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Machine Learning from Big Data

When data is too big to reside in RAM, machine learning have
two options:

First, learn from a sample of data, thereby potentially losing
information implicit in the data as a whole.
Second, process data out-of-core which results in expensive
data-access, making single-pass algorithms extremely desirable.

In addition, a desirable classifier should have:

time complexity linear w.r.t to the no. of training examples,
directly handle multiple class problems,
directly handle missing values, and
require minimal parameter tuning.
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Bias and Variance for Classification

Bias: Error due to the central tendency of the learner.

Variance: Error due to the variability in response to sampling.

Figure: Image from Bias Variance Decomposition in ‘Encyclopedia
of Machine Learning’, C. Sammut and G.I Webb, Editors 2010,
Springer: New York.

Since for big data, variance tends to decrease anyways as data
quantity increases – low bias algorithms are preferable.
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Averaged n-Dependence Estimators (AnDE)

Averaged n-Dependence Estimators (AnDE) family of
Bayesian learning algorithms provide efficient single pass
learning with accuracy competitive to state-of-the-art in-core
learning.

P̂AnDE(y , x) =


∑

s∈(An ) δ(xs)P̂(y ,xs)
∏a

i=1 P̂(xi |y ,xs)∑
s∈(An ) δ(xs) :

∑
s∈(An )

δ(xs) > 0

P̂A(n-1)DE(y , x) : otherwise

In AnDE, n controls the bias-variance trade-off. Higher n
leads to lower bias but higher variance.

Unfortunately, large n has high time and space complexity
especially as the dimensionality of data increases.

How to reduce bias?
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Subsumption Resolution (SR)

If P(x1|x2) = 1.0 then P(y |x1, x2) = P(y |x2)

For example, P(oedema|female,pregnant) =
P(oedema|pregnant)
Subsumption resolution looks for subsuming attributes at
classification time and ignores them.

Simple correction for extreme form of violation of attribute
independence assumption.

Very effective in practice - reduce bias at small cost in
variance.

For AnDE with n ≥ 1, it uses statistics collected already - no
learning overhead - reduces classification time.

P(xi | xj) = 1 iff #(xj) = #(xi , xj) > 100
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Weighted AnDE (WAnDE)

It has been shown that weighting sub-models can result in
reducing the bias in AODE.

Different weighting schemes have been investigated. A
popular one is WAODE due to its minimal computational
overhead.

P̂WAnDE(y , x) =


∑

s∈(An ) δ(xs)ws P̂(y ,xs)
∏a

i=1 P̂(xi |y ,xs)∑
s∈(An ) δ(xs)

P̂WA(n-1)DE(y , x)

ws = MI(s,Y ) =
∑

y∈Y
∑

xs∈Xs
P(xs , y) log P(xs ,y)

P(xs)P(y)
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Complexity Analysis

Complexity at training time: O(t
( m
n+1

)
), and classification

time: O(km
(m
n

)
), t is the no. of training examples.

Subsumption resolution requires no additional training time.
At classification time it requires

(m
2

)
comparisons to identify

any subsumed attribute values.

WAnDE requires the calculation of weights at the training
time, O(k

(m
n

)
). The classification time impact is negligible.
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Experimental Details

Each algorithm is tested on each data set using 20 rounds of
2-fold cross validation. Probability estimates were smoothed
using m-estimation with m = 1.

Win-draw-loss results are presented. Standard binomial sign
test, assuming that wins and losses are equiprobable, is
applied to these records. Difference is significant if the
outcome of a two-tailed binomial sign test is less than 0.05.

The data sets are divided into four categories. First,
consisting of all 71 data sets. Second, large data sets with
number of instances > 10, 000. Third, medium data sets with
number of instances > 1000 and < 10, 000. Fourth, small
data sets with number of instances < 1000.

Numeric attributes are discretized using MDL discretization
for all compared techniques except Random Forest.
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Bias and Variance Analysis

Bias Variance
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0-1 Loss
All Data Sets

NB A1DE A1DE-S A1DE-W A1DE-SW A2DE A2DE-S A2DE-W A2DE-SW

A1DE 53/4/14

A1DE-S 51/4/16 27/31/13

A1DE-W 50/2/19 35/8/28 29/8/34

A1DE-SW 48/3/20 38/6/27 32/10/29 20/42/9

A2DE 54/3/14 50/4/17 48/4/19 45/8/18 41/10/20

A2DE-S 49/3/19 46/3/22 45/4/22 44/5/22 43/5/23 23/34/14

A2DE-W 48/2/21 46/3/22 45/4/22 47/6/18 46/6/19 36/8/27 35/9/27

A2DE-SW 47/2/22 45/2/24 42/3/26 45/7/19 44/6/21 37/9/25 36/11/24 21/34/16

RF10 40/1/30 28/2/41 26/5/40 24/2/45 24/2/45 22/3/46 20/4/47 17/3/51 17/3/51

Large Data Sets

NB A1DE A1DE-S A1DE-W A1DE-SW A2DE A2DE-S A2DE-W A2DE-SW

A1DE 12/0/0

A1DE-S 12/0/0 7/4/1

A1DE-W 12/0/0 9/2/1 7/1/4

A1DE-SW 12/0/0 10/1/1 8/2/2 5/6/1

A2DE 12/0/0 12/0/0 12/0/0 12/0/0 11/0/1

A2DE-S 12/0/0 12/0/0 12/0/0 12/0/0 12/0/0 7/5/0

A2DE-W 12/0/0 12/0/0 12/0/0 12/0/0 12/0/0 9/1/2 5/1/6

A2DE-SW 12/0/0 12/0/0 12/0/0 12/0/0 12/0/0 9/1/2 8/1/3 6/6/0

RF10 12/0/0 9/0/3 9/0/3 9/0/3 9/0/3 7/1/4 6/1/5 5/1/6 5/1/6
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0-1 Loss (Contd)
Medium Data Sets

NB A1DE A1DE-S A1DE-W A1DE-SW A2DE A2DE-S A2DE-W A2DE-SW

A1DE 18/1/0

A1DE-S 19/0/0 7/5/7

A1DE-W 19/0/0 13/1/5 10/3/6

A1DE-SW 18/1/0 12/1/6 10/4/5 5/8/6

A2DE 19/0/0 17/0/2 15/1/3 11/1/7 11/1/7

A2DE-S 19/0/0 16/0/3 14/1/4 12/1/6 12/1/6 6/9/4

A2DE-W 19/0/0 17/0/2 16/2/1 15/2/2 14/2/3 13/3/3 13/3/3

A2DE-SW 19/0/0 16/0/3 14/1/4 14/2/3 14/2/3 11/4/4 11/5/3 5/7/7

RF10 15/0/4 10/0/9 8/3/8 6/1/12 6/1/12 6/1/12 5/2/12 4/1/14 4/1/14

Small Data Sets

NB A1DE A1DE-S A1DE-W A1DE-SW A2DE A2DE-S A2DE-W A2DE-SW

A1DE 23/3/14

A1DE-S 20/4/16 13/22/5

A1DE-W 19/2/19 13/5/22 12/4/24

A1DE-SW 18/2/20 16/4/20 14/4/22 10/28/2

A2DE 23/3/14 21/4/15 21/3/16 22/7/11 19/9/12

A2DE-S 18/3/19 18/3/19 19/3/18 20/4/16 19/4/17 10/20/10

A2DE-W 17/2/21 17/3/20 17/2/21 20/4/16 20/4/16 14/4/22 17/5/18

A2DE-SW 16/2/22 17/2/21 16/2/22 19/5/16 18/4/18 17/4/19 17/5/18 10/21/9

RF10 13/1/26 9/2/29 9/2/29 9/1/30 9/1/30 9/1/30 9/1/30 8/1/31 8/1/31
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Conclusion

Both SR and weighting are just as effective at reducing
A2DE’s bias as it is at reducing A1DE’s.

There is strong synergy between the two techniques and that
they operate in tandem to reduce the bias of both A1DE and
A2DE more effectively than does either in isolation.

We compared A2DE with MI-weighting and subsumption
resolution against the state-of-the-art in-core learning
algorithm Random Forest.

Using only single-pass learning, A2DE with MI-weighting and
subsumption resolution achieves accuracy that is very
competitive with the state-of-the-art in in-core learning,
making it a desirable algorithm for learning from very large
data.

Code is available as weka package online.
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