There is a bias-variance
tradeoff such that bias typically increases when vari-
ance decreases and vice versa. In general, the better
the learner is able to fit the training data, the lower the
bias. However, closely fitting the training data may
result in greater changes in the model formed from
sample to sample, and hence higher variance.

There are a number of different bias-variance decom-
position methods. In the current research, we use
the repeated cross-validation bias-variance estimation
method proposed by Webb (2000). This is preferred to
the default method in Weka as it results in the use of
substantially larger training sets. In order to maximize
the variation in the training data from trial to trial we
use two-fold cross validation. The training data are
randomly divided into two folds. Each fold is used
as a test set for a classifier generated from the other
fold. Hence, each available example is classified once
for each two-fold cross-validation. Bias and variance
are estimated by fifty runs of two-fold cross-validation
in order to give a more accurate estimation of the av-
erage performance of an algorithm. The advantage of
this technique is that it uses the full training data as
the training set and test set, and every case in the
training data is used the same number of times.

7. Experimental results

The fifty-six natural domains from the UCI Reposi-
tory of machine learning used in our experiments are
shown in Table 2. The experiments were performed
in the Weka workbench (Witten & Frank, 2000) on
a dual-processor 1.7 GHz Pentium 4 Linux computer
with 2 Gb RAM, and all data were discretized using
MDL discretization (Fayyad & Irani, 1993). The base
probabilities were estimated using Laplace estimation.
We compare the performance of these three algorithms
using the method mentioned in Section 6.

Table 3. Mean for NE, LE and BSE

NE LE BSE

Mean error 0.1882 0.1849 0.1875

Mean bias 0.1358 0.1315 0.1310

Mean variance 0.0525 0.0534 0.0565

Table 3 shows the mean error, bias and variance across
all the data sets for each of NE, LE and BSE. Fig-
ure 2 graphs the relative error, bias and variance of
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Table 4a. Win/Draw/Loss: LE vs. alternative

NE BSE

W/D/L p W/D/L p

Error 29/13/14 0.0158 35/2/19 0.0201

Bias 40/13/3 <0.0001 17/2/37 0.0045

Variance 10/14/32 0.0005 44/2/10 <0.0001

Table 4b. Win/Draw/Loss: BSE vs. alternative

NE LE

W/D/L p W/D/L p

Error 21/3/32 0.0845 19/2/35 0.0201

Bias 47/2/7 <0.0001 37/2/17 0.0045

Variance 7/3/46 <0.0001 10/2/44 <0.0001

the three classifiers. The values on the y-axis are the
outcome for BSE divided by that for NE. The values
of the x-axis are the outcome for LE divided by that
for NE. Each point on the graph represents one of the
56 data sets. Points on the left of the vertical line
at LE/NE=1 in each subgraph are those of which LE
has better results than NE. Points below the horizontal
line at BSE/LE=1 indicate that BSE wins in those do-
mains compared with NE. Points above the line X=Y
represent that LE has lower values than those of BSE.

Table 4a presents the win/draw/loss records for LE
against the alternative algorithms on fifty-six data
sets. The win/draw/loss records for BSE against the
alternative algorithms is shown in Table 4b. The p
value is the outcome of a one-tailed binomial sign test.
We assess a difference as significant if p ≤ 0.05.

Considering first the error outcomes, LE achieves the
lowest mean error. The win/draw/loss record indi-
cates that LE has a significant advantage over NE and
BSE. However, there is no significant error difference
between NE and BSE. From the error graph in Fig-
ure 2, we can see that the majority of the points are
on the left of the vertical line at LE/NE=1, and above
the line X=Y . The error ratios of LE and BSE over
NE on King-rook-vs-king-pawn (the point at the bot-
tom of the graph) are 0.8478 and 0.6237 respectively.
The error ratio of BSE over LE is 0.7357. That is,
both LE and BSE reduce the error of NE consider-
ably, while BSE has substantial lower error than LE.
BSE might identify wider range of dependencies than
LE, which can only detect a special dependency rela-
tionship. Hence, the error of BSE might be greatly af-
fected in King-rook-vs-king-pawn, in which there are
strong dependencies between the presence and posi-
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tion of pieces on the board. However, it appears that
BSE does not scale well to the data sets with many
attributes, such as Audiology. The error ratio of LE
and BSE over NE on Audiology are 0.8034 and 1.0096
respectively, and the error ratio of LE over BSE is
0.7957. For the 10 data sets with more than 38 at-
tributes, LE has better error rates than BSE on 9
data sets, except for Splice-junction Gene Sequences,
on which LE has no effect for NE, and BSE has a small
reduction on error.

With respect to bias and variance, BSE exhibits the
lowest mean bias and highest mean variance. The
win/draw/loss records for bias show that the advan-
tage of LE and BSE is significant compared to NE.
BSE has a significant advantage over LE in bias. Most
of points are in the area indicates by the vertical line
at LE/NE=1 and horizontal line at BSE/NE=1 in the
bias graph. The advantage of NE and LE in variance
is significant compared with BSE. The variance graph
shows that NE wins in most cases. The variance ra-
tio of LE and BSE over NE on Hungarian (the point
located at the top of the variance graph) are 1.1341
and 2.0056 respectively. On this data set BSE has the
lowest bias but highest variance and error, while LE
has the lowest error.

BSE has lower bias, higher variance and higher error
than NE in the 26 data sets, while LE has lower bias,
higher variance and higher error than NE in 10 data
sets. Among these 10 data sets, 9 data sets are in the
26 data sets for BSE, with the exception of Echocar-
diogram, on which BSE has higher bias, variance and
error than NE. BSE has lower bias, higher variance
and higher error than LE in 19 data sets. These re-
sults suggest that LE performs less aggressive attribute
elimination than BSE.

8. Conclusion

Of many semi-naive Bayes approaches to deal with the
inter-dependencies problem, most use a wrapper to
identify irrelevant and redundant attributes, such as
BSE. We have proposed a novel technique, LE, to effi-
ciently eliminate highly correlated attribute values at
classification time. We investigate the effect of LE and
BSE on AODE. Extensive experimental results show
that both of them have substantially lower bias, but
higher variance than AODE. However, LE reduces the
error of AODE considerably without computational
burden, while BSE has no consistent error reduction on
AODE with very high training time complexity. The
advantage of LE in error and computation efficiency
over BSE is significant in the context of AODE. Note,
however, that the failure of BSE to consistently im-

prove upon AODE runs counter to the experience of
BSE applied to NB (Langley & Sage, 1994) and of
appropriate selection of parent attributes for AODE
(Yang et al., 2005), and it is plausible that appro-
priate refinement of the technique might substantially
improve its performance. We believe that the appro-
priate conclusion to draw from our results is that LE
is effective, rather than that it is necessarily superior
to the BSE strategy in the AODE context.

As LE eliminates highly dependent attribute values
in a lazy manner, it does not interfere with AODE’s
capacity for incremental learning. However, it is only
applicable to algorithms without model selection, such
as NB1 and AODE. BSE is more widely applicable, but
does not support incremental learning.
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