
A Fast Trust-Region Newton Method for Softmax Logistic Regression

Nayyar A. Zaidi, Geoffrey I. Webb ∗

Abstract

With the emergence of big data, there has been a growing

interest in optimization routines that lead to faster conver-

gence of Logistic Regression (LR). Among many optimiza-

tion methods such as Gradient Descent, Quasi-Newton, Con-

jugate Gradient, etc., the Trust-region based truncated New-

ton method (TRON) algorithm has been shown to converge

the fastest. The TRON algorithm also forms an important

component of the highly efficient and widely used liblinear

package. It has been shown that the WANBIA-C trick of

scaling with the log of the naive Bayes conditional probabil-

ities can greatly accelerate the convergence of LR trained us-

ing (first-order) Gradient Descent and (approximate second-

order) Quasi-Newton optimization. In this work we study

the applicability of the WANBIA-C trick to TRON. We first

devise a TRON algorithm optimizing the softmax objective

function and then demonstrate that WANBIA-C style pre-

conditioning can be beneficial for TRON, leading to an ex-

tremely fast (batch) LR algorithm. Second, we present a

comparative analysis of one-vs-all LR and softmax LR in

terms of the 0-1 Loss, Bias, Variance, RMSE, Log-Loss,

Training and Classification time, and show that softmax LR

leads to significantly better RMSE and Log-Loss. We eval-

uate our proposed approach on 51 benchmark datasets.

1 Introduction

Logistic Regression (LR) is a well-developed and exten-
sively studied technique in Statistics and a state-of-the-
art classifier in Machine Learning [10]. Its mechanisms
also apply to several advanced methods including Arti-
ficial Neural Networks and Generalized Linear Models
[13, 9]. It optimizes (minimizes) the negative of the con-
ditional log-likelihood (Negative Log-Likelihood – NLL)
which, for binary (where class is encoded as 0 and 1)
classification problems, is defined as:

NLL(β)=−
N∑
l=1

y log P(y = 1|x)+(1− y) log(1− P(y = 1|x)),

where P(y = 1|x) = exp(βTx)
1+exp(βTx)

, which leads to:

NLL(β) = −
N∑
l=1

yβTx− log(1 + exp(βTx)).

∗Faculty of Information Technology, Monash University, Clay-

ton, VIC 3800, Australia.

In practice, one should always regularize to avoid over-
fitting on smaller quantities of data1 and, therefore,
following objective function is minimized instead:

NLL(β) = −
N∑
l=1

(
yβTx− log(1 + exp(βTx))

)
+
λ

2
βTβ,

(1.1)

where λ is the regularization parameter and the vector
β is the parameter to be learned. The dimension (p) of
the β vector is: 1 + nn +

∑nc

i (Xi − 1), where nn and
nc is the number of numeric and categorical attributes
respectively and Xi is the cardinality of categorical
attribute i, 1 is added to account for the intercept term.

For handling multiple classes in LR, there are two
main options:

• Option 1: Train multiple one-versus-all or one-
versus-one LR classifiers. Then apply all trained
classifiers to predict at the classification time, and
choose the classifier (and hence the class) with the
highest probability. We will focus only on one-
versus-all in this work.

• Option 2: Optimize directly the softmax objective
function that is:

NLL(β) = −
N∑
l=1

(
βT

y x− log(

C∑
c=1

exp(βT
c x))

)
+
λ

2
βTβ,

(1.2)

where the dimension (p) of the β vector is: (C −
1)(1 + nn +

∑nc

i (Xi − 1)).

In most cases, the two options lead to similar accuracy
(i.e., 0-1 Loss) and usually the choice is left to the
user. However, there are two important distinctions
that cannot be ignored:

• Option 1 does not produce well calibrated class
probabilities. Therefore, it will result in worst per-
formance than Option 2 in terms of log loss, root-
mean-square-error (RMSE) and similar measures

1Note, regularization is not exclusive to smaller quantities of
data. It may be needed for large datasets. Suppose, if the data
is linearly separable, then the solution to equation 1.1 is obtained

when |β | → inf, leading to a linear threshold unit that may not
generalize well.

705 Copyright © 2017
Copyright for this paper is retained by authors

of calibration. Several works have explored differ-
ent ways to better predict class probabilities from
binary classifiers [15, 8, 1].

• The training time and classification timings (com-
putational efficiency) of the two options can be sig-
nificantly different. For example, with Option 1,
we are solving multiple small problems separately
(dimension of β vector is p), whereas, with Op-
tion 2, it is just one big problem (β is of dimension
(C − 1)p). It is not clear whether or not training
multiple subsets of a problem will lead to faster con-
vergence and hence, better training time. To our
current knowledge, there are no systematic stud-
ies of the comparison of these two choices (at least
for LR) in terms of the convergence, training and
classification time. We address these issues in this
paper.

There is no closed-form solution for optimizing
Equations 1.1 or 1.2 and one has to resort to iterative
optimization algorithms. Iterative means, that the
procedure generates a sequence {βk}∞k=1 converging to
the optimal solution of Equations 1.1 and 1.2. At
every iteration, βk+1 = βk + sk, where sk is the
search direction vector. The following equation plays
the pivotal role as it holds the key to obtaining sk by
solving a system of linear equations:

∇2f(βk)sk = −∇f(βk),(1.3)

where f is the objective function that we are optimizing
(i.e., NLL). There are two very important issues that
must be addressed when solving for search direction
vector using Equation 1.3 [12]. First, computing and
storing the Hessian can be very computational intensive
and memory inefficient, especially on large datasets with
many number of features. Second, the solution obtained
using Equation 1.3, does not guarantee any convergence.
Let us discuss these two issues.

The computational issues associated with Hessian
can be addressed in (at least) three following ways:

• Consider ∇2f(βk) to be an identity matrix – in
this case, sk = −∇f(βk). This leads to a family
of algorithms known as first-order methods such as
Gradient Descent, Coordinate Descent, etc.

• Do not compute∇2f(βk) directly, but approximate
it from the information present in ∇f(βk) instead.
This property is useful for large scale LR where
we cannot store the Hessian matrix. This leads to
approximate second-order methods known as quasi-
Newton algorithms, for example, L-BFGS which, is
considered to be the most efficient algorithm (de-
facto standard) for training LR.

• Third, use standard ‘direct algorithms’ for solving
a system of linear equations such as Gaussian
elimination to solve for sk, or any one of the
iterative algorithms such as conjugate gradient. For
training LR on large datasets, generally iterative
methods are preferable over direct methods, as
the former requires computing the whole Hessian
matrix. Optimization method now has two layers
of iterations. An outer layer of iteration to update
βk, and an inner layer of iterations to find Newton
direction sk. In practice, one can only use an
approximate Newton direction in early stages of
the outer iterations. This method is known as the
‘Truncated Newton method’ [11].

It should be noted that these methods differ across
many aspects of computational efficiency including
speed-of-convergence, cost-per-iteration and iterations-
to-convergence. For example, Coordinate Descent up-
dates one component of β at every iteration, so the cost-
per-iteration is very low, but iterations-to-convergence
will be very high. On the other hand, Newton methods,
will have high cost-per-iteration, but very low number
of iterations-to-convergence. With ever-growing quan-
tities of data, there is a growing interest in algorithms
that lead to faster convergence of LR. It has been shown
recently that one can speed-up the convergence of first-
order and approximate second-order methods for LR by
scaling with the log of the naive Bayes conditional prob-
abilities [16, 18]. However, for second-order methods, it
is not clear if such pre-conditioning will be effective or
not. We will address this issue in this paper.

Let us discuss the second issue, that is the con-
vergence of optimization when using Equation 1.3 to
determine the search direction. One can address this
problem by adjusting the length of the Newton direc-
tion. Two techniques can be used – line-search and
trust-region. Line search methods are standard in op-
timization research. We can modify Equation 1.3 as
∇2f(βk)sk = −ηk∇f(βk), where ηk is known as the
step-size. Standard line searches obtain an optimal step-
size as a solution to the following sub-optimization prob-
lem: ηk = argminηf(βk + ηsk). Trust-region methods,
unlike line search, are relatively new in optimization re-
search. Trust-region methods first find a region around
the current solution – in this region, a quadratic (or lin-
ear) model is used to approximate the objective func-
tion. The step size is determined based on the goodness
of fit of the approximate model. If a significant decrease
in the objective function is achieved with a forward step,
the approximated model is a good representative of the
original objective function and vice-versa. The size of
the (trust) region is specified as a spherical area of size
∆k. The convergence of the algorithm is guaranteed by

706 Copyright © 2017
Copyright for this paper is retained by authors

controlling the size of the region which (in each iter-
ation) is proportional to the reduction in the value of
objective function in the previous iteration. An update
of the trust-region and the parameter β can be con-
trolled by ρk – which is the ratio of actual reduction and
predicted reduction of the approximated model, and is
defined as:

ρk =
f(βk + sk)− f(βk)

qk(0)− qk(sk)
,(1.4)

where qk(sk) is the approximation of the function and
will be discussed shortly. The parameters are updated
as:

βk+1 =

{
βk + sk if ρk > η0

βk if ρk ≤ η0
(1.5)

whereas, the trust-region is adjusted as:

∆k+1 ∈
[
σ1min{||sk||,∆k}, σ2∆k

]
if ρk ≤ η1,

∆k+1 ∈
[
σ1∆k, σ3∆k

]
if ρk ∈

(
η1, η2

)
∆k+1 ∈

[
∆k, σ3∆k

]
if ρk ≥ η2(1.6)

The Trust-region Newton method (TRON) approx-
imates the objective function using the following
quadratic model:

qk(s) = ∇f(βK)T s +
1

2
sT∇2f(βk)s,(1.7)

such that ||s|| ≤ ∆k. Algorithm 1 from [4] is a pseudo-
code of TRON. Note, it is easy to find the solution

Algorithm 1 Trust Region Newton Method

1: procedure Tron(
{
y(i),x(i)

}N
l=1

)
2: β ← 0
3: for k = 0, 1, . . . , MaxIter do
4: If ∇f(βk) = 0, Exit
5:

6: Find an approximate solution to Trust-
Region problem: min qk(s), such that ||s|| ≤ ∆k

7:

8: Compute ρk using Equation 1.4
9: Update βk using Equation 1.5

10: Obtain ∆k+1 using Equation 1.6
11: end for
12: end procedure

to the trust-region problem: min qk(s), provided the
Hessian – ∇2f(βk), is positive-definite. However, the
constraint ||s|| ≤ ∆k prohibits us from using conjugate-
gradient algorithm in a straight-forward way. A mod-
ified conjugate-gradient based on the Steihaug method
can be used.

One of the first applications of the Truncated New-
ton method to solve binary LR problem was addressed
in [7]. A TRON algorithm for large-bound constrained
optimization problems was proposed in [3]. Later, in [4],
a TRON algorithm was applied to binary LR problem.
The resulting TRON algorithm forms the basis of an
extremely effective and widely used liblinear pack-
age [14]. One limitation of most existing applications
of TRON to LR is that LR is constrained to be binary
(and hence a much simpler optimization problem). In
this work, we study the application of TRON to multi-
class LR (optimizing the softmax objective function).
The main contributions of this work are as follows:

• We presents a TRON algorithm optimizing the
softmax objective function.

• We show that WANBIA-C pre-conditioning can
be effective for the second-order method TRON,
leading to an extremely fast LR algorithm.

• We show that optimizing a softmax objective func-
tion leads to better RMSE, log-loss and classifica-
tion time than standard binary one-vs-all classifi-
cation .

• We provide a comprehensive software library for
fast and effective binary and softmax LR – fastLR.

The rest of this paper is organized as follows: we discuss
binary and softmax LR in Section 2. WANBIA-C
preconditioning for LR is discussed in Section 3. We
present pre-conditioned softmax TRON in Section 4.
The empirical analysis is conducted in Section 5. We
conclude in Section 6 with pointers to future work.

2 Binary vs. Softmax LR

As discussed in Section 1, a binary LR minimizes the
NLL as its objective function in the form of Equa-
tion 1.1. For simplicity, in the remainder of this paper,
we will remove the regularization term from the objec-
tive function. Therefore, one can write the gradient as:

∂NLL(β)

∂βi
=

N∑
l=1

(y − P(y = 1|x))xi.

Note, that as we are looping over the entire data (N),
each y and x is indexed by l. More precisely, the RHS
of the above equation should be:

∑N
l=1(yl − P(y =

1|xl))xli. We omit the superscripts for simplicity. In
matrix notation the (p-dimensional) gradient vector
is: ∇NLL(β) = XT (y − p), where y and p are N
dimensional vectors of class labels and class posterior-
probabilities respectively. X is a matrix of dimension

707 Copyright © 2017
Copyright for this paper is retained by authors

N × p. The Hessian can be written as:

∂NLL(β)

∂βi∂βj
= −

N∑
l=1

(1− P(y = 1|x))P(y = 1|x)xixj .

The Hessian matrix (of dimension p×p) can be written
as: ∇2NLL(β) = −XTWX. Here, W is an N × N
dimensional diagonal matrix with P(y = 1|xl)(1−P(y =
1|xl)) at its l-th diagonal position.

Now, let us focus on LR optimizing softmax objec-
tive function (Equation 1.2). We can write the gradient
as:

∂NLL(β)

∂βy′,i
=

N∑
l=1

(1y=y′ − P(y′|x))xi,

where 1a=b is the indicator function that is equal to 1 if
a = b and zero otherwise. Again, precisely, the RHS of
the above equation should be written as:

∑N
l=1(1yl=y′−

P(y′|xl))xli. The gradient vector will be of dimension
p(C−1) and can written as: X̃T (ỹ− p̃). Here, ỹ and p̃
(each of dimension N(C−1)) are concatenation vectors
of C − 1 N -sized indicator vectors and take the forms:

ỹ =

y1

y2

...
yC−1

 , where yk =

1y1=k

1y2=k

...
1yN=k

and

p̃ =

p1

p2

...
pC−1

 , where pk =

P(k|x1)

P(k|x2)

...
P(k|xN)

 .

Similarly, X̃ is a matrix of dimensions N(C−1)×p(C−
1) and takes the form:

X̃ =

X 0 · · · 0

0 X · · · 0

...
...

. . .
...

0 0 · · · X

 .

The elements of the Hessian matrix can be computed
as:

∂2NLL(β)

∂βy′,i∂βy′′,j
= −

N∑
l=1

(1y′=y′′ − P(y′|x))P(y′′|x)xixj .

The Hessian is of dimension p(C − 1)× p(C − 1) and in
matrix notation can be written as: −X̃TW̃X̃. Here, W̃
is a N(C − 1)×N(C − 1) matrix and takes the form:

W̃ =

W11 W12 · · · W1(C−1)

W21 W22 · · · W2(C−1)

...
...

. . .
...

W(C−1)1 W(C−1)2 · · · W(C−1)(C−1)

 .

Note, Wc1c2 is an N × N diagonal matrix whose
elements when c1 = c2 are:

P(c1|x)(1− P(c1|x)),(2.8)

and when c1 6= c2 are:

−P(c1|x)(P(c2|x)).(2.9)

2.1 On Efficient Implementation An important
operation in TRON is the multiplication of the Hes-
sian matrix with the vector characterizing the search
direction, that is:

−∇2NLL(β)s = (XTWX)s

= XT (W(Xs)))

As a result of the above decomposition which was
proposed in [4], we do not have to store the entire
Hessian matrix – ∇2NLL(β). All we need is the W
matrix, which along with the data can be used to find
the result of the product: ∇2NLL(β)s. Of course,
for the softmax objective function, the factor will be:
X̃T (W̃(X̃s̃)) and will be slightly more complicated to
handle. Note, s̃ is a vector of size p(C − 1). Later,
we will express s̃ as the concatenation of C − 1 p-sized
vector, each denoted as sk.

Note, for binary classification, W is a diagonal
matrix, one can, therefore, store the diagonal elements
in a vector of size N . The elements of this vector can
be updated when computing the gradient. This reduces
the space complexity from N2 to N .

For the softmax objective function, rather than
allocating memory for W̃, one can store memory of
size (C − 1) × (C − 1) × N instead2. We name this
data structure D. When looping over the entire data to
update the gradient vector, one can update matrix D
based on Algorithm 2.

Similarly, there is no need to replicate the entire
data matrix X, (C − 1) times to obtain X̃ as it will be
grossly inefficient. In the following, we provide a simple
algorithm that computes the multiplication of Hessian
matrix with the step vector. The details are given in
Algorithm 3. The algorithm will be called from TRON
algorithm every time the product of Hessian matrix and
the search direction vector is required. The input is the
matrix D, data matrix X and search direction vector s̃.
The first step is the multiplication of X̃ with s̃. There is
no need for X̃. Instead, one can multiply data point xl

in X with all (C− 1) sk vectors – and store the outputs
in the right locations in vector A, which is a vector of
size N(C − 1). Note, the function offset returns the

2Note, for binary classes, this results in the vector of size N .

708 Copyright © 2017
Copyright for this paper is retained by authors

Algorithm 2 UpdateD

1: procedure UpdateD(x(i))
2:

3: for c1 = 0, 1, . . . , C − 1 do
4: for c2 = 0, 1, . . . , C − 1 do
5: if c1 = c2 then
6: D[i][c1][c2]← Equation 2.8
7: else
8: D[i][c1][c2]← Equation 2.9
9: end if

10: end for
11: end for
12:

13: end procedure

Algorithm 3 MultiplyHessianMatrixAndStepVector

1: procedure HS(D, s,
{
xl, yl

}N
l=1

)
2:

3: A← 0 . Initialize vector of size N(C-1)
4: B ← 0 . Initialize vector of size N(C-1)
5: H ← 0 . Initialize vector of size p(C-1)
6:

. Step 1: Compute X̃s
7: for each data point xl do
8: for each class c do
9: A[l + offset(c)]← xlT sc

10: end for
11: end for

. Step 2: Compute W̃X̃s
12: for each data point xl do
13: for each class c1 do
14: for each class c2 do
15: B[l+ offset(c1)]← D[l][c1][c2]×A[l+

offset(c2)]
16: end for
17: end for
18: end for

. Step 3: Compute X̃W̃X̃s
19: for each data point xl do
20: for each class c do
21: H ← xlTB[l + offset(c)]
22: end for
23: end for
24:

25: Delete A, B
26: return H
27:

28: end procedure

appropriate location of the output in vector A. The
second step is the computation of W̃X̃s, which involves
multiplying matrix D with vector A. The output of this
is again a vector – B of size N(C − 1). The final step
(Step 3) is the multiplication of the matrix X̃T with
vector B. Again, there is no need for X̃. One can loop
over the data matrix X, C − 1 times and find the right
address in the vector B to multiply. The output is the
vector H of dimension p(C − 1) which is the product of
∇2NLL(β)̃s.

3 WANBIA-C

So far, our analysis of binary and softmax Logistic
Regression has been for numeric data. For categorical
data, the standard practice is to transform the data
through one-hot-encoding and treat the transformed
data as numeric. Note, that this can be extremely
inefficient in terms of storage and, therefore, one should
use sparse instead of dense storage of matrix X. Let
us redefine LR for discrete data. We can write class-
posterior probabilities – P(y|x), as:

PLR(y|x) =
exp(βy +

∑
i βy,i,xi1Xi=xi∧Y =y)∑C

c=1 exp(βc +
∑

j βc,j,xj1Xj=xj∧Y =c)
,

which for simplicity (looping over attribute values that
are only one) can be reformulated as:

PLR(y|x) =
exp(βy +

∑
i βy,i,xi)∑C

c=1 exp(βc +
∑

j βc,j,xj)
.

Note, we have also made the intercept term explicit in
this formulation of LR. A naive Bayes classifier, on the
other hand, can be written as:

PNB(y|x) =
exp(log πy +

∑
i log θy,i,xi)∑C

c=1 exp(log πc +
∑

j log θc,j,xj)
.

Proposed in [16], WANBIA-C pre-conditions LR with
naive Bayes parameters, that is:

PWC(y|x)=
exp(βy log πy +

∑
i βy,i,xi log θy,i,xi)∑C

c=1 exp(βc log πc +
∑

j βc,j,xj log θc,j,xj)
.

It can be seen that PLR(y|x) and PWC(y|x) are equiv-
alent in terms of the number of parameters that are to
be optimized. However, it has been shown that NLL
written in terms of PWC(y|x) leads to much faster con-
vergence in far fewer iterations. This comes at the cost
of storing the log of the naive Bayes probabilities and
an extra initial pass through the data to compute these
probabilities.

4 Preconditioned Softmax TRON

We presented gradients and Hessian for binary and
softmax LR in Section 2. Since, WANBIA-C pre-
conditioning is applicable only to discrete data, let us

709 Copyright © 2017
Copyright for this paper is retained by authors

derive the gradient and the Hessian for discrete data in
this section. If NLL is defined in terms of PLR(y|x), for
discrete data, the gradients can be written as:

∂NLL(β)

∂βy′
=

N∑
l=1

(1y=y′ − P(y′|x)),

∂NLL(β)

∂βy′,i′,x′i

=

N∑
l=1

(1y=y′ − P(y′|x))1xi=x′i
.

Note, we have made explicit distinction between the
intercept and non-intercept terms. Due to this separate
handling of the intercept, for computing the Hessian,
special care is required. In the following, we present
three sets of Hessian that is: A) intercept and intercept,
B) intercept and non-intercept and C) non-intercept and
non-intercept:

∂2NLL(β)

∂βy′∂βy′′
= −

N∑
l=1

(1y′=y′′ − P(y′|x))P(y′′|x),

∂2NLL(β)

∂βy′,i′,x′i
∂βy′′

= −
N∑
l=1

(1y′=y′′ − P(y′|x))P(y′′|x)1xi=x′i
,

∂2NLL(β)

∂βy′,i′,x′i
∂βy′′,j′,x′j

= −
N∑
l=1

(1y′=y′′ − P(y′|x))P(y′′|x)

1xi=x′i
1xj=x′j

.

If NLL is defined in terms of PWC(y|x), we can compute
the gradients as:

∂NLL(β)

∂βy′
=

N∑
l=1

(1y=y′ − P(y′|x))πy,

∂NLL(β)

∂βy′,i′,x′i

=

N∑
l=1

(1y=y′ − P(y′|x)) log θy,i,xi1xi=x′i
.

(4.10)

And the Hessian as:

∂2NLL(β)

∂βy′∂βy′′
= −

N∑
l=1

(1y′=y′′ − P(y′|x))P(y′′|x)πy′πy′′ ,

∂2NLL(β)

∂βy′,i′,x′i
∂βy′′

= −
N∑
l=1

(1y′=y′′ − P(y′|x))P(y′′|x)

πy′′ logy′,i′,xi′
1xi=x′i

,

∂2NLL(β)

∂βy′,i′,x′i
∂βy′′,j′,x′j

= −
N∑
l=1

(1y′=y′′ − P(y′|x))P(y′′|x)

logy′,i′,xi′
logy′′,j′,xj′

1xi=x′i
1xj=xj′ .

(4.11)

The (preconditioned) gradient and Hessian given in
Equations 4.10 and 4.11, when called from Algorithm 1
results in a fast trust region based Newton method for
softmax LR.

5 Experimental Results

In this section, we compare and analyze the performance
of our proposed algorithm and related methods on 51
natural domains from the UCI repository of machine
learning datasets [6]. Only datasets with more than two
classes are included. The details are given in Table 5.
There are 10 datasets with over 100, 000 instances.
These datasets are shown in bold font in Table 5. These
datasets constitute the Big category. When comparing
results, we present a separate analysis on this category.

Each algorithm is tested on each dataset using 5
rounds of 2-fold cross validation. We compare seven
different metrics, i.e., 0-1 Loss, RMSE, Bias, Variance,
Log-Loss, No. of Iterations, Training time and Classifi-
cation time.

We report Win-Draw-Loss (W-D-L) results when
comparing the performance metrics of two models. A
two-tail binomial sign test is used to determine the
significance of the results. Results are considered
significant if p ≤ 0.05 and shown in bold.

Numeric features are discretized by using the Mini-
mum Description Length (MDL) supervised discretiza-
tion method [5]. Discretization of numeric attributes is
motivated from study in [17]. A missing value is treated
as a separate feature value and taken into account ex-
actly like other values.

All the results presented are L2 regularized (except
when comparing the convergence curves). This is be-
cause, for a fair convergence comparison, we want all
algorithms to converge to the same point in the opti-
mization space. Regularization will lead to convergence
at different points.

5.1 Softmax LR vs. One-vs-All LR Let us start
by comparing softmax LR (denoted as LR) with one-
versus-all (binary) Logistic Regression (denoted as
LR1vsAll). We compare the the two techniques in terms
of W-D-L in Table 2. It can be seen that, as expected,
LR results in significantly lower RMSE and Log-Loss.
Quite, surprisingly, the bias of LR is also significantly
lower than LR1vsAll. Following the insight that low-bias
classifiers can be expected to minimize error for large
datasets [2], LR results in significantly lower 0-1 Loss on
Big datasets (8 wins and 2 draws). In contrast, LR1vsAll

has lower variance than LR which suggests it might be
more accurate for sufficiently small datasets. In terms
of the training time, it can be seen that LR1vsAll is sig-
nificantly faster than LR on All datasets. Classification
time, again as expected is slower for LR1vsAll.

We compare (geometric) average of LR and LR1vsAll

in terms of 0-1 Loss, RMSE, Training and Classification
time in Figure 1.

710 Copyright © 2017
Copyright for this paper is retained by authors

Domain Case Att Class Domain Case Att Class Domain Case Att Class
Kddcup 5209000 41 40 Pioneer 9150 37 57 Vehicle 846 19 4
USCensus1990 2458300 67 4 Satellite 6435 37 6 BalanceScale 625 5 3
Sensor 2219803 5 57 OpticalDigits 5620 49 10 Syncon 600 61 6
Poker-hand 1175067 11 10 PageBlocksClassification 5473 11 5 Dermatology 366 35 6
Covertype 581012 55 7 Wall-following 5456 25 4 PrimaryTumor 339 18 22
Census-Income(KDD) 299285 41 9 Nettalk(Phoneme) 5438 8 52 Audiology 226 70 24
WearableComputing 165633 18 5 Abalone 4177 9 3 New-Thyroid 215 6 3
Localization 164860 7 3 Hypothyroid(Garavan) 3772 30 4 GlassIdentification 214 10 3
Diabetes 101766 46 4 Splice-junctionGeneSequences 3190 62 3 AutoImports 205 26 7
Waveform 100000 21 3 Segment 2310 20 7 WineRecognition 178 14 3
Connect-4Opening 67557 43 3 CarEvaluation 1728 8 4 TeachingAssistantEvaluation 151 6 3
Statlog(Shuttle) 58000 10 7 Volcanoes 1520 4 4 IrisClassification 150 5 3
LetterRecognition 20000 17 26 Yeast 1484 9 10 Lymphography 148 19 4
Nursery 12960 9 5 ContraceptiveMethodChoice 1473 10 3 Zoo 101 17 7
Sign 12546 9 3 LED 1000 8 10 PostoperativePatient 90 9 3
PenDigits 10992 17 10 Vowel 990 14 11 LungCancer 32 57 3
Thyroid 9169 30 20 Annealing 898 39 6 Contact-lenses 24 5 3

Table 1: Details of datasets used.

LR vs. LR1vsAll LR vs. LR1vsAll

All Datasets Big Datasets

W-D-L p W-D-L p

Bias 35/7/9 <0.001 9/1/0 0.003

Variance 15/7/29 0.048 1/2/7 0.039

0-1 Loss 26/9/16 0.164 8/2/0 0.007

RMSE 49/0/2 <0.001 10/0/0 <0.001

Log-Loss 51/0/0 <0.001 10/0/0 <0.001

Training Time 17/0/34 0.017 3/0/7 0.343

Classification Time 47/3/1 <0.001 9/0/1 0.011

Table 2: Win-Draw-Loss: LR vs. LR1vsAll. p is two-tail
binomial sign test. Results are significant if p ≤ 0.05.

5.2 Softmax LR vs. Pre-conditioned Softmax
LR Let us compare LR with preconditioned LR (de-
noted as LR-WC) in this section. Comparison between
the two parameterizations in terms of W-D-L is given
in Table 3. We argue, that the two parameterizations
have a similar 0-1 Loss, RMSE, bias, variance and Clas-
sification timing profile. This can be seen from first five
rows of the Table 3, where none of the results are signif-
icant. However, in terms of the training time and no. of
iterations it takes each algorithm to converge, LR-WC
is significantly better than LR.

We compare (geometric) average of LR and LR-WC
in terms of 0-1 Loss, RMSE, Training and Classification
time in Figure 2.

5.2.1 Analysis of Convergence The variation of
the objective function (NLL) with varying iterations
for LR and LR-WC on 12 sample datasets is given in
Figure 3. It can be seen that, not only does LR-WC
converge in fewer iterations, it follows a more desirable
convergence path, that is, asysmptoting to its minima
much quicker than LR. It can be seen that TRON has
close to quadratic convergence as on most datasets, both
LR and LR-WC converge on average in 10 iterations.

All Big
0

0.5

1

1.5
0-1 Loss

LR

LR
1vsAll

All Big
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
RMSE

LR

LR
1vsAll

All Big
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
Training Time

LR

LR
1vsAll

All Big
0

0.5

1

1.5

2

2.5

3

3.5

4
Classification Time

LR

LR
1vsAll

Figure 1: Geometric mean of 0-1 Loss, RMSE, Training
time, Classification time performance of LR and LR1vsAll

for All and Big datasets. Results normalized w.r.t LR.

Remember, Algorithm 1 has two levels of iterations.
The W-D-L iteration results in Table 3 are those of outer
iterations. However, we found, that LR-WC has also
fewer inner iterations as well. We have not presented
these results due to space constraints. But it can be
seen from Training time results in Figure 2, where LR-
WC is roughly twice as fast on average.

5.2.2 Comparison with Quasi-Newton (L-
BFGS) Quasi Newton methods are the de-facto
standard for optimizing LR. In Figure 4, we show a
comparison of TRON and L-BFGS convergence on
two sample datasets. LR trained with L-BFGS is
denoted as LR-QN and preconditioned LR trained
with L-BFGS is denoted LR-WC-QN. It can be seen
that LR trained with TRON converges in an order of
magnitude fewer iterations. Note, like TRON (which
has an inner level of iterations), L-BFGS has internal
function evaluations for line searches, and, therefore,
the number of passes over the data are substantially
greater then are shown in Figure 4. Our goal, here
is to compare the convergence profiles of the two

711 Copyright © 2017
Copyright for this paper is retained by authors

LR vs. LR-WC LR vs. LR-WC

All Datasets Big Datasets

W-D-L p W-D-L p

Bias 12/24/15 0.701 2/5/3 1.000

Variance 20/15/16 0.617 6/4/0 0.03

0-1 Loss 17/14/20 0.742 4/4/2 0.453

RMSE 24/10/17 0.348 5/5/0 0.06

Classification Time 18/23/10 0.184 5/0/5 1.000

Training Time 5/0/46 <0.001 1/0/9 0.011

Iterations 2/3/46 <0.001 1/1/8 0.025

Table 3: Win-Draw-Loss: LR vs. LR-WC. p is two-tail
binomial sign test. Results are significant if p ≤ 0.05.

All Big
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
0-1 Loss

LR
LR-WC

All Big
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
RMSE

LR
LR-WC

All Big
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
Training Time

LR
LR-WC

All Big
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
Classification Time

LR
LR-WC

Figure 2: Geometric mean of 0-1 Loss, RMSE, Training and
Classification time performance of LR and LR-WC for All
and Big datasets. Results normalized w.r.t LR.

optimization routines. In practice, we found TRON to
have significantly faster training time than L-BFGS.

6 Conclusion and Future Work

In this paper, we presented a fast trust-region based
Newton method for softmax LR, which is based on pre-
conditioning using the WANBIA-C trick. We addressed
the issue of efficiently computing the Hessian of LR
for the softmax objective function. We also computed
softmax LR with one-versus-all binary LR (LR1vsAll).
Here are some of our key findings:

• We showed that, contrary to the common concep-
tion that softmax LR and LR1vsAll have equivalent
accuracy – softmax LR has significantly lower bias
and higher variance. Therefore, we recommend,
that softmax LR should be used for big training
sets.

• Softmax LR has lower RMSE and log-loss and
should be preferred if the calibration of class-
probabilities is important.

• Training time is faster for LR1vsAll than softmax
LR but classification time is slower.

• WANBIA-C pre-conditioning is equally effective for
second-order optimization methods.

• Preconditioned TRON leads to an extremely fast
LR algorithm.

Future works lies in the direction of developing the
software library. Recently it has been shown that for
big datasets, one can train an LR by building all higher-
order features [19]. One can speed-up the convergence of
this higher-order LR by integrating the softmax TRON
algorithm proposed in this work. Implementing other
loss functions such as Hinge and Mean-Square-Error are
also left as future work.

7 Code

The details of the software library fastLR is given in

Appendix A. The library along with running instructions

can be downloaded from Github: https://github.com/

nayyarzaidi/fastLR.git.

8 Acknowledgments

This research has been supported by the Australian Research
Council (ARC) under grant DP140100087, and by the Asian
Office of Aerospace Research and Development, Air Force
Office of Scientific Research under contract FA2386-15-1-
4007. The authors would like to thank Wray Buntine for
helpful discussions during the course of this paper.

A fastLR – LR Library

The library can handle both numeric and categorical
attributes. There is no need to do a one-hot-encoding
for categorical attributes, as the LR model built can
directly handle the data types.

One can execute the code in the library by
issuing the command: java -cp /fastLR.jar

fastLR.BVDcrossvalx -t /dataset.arff -i 2

-x 2 -W LRClassifier -- -S "overparamLR" -O

"Tron". This does two rounds of two-fold cross
validation on dataset name dataset.arff and runs
LR with solver Tron. This will learn weights for
all C classes. For learning weights for only C − 1
classes, use the following flag: -S "vanilla". For
other optimization use: "GD","CG","QN" for Gradient
Descent, Conjugate Gradient and L-BFGS respectively.
For pre-conditioning, use -S "overparamWC" or -S

"vanillaWC". For one-versus-all binary classification,
use -W oneversusAllLRClassifier. The default pa-
rameterization is -S "vanilla" which learns just one
set of weights, but one can also use -S "overparam".

References

[1] Allwein, E.L., Schapire, R.E., Singer, Y.: Reducing
multiclass to binary: A unifying approach for margin

712 Copyright © 2017
Copyright for this paper is retained by authors

10
0

10
1

10
2

No. of Iterations

-3

-2.5

-2

-1.5

-1

-0.5

0

N
e
g

a
ti

v
e
 L

o
g

-L
ik

e
li
h

o
o

d

×10
5 Census-income

LR
LR-WC

10
0

10
1

10
2

No. of Iterations

-18000

-16000

-14000

-12000

-10000

-8000

-6000

-4000

-2000

0

N
e
g

a
ti

v
e
 L

o
g

-L
ik

e
li
h

o
o

d

Connect4

LR
LR-WC

10
0

10
1

10
2

No. of Iterations

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

N
e
g

a
ti

v
e
 L

o
g

-L
ik

e
li
h

o
o

d

×10
5 Covtype

LR
LR-WC

10
0

10
1

10
2

No. of Iterations

-5

-4.5

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

N
e
g

a
ti

v
e
 L

o
g

-L
ik

e
li
h

o
o

d

×10
4 Diabetes

LR
LR-WC

10
0

10
1

10
2

No. of Iterations

-10

-9

-8

-7

-6

-5

-4

-3

-2

-1

0

N
e
g

a
ti

v
e
 L

o
g

-L
ik

e
li
h

o
o

d

×10
6 Kddcup

LR
LR-WC

10
0

10
1

10
2

10
3

No. of Iterations

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

N
e
g

a
ti

v
e
 L

o
g

-L
ik

e
li
h

o
o

d

×10
4 Letter-recog

LR
LR-WC

10
0

10
1

10
2

No. of Iterations

-10

-9

-8

-7

-6

-5

-4

-3

-2

-1

0

N
e
g

a
ti

v
e
 L

o
g

-L
ik

e
li
h

o
o

d

×10
4 Localization

LR
LR-WC

10
0

10
1

10
2

No. of Iterations

-7

-6

-5

-4

-3

-2

-1

0

N
e
g

a
ti

v
e
 L

o
g

-L
ik

e
li
h

o
o

d

×10
5 Poker-hand

LR
LR-WC

10
0

10
1

10
2

No. of Iterations

-18

-16

-14

-12

-10

-8

-6

-4

-2

0

N
e
g

a
ti

v
e
 L

o
g

-L
ik

e
li
h

o
o

d

×10
5 Sensor

LR
LR-WC

10
0

10
1

10
2

No. of Iterations

-14000

-12000

-10000

-8000

-6000

-4000

-2000

0

N
e
g

a
ti

v
e
 L

o
g

-L
ik

e
li
h

o
o

d

Thyroid

LR
LR-WC

10
0

10
1

No. of Iterations

-6

-5

-4

-3

-2

-1

0

N
e
g

a
ti

v
e
 L

o
g

-L
ik

e
li
h

o
o

d

×10
4 Waveform

LR
LR-WC

10
0

10
1

10
2

No. of Iterations

-14

-12

-10

-8

-6

-4

-2

0

N
e
g

a
ti

v
e
 L

o
g

-L
ik

e
li
h

o
o

d

×10
4 Wearable-Computing

LR
LR-WC

Figure 3: Comparison of the rate of convergence of LR and LR-WC on several datasets. The X-axis (No. of iterations)
is on log scale.

10
0

10
1

10
2

10
3

No. of Iterations

-10

-9

-8

-7

-6

-5

-4

-3

-2

-1

0

N
e
g

a
ti

v
e
 L

o
g

-L
ik

e
li
h

o
o

d

×10
4 Localization

LR
LR-WC
LR-QN
LR-WC-QN

10
0

10
1

10
2

10
3

10
4

No. of Iterations

-4.5

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

N
e
g

a
ti

v
e
 L

o
g

-L
ik

e
li
h

o
o

d

×10
5 Covtype

LR
LR-WC
LR-QN
LR-WC-QN

Figure 4: Comparison of the rate of convergence of LR, LR-
WC, LR-QN and LR-WC-QN on two sample datasets. The
X-axis (No. of iterations) is on log scale.

classifiers. Journal of Machine Learning Research 1,
113–141 (2000)

[2] Brain, D., Webb, G.I.: The need for low bias algo-
rithms in classification learning from small data sets.
In: PKDD, pp. 62–73 (2002)

[3] Chih-Jen, L., More, J.J.: Newton method for large
bound-constrained optimization problems. SIAM
Journal of Optimization 9, 1100–1127 (1999)

[4] Chih-Jen, L., Weng, R.C., Keerthi, S.S.: Trust region
newton method for large-scale logistic regression. Jour-
nal of Machine Learning Research 9, 627–650 (2008)

[5] Fayyad, U.M., Irani, K.B.: On the handling of
continuous-valued attributes in decision tree genera-
tion. Machine Learning 8(1), 87–102 (1992)

[6] Frank, A., Asuncion, A.: UCI machine learning repos-
itory (2010). URL http://archive.ics.uci.edu/ml

[7] Komarek, P., Moore, A.W.: Making logistic regression
a core data mining tool. Tech. rep., Robotics Institute,
CMU (2005)

[8] Kong, B.E., Dietterich, T.G.: Probability estimation
via error-correcting output coding. In: Int. Conf on

Artificial Intelligence and Soft Computing (2001)
[9] McCullagh, P., Nelder, J.: Generalized Linear Models,

second edn. Boca Raton: Chapman and Hall/CRC
(1989)

[10] Murphy, K.: Machine learning: a probabilistic perspec-
tive. MIT Press (2012)

[11] Nash, S.G.: A survey of truncated newton methods.
Journal of Computational and Applied Mathematics
124, 45–59 (2000)

[12] Nocedal, J., Wright, S.: Numerical optimization.
Springer Science & Business Media (2006)

[13] Ripley, B.D.: Pattern Recognition and Neural Net-
works. Cambridge University Press (1996)

[14] Rong-En, F., Kai-Wei, C., Cho-Jui, H., Xiang-Rui, W.,
Chih-Jen, L.: LIBLINEAR: A library for large linear
classification. Journal of Machine Learning Research
9, 1871–1874 (2008)

[15] Zadrozny, B.: Reducing multiclass to binary by cou-
pling probability estimates. In: NIPS (2001)

[16] Zaidi, N.A., Carman, M.J., Cerquides, J., Webb,
G.I.: Naive-bayes inspired effective pre-conditioners for
speeding-up logistic regression. In: IEEE International
Conference on Data Mining (2014)

[17] Zaidi, N.A., Du, Y., Webb, G.I.: On the effectiveness of
discretizing quantitative attributes in linear classifiers.
arXiv:1701.07114 (2017)

[18] Zaidi, N.A., Petitjean, F., Webb, G.I.: Preconditioning
an artificial neural network using naive bayes. In:
Advances in Knowledge Discovery and Data Mining,
pp. 341–353 (2016)

[19] Zaidi, N.A., Webb, G.I., Carman, M.J., Petitjean,
F., Cerquides, J.: ALRn: Accelerating higher-order
logistic regression. Machine Learning 104, 151–194
(2016)

713 Copyright © 2017
Copyright for this paper is retained by authors

	MAIN MENU
	Help
	Search
	Print
	Author Index
	Table of Contents

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: none
 Normalise (advanced option): 'original'

 32

 D:20120516081844
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 675
 320
 None
 Up
 0.0000
 0.0000

 Both
 AllDoc

 PDDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 9
 8
 9

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: none
 Normalise (advanced option): 'original'

 32

 D:20120516081844
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 675
 320
 None
 Up
 0.0000
 0.0000

 Both
 AllDoc

 PDDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 9
 8
 9

 1

 HistoryList_V1
 qi2base

