Fast and Effective Single Pass Bayesian Learning

Nayyar A. Zaidi, Geoffrey I. Webb

Faculty of Information Technology, Monash University, Melbourne VIC 3800, Australia

15 April 2013

• When data is too big to reside in RAM, machine learning have two options:

- When data is too big to reside in RAM, machine learning have two options:
 - <u>First</u>, learn from a sample of data, thereby potentially losing information implicit in the data as a whole.

4 B K 4 B K

- When data is too big to reside in RAM, machine learning have two options:
 - <u>First</u>, learn from a sample of data, thereby potentially losing information implicit in the data as a whole.
 - <u>Second</u>, process data out-of-core which results in expensive data-access, making single-pass algorithms extremely desirable.

- When data is too big to reside in RAM, machine learning have two options:
 - <u>First</u>, learn from a sample of data, thereby potentially losing information implicit in the data as a whole.
 - <u>Second</u>, process data out-of-core which results in expensive data-access, making single-pass algorithms extremely desirable.
- In addition, a desirable classifier should have:

- When data is too big to reside in RAM, machine learning have two options:
 - <u>First</u>, learn from a sample of data, thereby potentially losing information implicit in the data as a whole.
 - <u>Second</u>, process data out-of-core which results in expensive data-access, making single-pass algorithms extremely desirable.
- In addition, a desirable classifier should have:
 - time complexity linear w.r.t to the no. of training examples,

- When data is too big to reside in RAM, machine learning have two options:
 - <u>First</u>, learn from a sample of data, thereby potentially losing information implicit in the data as a whole.
 - <u>Second</u>, process data out-of-core which results in expensive data-access, making single-pass algorithms extremely desirable.
- In addition, a desirable classifier should have:
 - time complexity linear w.r.t to the no. of training examples,
 - directly handle multiple class problems,

- When data is too big to reside in RAM, machine learning have two options:
 - <u>First</u>, learn from a sample of data, thereby potentially losing information implicit in the data as a whole.
 - <u>Second</u>, process data out-of-core which results in expensive data-access, making single-pass algorithms extremely desirable.
- In addition, a desirable classifier should have:
 - time complexity linear w.r.t to the no. of training examples,
 - directly handle multiple class problems,
 - directly handle missing values, and

- When data is too big to reside in RAM, machine learning have two options:
 - <u>First</u>, learn from a sample of data, thereby potentially losing information implicit in the data as a whole.
 - <u>Second</u>, process data out-of-core which results in expensive data-access, making single-pass algorithms extremely desirable.
- In addition, a desirable classifier should have:
 - time complexity linear w.r.t to the no. of training examples,
 - directly handle multiple class problems,
 - directly handle missing values, and
 - require minimal parameter tuning.

э

• Bias: Error due to the central tendency of the learner.

- Bias: Error due to the central tendency of the learner.
- Variance: Error due to the variability in response to sampling.

- Bias: Error due to the central tendency of the learner.
- Variance: Error due to the variability in response to sampling.

Figure: Image from Bias Variance Decomposition in 'Encyclopedia of Machine Learning', C. Sammut and G.I Webb, Editors 2010, Springer: New York.

- Bias: Error due to the central tendency of the learner.
- Variance: Error due to the variability in response to sampling.

Figure: Image from Bias Variance Decomposition in 'Encyclopedia of Machine Learning', C. Sammut and G.I Webb, Editors 2010, Springer: New York.

• Since for big data, variance tends to decrease anyways as data quantity increases – *low bias algorithms are preferable*.

• Averaged *n*-Dependence Estimators (AnDE) family of Bayesian learning algorithms provide efficient single pass learning with accuracy competitive to state-of-the-art in-core learning.

4 B N 4 B N

• Averaged *n*-Dependence Estimators (AnDE) family of Bayesian learning algorithms provide efficient single pass learning with accuracy competitive to state-of-the-art in-core learning.

$$\hat{P}_{\mathrm{AnDE}}(\boldsymbol{y}, \boldsymbol{x}) = \begin{cases} \frac{\sum_{s \in \binom{\mathcal{A}}{n}} \delta(\boldsymbol{x}_s) \hat{P}(\boldsymbol{y}, \boldsymbol{x}_s) \prod_{i=1}^{s} \hat{P}(\boldsymbol{x}_i | \boldsymbol{y}, \boldsymbol{x}_s)}{\sum_{s \in \binom{\mathcal{A}}{n}} \delta(\boldsymbol{x}_s)} & : \sum_{s \in \binom{\mathcal{A}}{n}} \delta(\boldsymbol{x}_s) > 0\\ \hat{P}_{\mathrm{A(n-1)DE}}(\boldsymbol{y}, \boldsymbol{x}) & : \text{ otherwise} \end{cases}$$

4 B K 4 B K

۲

• Averaged *n*-Dependence Estimators (AnDE) family of Bayesian learning algorithms provide efficient single pass learning with accuracy competitive to state-of-the-art in-core learning.

$$\hat{P}_{AnDE}(y, \mathbf{x}) = \begin{cases} \frac{\sum_{s \in \binom{A}{n}} \delta(x_s) \hat{P}(y, x_s) \prod_{i=1}^{s} \hat{P}(x_i | y, x_s)}{\sum_{s \in \binom{A}{n}} \delta(x_s)} & : \sum_{s \in \binom{A}{n}} \delta(x_s) > 0\\ \hat{P}_{A(n-1)DE}(y, \mathbf{x}) & : \text{ otherwise} \end{cases}$$

• In AnDE, *n* controls the bias-variance trade-off. Higher *n* leads to lower bias but higher variance.

۲

• Averaged *n*-Dependence Estimators (AnDE) family of Bayesian learning algorithms provide efficient single pass learning with accuracy competitive to state-of-the-art in-core learning.

$$\hat{P}_{AnDE}(y, \mathbf{x}) = \begin{cases} \frac{\sum_{s \in \binom{A}{n}} \delta(x_s) \hat{P}(y, x_s) \prod_{i=1}^{a} \hat{P}(x_i | y, x_s)}{\sum_{s \in \binom{A}{n}} \delta(x_s)} & : \sum_{s \in \binom{A}{n}} \delta(x_s) > 0\\ \hat{P}_{A(n-1)DE}(y, \mathbf{x}) & : \text{ otherwise} \end{cases}$$

- In AnDE, *n* controls the bias-variance trade-off. Higher *n* leads to lower bias but higher variance.
- Unfortunately, large *n* has high time and space complexity especially as the dimensionality of data increases.

• Averaged *n*-Dependence Estimators (AnDE) family of Bayesian learning algorithms provide efficient single pass learning with accuracy competitive to state-of-the-art in-core learning.

$$\hat{P}_{AnDE}(y, \mathbf{x}) = \begin{cases} \frac{\sum_{s \in \binom{A}{n}} \delta(x_s) \hat{P}(y, x_s) \prod_{i=1}^{s} \hat{P}(x_i | y, x_s)}{\sum_{s \in \binom{A}{n}} \delta(x_s)} & : \sum_{s \in \binom{A}{n}} \delta(x_s) > 0\\ \hat{P}_{A(n-1)DE}(y, \mathbf{x}) & : \text{ otherwise} \end{cases}$$

- In AnDE, *n* controls the bias-variance trade-off. Higher *n* leads to lower bias but higher variance.
- Unfortunately, large *n* has high time and space complexity especially as the dimensionality of data increases.
- How to reduce bias?

۲

• If $P(x_1|x_2) = 1.0$ then $P(y|x_1, x_2) = P(y|x_2)$

A B > A B >

3

- If $P(x_1|x_2) = 1.0$ then $P(y|x_1, x_2) = P(y|x_2)$
- For example, P(oedema|female, pregnant) = P(oedema|pregnant)

4 B 6 4 B

- If $P(x_1|x_2) = 1.0$ then $P(y|x_1, x_2) = P(y|x_2)$
- For example, P(oedema|female, pregnant) = P(oedema|pregnant)
- Subsumption resolution looks for subsuming attributes at classification time and ignores them.

- If $P(x_1|x_2) = 1.0$ then $P(y|x_1, x_2) = P(y|x_2)$
- For example, P(oedema|female, pregnant) = P(oedema|pregnant)
- Subsumption resolution looks for subsuming attributes at classification time and ignores them.
- Simple correction for extreme form of violation of attribute independence assumption.

- If $P(x_1|x_2) = 1.0$ then $P(y|x_1, x_2) = P(y|x_2)$
- For example, P(oedema|female, pregnant) = P(oedema|pregnant)
- Subsumption resolution looks for subsuming attributes at classification time and ignores them.
- Simple correction for extreme form of violation of attribute independence assumption.
- Very effective in practice reduce bias at small cost in variance.

- If $P(x_1|x_2) = 1.0$ then $P(y|x_1, x_2) = P(y|x_2)$
- For example, P(oedema|female, pregnant) = P(oedema|pregnant)
- Subsumption resolution looks for subsuming attributes at classification time and ignores them.
- Simple correction for extreme form of violation of attribute independence assumption.
- Very effective in practice reduce bias at small cost in variance.
- For AnDE with n ≥ 1, it uses statistics collected already no learning overhead - reduces classification time.

• • = • • = •

- If $P(x_1|x_2) = 1.0$ then $P(y|x_1, x_2) = P(y|x_2)$
- For example, P(oedema|female, pregnant) = P(oedema|pregnant)
- Subsumption resolution looks for subsuming attributes at classification time and ignores them.
- Simple correction for extreme form of violation of attribute independence assumption.
- Very effective in practice reduce bias at small cost in variance.
- For AnDE with n ≥ 1, it uses statistics collected already no learning overhead - reduces classification time.
- $P(x_i \mid x_j) = 1$ iff $\#(x_j) = \#(x_i, x_j) > 100$

伺 ト く ヨ ト く ヨ ト

- If $P(x_1|x_2) = 1.0$ then $P(y|x_1, x_2) = P(y|x_2)$
- For example, P(oedema|female, pregnant) = P(oedema|pregnant)
- Subsumption resolution looks for subsuming attributes at classification time and ignores them.
- Simple correction for extreme form of violation of attribute independence assumption.
- Very effective in practice reduce bias at small cost in variance.
- For AnDE with n ≥ 1, it uses statistics collected already no learning overhead - reduces classification time.
- $P(x_i \mid x_j) = 1$ iff $\#(x_j) = \#(x_i, x_j) > 100$

伺 ト く ヨ ト く ヨ ト

Weighted AnDE (WAnDE)

• It has been shown that weighting sub-models can result in reducing the bias in AODE.

3 N

- It has been shown that weighting sub-models can result in reducing the bias in AODE.
- Different weighting schemes have been investigated. A popular one is WAODE due to its minimal computational overhead.

- It has been shown that weighting sub-models can result in reducing the bias in AODE.
- Different weighting schemes have been investigated. A popular one is WAODE due to its minimal computational overhead.

٩

$$\hat{P}_{\text{WAnDE}}(y, \mathbf{x}) = \begin{cases} \frac{\sum_{s \in \binom{A}{n}} \delta(x_s) w_s \hat{P}(y, x_s) \prod_{i=1}^{a} \hat{P}(x_i | y, x_s)}{\sum_{s \in \binom{A}{n}} \delta(x_s)} \\ \hat{P}_{\text{WA}(n-1)\text{DE}}(y, \mathbf{x}) \end{cases}$$

- It has been shown that weighting sub-models can result in reducing the bias in AODE.
- Different weighting schemes have been investigated. A popular one is WAODE due to its minimal computational overhead.

$$\hat{P}_{\text{WAnDE}}(y, \mathbf{x}) = \begin{cases} \frac{\sum_{s \in \binom{\mathcal{A}}{n}} \delta(x_s) w_s \hat{P}(y, x_s) \prod_{i=1}^{s} \hat{P}(x_i | y, x_s)}{\sum_{s \in \binom{\mathcal{A}}{n}} \delta(x_s)} \\ \hat{P}_{\text{WA(n-1)DE}}(y, \mathbf{x}) \end{cases}$$

•
$$w_s = MI(s, Y) = \sum_{y \in Y} \sum_{x_s \in X_s} P(x_s, y) \log \frac{P(x_s, y)}{P(x_s)P(y)}$$

Complexity at training time: O(t (^m_{n+1})), and classification time: O(km (^m_n)), t is the no. of training examples.

4 B K 4 B K

- Complexity at training time: O(t (^m_{n+1})), and classification time: O(km (^m_n)), t is the no. of training examples.
- Subsumption resolution requires no additional training time. At classification time it requires $\binom{m}{2}$ comparisons to identify any subsumed attribute values.

• • = • • = •

- Complexity at training time: $O(t\binom{m}{n+1})$, and classification time: $O(km\binom{m}{n})$, t is the no. of training examples.
- Subsumption resolution requires no additional training time. At classification time it requires ^(m)₂ comparisons to identify any subsumed attribute values.
- WAnDE requires the calculation of weights at the training time, O(k^m_n). The classification time impact is negligible.

ヨッ イヨッ イヨッ

• Each algorithm is tested on each data set using 20 rounds of 2-fold cross validation. Probability estimates were smoothed using m-estimation with m = 1.

- Each algorithm is tested on each data set using 20 rounds of 2-fold cross validation. Probability estimates were smoothed using m-estimation with m = 1.
- Win-draw-loss results are presented. Standard binomial sign test, assuming that wins and losses are equiprobable, is applied to these records. Difference is significant if the outcome of a two-tailed binomial sign test is less than 0.05.

- Each algorithm is tested on each data set using 20 rounds of 2-fold cross validation. Probability estimates were smoothed using m-estimation with m = 1.
- Win-draw-loss results are presented. Standard binomial sign test, assuming that wins and losses are equiprobable, is applied to these records. Difference is significant if the outcome of a two-tailed binomial sign test is less than 0.05.
- The data sets are divided into four categories. First, consisting of all 71 data sets. Second, large data sets with number of instances > 10,000. Third, medium data sets with number of instances > 1000 and < 10,000. Fourth, small data sets with number of instances < 1000.

• • = • • = •

- Each algorithm is tested on each data set using 20 rounds of 2-fold cross validation. Probability estimates were smoothed using m-estimation with m = 1.
- Win-draw-loss results are presented. Standard binomial sign test, assuming that wins and losses are equiprobable, is applied to these records. Difference is significant if the outcome of a two-tailed binomial sign test is less than 0.05.
- The data sets are divided into four categories. First, consisting of all 71 data sets. Second, large data sets with number of instances > 10,000. Third, medium data sets with number of instances > 1000 and < 10,000. Fourth, small data sets with number of instances < 1000.
- Numeric attributes are discretized using MDL discretization for all compared techniques except Random Forest.

Bias and Variance Analysis

Nayyar A. Zaidi, Geoffrey I. Webb Fast and Effective Single Pass Bayesian Learning

- **→** → **→**

< ∃⇒

э

All Data Sets

	NB	A1DE	A1DE-S	A1DE-W	A1DE-SW	A2DE	A2DE-S	A2DE-W	A2DE-SW	
A1DE	53/4/14									
A1DE-S	51/4/16	27/31/13								
A1DE-W	50/2/19	35/8/28	29/8/34							
A1DE-SW	48/3/20	38/6/27	32/10/29	20/42/9						
A2DE	54/3/14	50/4/17	48/4/19	45/8/18	41/10/20					
A2DE-S	49/3/19	46/3/22	45/4/22	44/5/22	43/5/23	23/34/14				
A2DE-W	48/2/21	46/3/22	45/4/22	47/6/18	46/6/19	36/8/27	35/9/27			
A2DE-SW	47/2/22	45/2/24	42/3/26	45/7/19	44/6/21	37/9/25	36/11/24	21/34/16		
RF10	40/1/30	28/2/41	26/5/40	24/2/45	24/2/45	22/3/46	20/4/47	17/3/51	17/3/51	
Large Data Sets										
	NB	A1DE	A1DE-S	A1DE-W	A1DE-SW	A2DE	A2DE-S	A2DE-W	A2DE-SW	

A1DE	12/0/0								
A1DE-S	12/0/0	7/4/1							
A1DE-W	12/0/0	9/2/1	7/1/4						
A1DE-SW	12/0/0	10/1/1	8/2/2	5/6/1					
A2DE	12/0/0	12/0/0	12/0/0	12/0/0	11/0/1				
A2DE-S	12/0/0	12/0/0	12/0/0	12/0/0	12/0/0	7/5/0			
A2DE-W	12/0/0	12/0/0	12/0/0	12/0/0	12/0/0	9/1/2	5/1/6		
A2DE-SW	12/0/0	12/0/0	12/0/0	12/0/0	12/0/0	9/1/2	8/1/3	6/6/0	
RF10	12/0/0	9/0/3	9/0/3	9/0/3	9/0/3	7/1/4	6/1/5	5/1/6	5/1/6
							· · · · · · ·		

Nayyar A. Zaidi, Geoffrey I. Webb

Fast and Effective Single Pass Bayesian Learning

0-1 Loss (Contd)

Medium Data Sets

	NB	A1DE	A1DE-S	A1DE-W	A1DE-SW	A2DE	A2DE-S	A2DE-W	A2DE-SW
A1DE	18/1/0								
A1DE-S	19/0/0	7/5/7							
A1DE-W	19/0/0	13/1/5	10/3/6						
A1DE-SW	18/1/0	12/1/6	10/4/5	5/8/6					
A2DE	19/0/0	17/0/2	15/1/3	11/1/7	11/1/7				
A2DE-S	19/0/0	16/0/3	14/1/4	12/1/6	12/1/6	6/9/4			
A2DE-W	19/0/0	17/0/2	16/2/1	15/2/2	14/2/3	13/3/3	13/3/3		
A2DE-SW	19/0/0	16/0/3	14/1/4	14/2/3	14/2/3	11/4/4	11/5/3	5/7/7	
RF10	15/0/4	10/0/9	8/3/8	6/1/12	6/1/12	6/1/12	5/2/12	4/1/14	4/1/14
Small Data Sets									
	NB	A1DE	A1DE-S	A1DE-W	A1DE-SW	A2DE	A2DE-S	A2DE-W	A2DE-SW

- A1DE 23/3/14
- A1DE-S 20/4/16 13/22/5
- A1DE-W 19/2/19 13/5/22 12/4/24
- A1DE-SW 18/2/20 16/4/20 14/4/22 10/28/2
- A2DE 23/3/14 21/4/15 21/3/16 22/7/11 19/9/12
- A2DE-S 18/3/19 18/3/19 19/3/18 20/4/16 19/4/17 10/20/10
- A2DE-W 17/2/21 17/3/20 17/2/21 20/4/16 20/4/16 14/4/22 17/5/18
- A2DE-SW 16/2/22 17/2/21 16/2/22 19/5/16 18/4/18 17/4/19 17/5/18 10/21/9
- RF10 13/1/26 9/2/29 9/2/29 9/1/30 9/1/30 9/1/30 9/1/30 8/1/31 8/1/31

Nayyar A. Zaidi, Geoffrey I. Webb Fast and Effective Single Pass Bayesian Learning

-

Averaged Learning Time

・ 同 ト ・ ヨ ト ・ ヨ ト

э

• Both SR and weighting are just as effective at reducing A2DE's bias as it is at reducing A1DE's.

∃ → < ∃</p>

- Both SR and weighting are just as effective at reducing A2DE's bias as it is at reducing A1DE's.
- There is strong synergy between the two techniques and that they operate in tandem to reduce the bias of both A1DE and A2DE more effectively than does either in isolation.

- Both SR and weighting are just as effective at reducing A2DE's bias as it is at reducing A1DE's.
- There is strong synergy between the two techniques and that they operate in tandem to reduce the bias of both A1DE and A2DE more effectively than does either in isolation.
- We compared A2DE with MI-weighting and subsumption resolution against the state-of-the-art in-core learning algorithm Random Forest.

- Both SR and weighting are just as effective at reducing A2DE's bias as it is at reducing A1DE's.
- There is strong synergy between the two techniques and that they operate in tandem to reduce the bias of both A1DE and A2DE more effectively than does either in isolation.
- We compared A2DE with MI-weighting and subsumption resolution against the state-of-the-art in-core learning algorithm Random Forest.
- Using only single-pass learning, A2DE with MI-weighting and subsumption resolution achieves accuracy that is very competitive with the state-of-the-art in in-core learning, making it a desirable algorithm for learning from very large data.

伺 ト イ ヨ ト イ ヨ ト

- Both SR and weighting are just as effective at reducing A2DE's bias as it is at reducing A1DE's.
- There is strong synergy between the two techniques and that they operate in tandem to reduce the bias of both A1DE and A2DE more effectively than does either in isolation.
- We compared A2DE with MI-weighting and subsumption resolution against the state-of-the-art in-core learning algorithm Random Forest.
- Using only single-pass learning, A2DE with MI-weighting and subsumption resolution achieves accuracy that is very competitive with the state-of-the-art in in-core learning, making it a desirable algorithm for learning from very large data.
- Code is available as weka package online.

• • • • • • • •