
Preconditioning an Artificial Neural Network
Using Naive Bayes

Nayyar A. Zaidi, François Petitjean, Geoffrey I. Webb

Faculty of Information Technology, Monash University, VIC 3800, Australia.
{nayyar.zaidi,francois.petitjean,geoff.webb}@monash.edu

Abstract. Logistic Regression (LR) is a workhorse of the statistics com-
munity and a state-of-the-art machine learning classifier. It learns a lin-
ear model from inputs to outputs trained by optimizing the Conditional
Log-Likelihood (CLL) of the data. Recently, it has been shown that pre-
conditioning LR using a Naive Bayes (NB) model speeds up LR learning
many-fold. One can, however, train a linear model by optimizing the
mean-square-error (MSE) instead of CLL. This leads to an Artificial
Neural Network (ANN) with no hidden layer. In this work, we study the
effect of NB preconditioning on such an ANN classifier. Optimizing MSE
instead of CLL may lead to a lower bias classifier and hence result in bet-
ter performance on big datasets. We show that this NB preconditioning
can speed-up convergence significantly. We also show that optimizing a
linear model with MSE leads to a lower bias classifier than optimizing
with CLL. We also compare the performance to state-of-the-art classifier
Random Forest.

Key words: Logistic Regression, Preconditioning, Conditional Log-Likelihood,
Mean-square-error, WANBIA-C, Artificial Neural Networks.

1 Introduction

Logistic Regression (LR) is a state-of-the-art machine learning classifier and is
widely used by statisticians [1, 2]. It has been shown recently that LR training
converges more rapidly when each axis is scaled by the log of the naive Bayes
estimates of the conditional probabilities [3, 4]. Such rescaling leads to an alterna-
tive parameterization with both naive Bayes parameters (learned generatively)
and LR parameters (learned discriminatively). The resulting parameterization
of LR is known as WANBIAC

CLL and has been shown to be effective for both
online and batch gradient based optimization for logistic regression1. LR op-
timizes the conditional log-likelihood (CLL) of the data given the model. We
conjecture that optimizing the mean square error (MSE) should lead to more
accurate (low-biased) models, especially for bigger datasets because, it is mainly
the bias that contributes to the error on the bigger datasets [5, 6]. Note, that

1 Note, we add CLL as subscript to WANBIA-C to show explicitly the objective
function that it optimizes.

2 Nayyar A. Zaidi, François Petitjean, Geoffrey I. Webb

a linear model optimizing MSE is an Artificial Neural Network (ANN) with no
hidden layer (the structure constitutes only an input layer with multiple nodes
and an output layer with multiple nodes).

This paper investigates the performance of linear classification models that
optimize MSE relative to those that optimize CLL and whether NB regulariza-
tion is as effective with the MSE objective function as it is with CLL. One can
view WANBIAC

CLL from two perspectives.

1. From the NB perspective, the parameters learned with discriminative train-
ing are only alleviating NB’s independence assumption. It is irrelevant
whether the weights are optimized by the CLL or by the MSE objective
function.

2. From the LR perspective, WANBIAC
CLL introduces NB weights that precon-

dition the search space. For CLL, which is a convex objective function, this
leads to faster convergence. A natural question is: will the same trend hold
for other objective functions which are not convex, such as MSE?

The contributions of this paper are two-fold:

1. We show that NB preconditioning is applicable and equally useful for learn-
ing a linear classification model optimizing the MSE objective function.

2. Optimizing MSE leads to a lower bias classifier than LR optimizing CLL.
This leads to lower 0-1 loss and RMSE on big datasets.

The rest of this paper is organized as follows. We discuss LR and WANBIAC
CLL in

section 2. We will derive NB preconditioning of a linear classification model op-
timizing MSE in section 3. Empirical analysis is given in Section 4. We conclude
in Section 5 with some pointers to future work.

2 WANBIAC
CLL

Let us start by explaining WANBIAC
CLL. Typically, an LR optimizes the following

objective function:

CLL(β) =

N∑
i=1

log PLR(y(i)|x(i)), (1)

where N is the number of data points. Note, we are constraining ourselves to
categorical attributes and multi-class problems only. We write PLR for categorical
features and multiple classes as:

PLR(y |x) =
exp(βy +

∑a
i=1 βy,i,xi

)∑
c∈ΩY

exp
(
βc +

∑a
j=1 βc,j,xj

) ,
= exp

(
βy +

a∑
i=1

βy,i,xi
− log

∑
c∈ΩY

exp
(
βc +

a∑
j=1

βc,j,xj

))
, (2)

Preconditioning an Artificial Neural Network Using Naive Bayes 3

where a is the number of attributes and βy,i,xi denotes the parameter associated
with class y, and attribute i taking value xi. On the other hand, naive Bayes is
defined as:

PNB(y |x) =
P(y)

∏a
i=1 P(xi |y)∑

c∈ΩY
P(c)

∏a
j=1 P(xj |c)

.

One can add weights to NB to alleviate the attribute independence assumption,
resulting in the WANBIAC

CLL formulation, that can be written as:

PW(y |x) =
P(y)wy

∏a
i=1 P(xi |y)wy,i,xi∑

c∈ΩY
P(c)wc

∏a
j=1 P(xj |c)wc,j,xj

= exp
(
wy log P(y) +

a∑
i=1

wy,i,xi
log P(xi |y)−

log
∑
c∈ΩY

exp
(
wc log P(c) +

a∑
j=1

wc,j,xj log P(xj|c)
))
. (3)

When conditional log likelihood (CLL) is maximized for LR and weighted NB
using Equation 2 and 3 respectively, we get an equivalence such that βc ∝
wc log P(c) and βc,i,xi ∝ wc,i,xi log P(xi |c). Thus, WANBIAC

CLL and LR gener-

ate equivalent models. While it might seem less efficient to use WANBIAC
CLL

which has twice the number of parameters of LR, the probability estimates are
learned very efficiently using maximum likelihood estimation, and provide useful
information about the classification task that in practice serve to effectively pre-
condition the search for the parameterization of weights to maximize conditional
log likelihood.

3 Method

In this section, we will derive a variant of WANBIAC
CLL that is optimized to

minimize MSE. But before doing that, we will first derive a variant of LR using
the MSE objective function — an ANN with no hidden layer.

ANN Instead of optimizing the objective function in Equation 1,
one can optimize the following MSE objective function: MSE(β) =
1
N

∑N
i=1

1
C

∑C
c=1(P(y|x(i))−P̂(c|x(i)))2, where y is the true label and C = |ΩY | .

Let us simplify the above equation slightly:

MSE(β) =
1

2

N∑
i=1

C∑
c=1

(
δ(y = c)− P(c|x(i))

)
2, (4)

where δ(.) is an indicator function which is 1 if its input parameter condition
holds and 0 otherwise. Note that unlike the CLL objective function in Equation 1,
the above objective function (Equation 4) is not convex. It is likely that one will

4 Nayyar A. Zaidi, François Petitjean, Geoffrey I. Webb

be stuck in local minimum and, therefore, local minimum avoidance techniques
may be required. We will show in Section 4 that in practice one can obtain good
results with simple gradient descent based (such as quasi-Newton) optimization
algorithms without requiring specific mechanisms to avoid local minima.

In the following, we will drop the superscript (j) for simplicity. Optimizing
Equation 4 requires us to compute its derivative with respect the parameters β.
We have the following:

∂MSE(β)

∂βk,i,xi

= −
N∑
i=1

C∑
c

(δ(y = c)− P(c|x))
∂P(c|x)

∂βk,i,xi

, (5)

where,

∂P(c|x)

∂βk,i,xi

=
∂

∂βk,i,xi

(
exp(βc +

∑
βc,i,xi

)∑
c′ exp(βc′ +

∑
βc′,i,xi)

)
,

=
∂

∂βk,i,xi

exp

(
(βc +

∑
βc,i,xi

)− log(
∑
c′

exp(βc′ +
∑

βc′,i,xi
))

)
,

= P(c |x)

(
δ(c = k)δ(xi)−

(
βk +

∑
βk,i,xi∑

c′ exp(βc′ +
∑
βc′,i,xi

)

)
δ(xi)

)
,

= P(c |x)
(
δ(c = k)δ(xi)− P(k |x)δ(xi)

)
,

= P(c |x)(δ(c = k)− P(k |x))δ(xi),

(6)

where, δ(xi) is an indicator function if value of xi is same to the value with
which we are differentiating. Plugging in Equation 5, we get:

∂MSE(w)

∂βk,i,xi

=−
N∑
i=1

C∑
c

(δ(y = c)−P(c|x))P(c|x)(δ(c = k)− P(k|x))δ(xi).

(7)

Note, the gradients with respect to the class parameters can be calculated simi-
larly. The gradients in Equation 7 is the same as optimized by ANN with back-
propagation training algorithm. In the following, we will formulate WANBIAC

CLL

with MSE objective function.

WANBIAC
MSE Given Equation 3, assuming a Dirichlet prior, a MAP estimate

of P(y) is πy which equals:
#y+m/C
N+m , where #y is the number of instances in

the dataset with class y and N is the total number of instances, and m is the
smoothing parameter. We will set m = 1 in this work. Similarly, a MAP estimate

of P(xi |y) is θxi|c which equals:
#xi,y

+m/|xi|
#y+m , where #xi,y is the number of

instances in the dataset with class y and attribute values xi. Now, we have:

P(y |x) =
π
wy
y
∏a
i=1 θ

wy,i,xi

xi|y∑
c∈ΩY

πwc
c
∏a
j=1 θ

wc,j,xj

xi|y

.

Preconditioning an Artificial Neural Network Using Naive Bayes 5

Using the above equation, let us optimize the MSE objective function by taking
gradients with respect to the parameters w. We write:

∂MSE(w)

∂wk,i,xi

= −
N∑
i=1

C∑
c

(δ(y = c)− P(c|x))
∂P(c|x)

∂wk,i,xi

, (8)

where wk,i,xi
denotes parameter associated with attribute i taking value xi and

class attribute k. Let us expand ∂P(c|x)
∂wk,i,xi

in the following way:

∂P(c|x)

∂wk,i,xi

=
∂

∂wk,i,xi

exp
(
wc log πc +

a∑
i=1

wc,i,xi log θxi |c −

log
∑
c′∈ΩY

exp
(
wc′ log πc′ +

a∑
j=1

wc′,j,xj log θxj|c′
))
,

= P(c|x)
(
δ(c = k)δ(xi) log θxi |k −

exp(wk log πk +
∑a
j=1wk,j,xj

log θxj |k)

log
∑
c′∈ΩY

exp
(
wc′ log πc′ +

∑a
j=1wc′,j,xj log θxj|c′

)δ(xi) log θxi |k

)
,

= P(c|x)(δ(c = k)− P(k|x))δ(xi) log θxi |k,

and plug it in Equation 8:

∂MSE(w)

∂wk,i,xi

= −
N∑
i=1

C∑
c

(
δ(y = c)− P̂(c|x)

)
P(y|x)(δ(y = k)− P(k|x)) log θxi |kδ(xi).

(9)

The gradients for weights associated with class y (wy) can be computed similarly.
Comparing Equation 7 and 9, the following holds:

∂MSE(w)

∂wk,i,xi

=
∂MSE(β)

∂βk,i,xi

log θxi |k, and
∂MSE(w)

∂wk
=
∂MSE(β)

∂βk
log πk.

This shows that when optimizing MSE, just like CLL, naive Bayes precondition-
ing has the effect of scaling the gradients of a linear classification model by the
log of the NB probability estimates. Such scaling leads to faster convergence, as
is shown in the next section.

4 Experimental Results

In this section, we compare the performance of a linear model optimized with
the MSE objective function with and without NB preconditioning in terms of
0-1 loss, RMSE, bias, variance, training time and the number of iterations it
takes each algorithm to converge on 73 natural domains from the UCI reposi-
tory (Table 1). We will also compare performance with LR and WANBIAC

CLL

optimized with the CLL objective function.

6 Nayyar A. Zaidi, François Petitjean, Geoffrey I. Webb

Domain Case Att Class Domain Case Att Class
Poker-hand 1175067 11 10 Annealing 898 39 6
Covertype 581012 55 7 Vehicle 846 19 4
Census-Income(KDD) 299285 40 2 PimaIndiansDiabetes 768 9 2
Localization 164860 7 3 BreastCancer(Wisconsin) 699 10 2
Connect-4Opening 67557 43 3 CreditScreening 690 16 2
Statlog(Shuttle) 58000 10 7 BalanceScale 625 5 3
Adult 48842 15 2 Syncon 600 61 6
LetterRecognition 20000 17 26 Chess 551 40 2
MAGICGammaTelescope 19020 11 2 Cylinder 540 40 2
Nursery 12960 9 5 Musk1 476 167 2
Sign 12546 9 3 HouseVotes84 435 17 2
PenDigits 10992 17 10 HorseColic 368 22 2
Thyroid 9169 30 20 Dermatology 366 35 6
Pioneer 9150 37 57 Ionosphere 351 35 2
Mushrooms 8124 23 2 LiverDisorders(Bupa) 345 7 2
Musk2 6598 167 2 PrimaryTumor 339 18 22
Satellite 6435 37 6 Haberman’sSurvival 306 4 2
OpticalDigits 5620 49 10 HeartDisease(Cleveland) 303 14 2
PageBlocksClassification 5473 11 5 Hungarian 294 14 2
Wall-following 5456 25 4 Audiology 226 70 24
Nettalk(Phoneme) 5438 8 52 New-Thyroid 215 6 3
Waveform-5000 5000 41 3 GlassIdentification 214 10 3
Spambase 4601 58 2 SonarClassification 208 61 2
Abalone 4177 9 3 AutoImports 205 26 7
Hypothyroid(Garavan) 3772 30 4 WineRecognition 178 14 3
Sick-euthyroid 3772 30 2 Hepatitis 155 20 2
King-rook-vs-king-pawn 3196 37 2 TeachingAssistantEvaluation 151 6 3
Splice-junctionGeneSequences 3190 62 3 IrisClassification 150 5 3
Segment 2310 20 7 Lymphography 148 19 4
CarEvaluation 1728 8 4 Echocardiogram 131 7 2
Volcanoes 1520 4 4 PromoterGeneSequences 106 58 2
Yeast 1484 9 10 Zoo 101 17 7
ContraceptiveMethodChoice 1473 10 3 PostoperativePatient 90 9 3
German 1000 21 2 LaborNegotiations 57 17 2
LED 1000 8 10 LungCancer 32 57 3
Vowel 990 14 11 Contact-lenses 24 5 3
Tic-Tac-ToeEndgame 958 10 2

Table 1. Details of Datasets (UCI Domains)

In this work, we use the bias and variance definitions of [7] together with
the repeated cross-validation bias-variance estimation method proposed by [8].
The reason for performing bias/variance estimation is that it provides insights
into how the learning algorithm will perform with varying amount of data. We
expect low variance algorithms to have relatively low error for small data and
low bias algorithms to have relatively low error for large data [9].

The experiments are conducted on the datasets described in Table 1. There
are a total of 73 datasets, 40 datasets with less than 1000 instances, 21 datasets
with instances between 1000 and 10000, and 12 datasets with more than 10000
instances. The datasets with more than 10000 are shown in bold font in Table 1.

Each algorithm is tested on each dataset using 5 rounds of 2-fold cross vali-
dation. We report Win-Draw-Loss (W-D-L) results when comparing the 0-1 loss,
RMSE, bias and variance of two models. A two-tail binomial sign test is used
to determine the significance of the results. Results are considered significant if
p ≤ 0.05.

Preconditioning an Artificial Neural Network Using Naive Bayes 7

The datasets in Table 1 are divided into two categories. The first category
constitutes all the datasets. The category is denoted by All in the results. The
second category constitutes only datasets with more than 10000 instances. This
is denoted by Big in the results When comparing average results across All and
Big datasets, we normalize the results with respect to one of the comparative
technique and present the geometric mean.

Numeric attributes are discretized by using the Minimum Description Length
(MDL) discretization method [10]. A missing value is treated as a separate at-
tribute value and taken into account exactly like other values.

We employed L-BFGS quasi-Newton methods [11] for solving the optimiza-
tion2.

We used a Random Forest that is an ensemble of 100 decision trees [13].

We will denote a linear model optimized with the MSE objective function
with or without NB preconditioning as WANBIAC

MSE and ANN respectively.

4.1 MSE vs. CLL

A win-draw-loss (W-D-L) comparison of bias, variance, 0-1 loss and RMSE of
WANBIAC

CLL and LR versus WANBIAC
MSE and ANN is given Table 2. It can

be seen that WANBIAC
MSE achieves significantly lower bias than WANBIAC

CLL,
whereas ANN has lower bias than LR but this difference does not achieve sta-
tistical significance. Both WANBIAC

MSE and ANN exhibit higher variance, but
this is statistically significant in the case of ANN vs. LR only. This suggests that
both WANBIAC

MSE and ANN are well suited for bigger datasets for which lower
bias is preferable [14]. This is also evident from Table 2 where WANBIAC

MSE

has significantly lower 0-1 loss than WANBIAC
CLL on Big datasets. Similarly,

the ANN results (with 9 wins, 1 draw and 2 losses), though not significantly
different, are better than LR.

WANBIAC
MSE vs. WANBIAC

CLL ANN vs. LR

W-D-L p W-D-L p

All Datasets

Bias 45/7/20 0.002 38/5/28 0.276

Variance 19/6/47 <0.001 21/4/47 0.002

0-1 Loss 34/6/32 0.902 31/5/36 0.625

RMSE 29/4/39 0.275 31/3/38 0.470

Big Datasets

0-1 Loss 10/1/1 0.011 9/1/2 0.065

RMSE 8/0/4 0.387 8/0/4 0.387

Table 2. Win-Draw-Loss: WANBIAC
MSE vs. WANBIAC

CLL and ANN vs. LR. p
is two-tail binomial sign test. Results are significant if p ≤ 0.05.

2 The original L-BFGS implementation of [12] from http://users.eecs.

northwestern.edu/~nocedal/lbfgsb.html is used.

8 Nayyar A. Zaidi, François Petitjean, Geoffrey I. Webb

In Figure 1, we show the geometric average of the results. It can be seen that
WANBIAC

MSE and ANN are lower-bias and higher-variance models as compared
to WANBIAC

CLL and LR. The superior performance of WANBIAC
MSE, however,

All Big
0

0.2

0.4

0.6

0.8

1

1.2
0-1 Loss

WANBIA
C

CLL

WANBIA
C

MSE

(a)

All Big
0

0.2

0.4

0.6

0.8

1

1.2
RMSE

WANBIA
C

CLL

WANBIA
C

MSE

(b)

All Big
0

0.2

0.4

0.6

0.8

1

1.2
Bias

WANBIA
C

CLL

WANBIA
C

MSE

(c)

All Big
0

0.2

0.4

0.6

0.8

1

1.2
Variance

WANBIA
C

CLL

WANBIA
C

MSE

(d)

All Big
0

0.2

0.4

0.6

0.8

1

1.2
Training Time

WANBIA
C

CLL

WANBIA
C

MSE

(e)

All Big
0

0.2

0.4

0.6

0.8

1

1.2
Classification Time

WANBIA
C

CLL

WANBIA
C

MSE

(f)

Fig. 1. An (geometric) average comparison of the 0-1 loss, RMSE, Bias and Variance
of WANBIAC

MSE and WANBIA-C on All and Big datasets.

comes at an extra cost. A comparison of the training and classification time
of WANBIAC

CLL and WANBIAC
MSE is shown in Figure 1(e) and Figure 1(f) re-

spectively. It can be seen that optimizing the MSE objective function, though
low biased, is a magnitude of order slower than optimizing the CLL objective
function.

4.2 WANBIAC
MSE vs. ANN

Now that we have established that optimizing the MSE for LR leads to a lower
bias model than that by CLL, in this section, we will compare WANBIAC

MSE and
ANN to see the effects of scaling and whether NB preconditioning is as effective
with the MSE as with the CLL objective function. We compare the scatter of 0-1
loss and RMSE values in Figures 2 and 3 respectively. It can be seen that both
parameterizations lead to a similar scatter of 0-1 loss and RMSE. This suggests
the equivalence of two models (same model, different parameterizations).

The training time and number of iterations to convergence for ANN and
WANBIAC

MSE is shown in Figures 4 and 5 respectively. It can be seen that
WANBIAC

MSE greatly improves the training time of ANN. Note, the plots are
on the log scale. It can be seen that WANBIAC

MSE on some datasets is an or-
der of magnitude faster than ANN. Similarly, the number of iterations it takes
WANBIAC

MSE to converge are an order of magnitude less than for ANN.

Preconditioning an Artificial Neural Network Using Naive Bayes 9

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

ANN

0

0.2

0.4

0.6

0.8

1

W
A

N
B

I
A

C M
S

E

0-1 Loss

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

ANN

0

0.2

0.4

0.6

0.8

1

W
A

N
B

I
A

C M
S

E

0-1 Loss

Fig. 2. Comparative scatter of 0-1 Loss of ANN and WANBIAC
MSE on All (Left) and

Big (Right) datasets.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

ANN

0

0.2

0.4

0.6

0.8

1

W
A

N
B

I
A

C M
S

E

RMSE

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

ANN

0

0.2

0.4

0.6

0.8

1
W

A
N

B
I
A

C M
S

E
RMSE

Fig. 3. Comparative scatter of RMSE of ANN and WANBIAC
MSE on All (Left) and

Big (Right) datasets.

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

ANN

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

W
A

N
B

I
A

C M
S

E

Training Time

10
0

10
1

10
2

10
3

10
4

10
5

ANN

10
0

10
1

10
2

10
3

10
4

10
5

W
A

N
B

I
A

C M
S

E

Training Time

Fig. 4. Comparative scatter of training time of ANN and WANBIAC
MSE on All (Left)

and Big (Right) datasets.

10 Nayyar A. Zaidi, François Petitjean, Geoffrey I. Webb

10
0

10
1

10
2

10
3

10
4

10
5

ANN

10
0

10
1

10
2

10
3

10
4

10
5

W
A

N
B

I
A

C M
S

E

Iterations

10
1

10
2

10
3

10
4

10
5

ANN

10
1

10
2

10
3

10
4

10
5

W
A

N
B

I
A

C M
S

E

Iterations

Fig. 5. Comparative scatter of number of iterations to convergence of ANN and
WANBIAC

MSE on All (Left) and Big (Right) datasets.

Finally, let us have a look at the convergence plots of ANN and WANBIAC
MSE

in Figure 6 on some sample datasets. The variation in mean-square-error is
plotted with varying number of iterations until convergence. It can be seen that
WANBIAC

MSE has a much better convergence profile than ANN. It is not only
converging in far fewer iterations but asymptoting far more quickly than ANN.
This is extremely desirable when learning from few passes through the data.

4.3 WANBIAC
MSE vs. Random Forest

In Table 3, we compare the performance of WANBIAC
MSE with Random Forest. It

can be seen that though not significantly better, bias of WANBIAC
MSE is smaller

than that of Random Forest. The variance of RF is slightly lower than that
of WANBIAC

MSE. On bigger datasets, RF has lower error than WANBIAC
MSE

slightly more often than WANBIAC
MSE (winning on seven and losing on five

datasets). Note that none of the results in the table are significant. A compari-
son of the training and classification time of WANBIAC

MSE and RF is shown in
Figure 7. It can be seen that WANBIAC

MSE is an order of magnitude slower than
RF on Big datasets at training time but at classification time, it is many order
of magnitude faster than Random Forest.

5 Conclusion

In this paper, we showed that a linear classifier optimizing MSE has lower bias
than vanilla LR optimizing CLL. We also showed that NB preconditioning, which
is very effective for LR, is equally effective for a linear model optimized with
MSE. We showed that NB preconditioning can speed-up convergence by many
orders of magnitude resulting in convergence in far fewer iterations. The low-bias
classification of a linear classifier optimized with MSE is competitive to state-
of-the-art Random Forest classifier with an added advantage of faster training
time. There are many interesting directions following from this work:

Preconditioning an Artificial Neural Network Using Naive Bayes 11

10
0

10
1

10
2

10
3

No. of Iterations

2400

2600

2800

3000

3200

3400

3600

3800

M
e

a
n

 S
q

u
a

r
e

 E
r
r
o

r

Sign

ANN

WANBIA
C

MSE

10
0

10
1

10
2

10
3

No. of Iterations

0

2000

4000

6000

8000

10000

12000

14000

M
e

a
n

 S
q

u
a

r
e

 E
r
r
o

r

Shuttle

ANN

WANBIA
C

MSE

10
0

10
1

10
2

10
3

No. of Iterations

2.8

2.9

3

3.1

3.2

3.3

3.4

M
e

a
n

 S
q

u
a

r
e

 E
r
r
o

r

×10
5 Poker-hand

ANN

WANBIA
C

MSE

10
0

10
1

10
2

10
3

No. of Iterations

0

500

1000

1500

2000

2500

3000

3500

M
e

a
n

 S
q

u
a

r
e

 E
r
r
o

r

Pendigits

ANN

WANBIA
C

MSE

10
0

10
1

10
2

10
3

No. of Iterations

500

1000

1500

2000

2500

3000

3500

4000

M
e

a
n

 S
q

u
a

r
e

 E
r
r
o

r

Nursery

ANN

WANBIA
C

MSE

10
0

10
1

10
2

10
3

No. of Iterations

2000

2500

3000

3500

4000

4500

M
e

a
n

 S
q

u
a

r
e

 E
r
r
o

r

Magic

ANN

WANBIA
C

MSE

10
0

10
1

10
2

10
3

10
4

No. of Iterations

4.5

5

5.5

6

6.5

7

M
e

a
n

 S
q

u
a

r
e

 E
r
r
o

r

×10
4 Localization

ANN

WANBIA
C

MSE

10
0

10
1

10
2

10
3

10
4

No. of Iterations

0

1000

2000

3000

4000

5000

6000

7000

M
e

a
n

 S
q

u
a

r
e

 E
r
r
o

r

Letter-recog

ANN

WANBIA
C

MSE

10
0

10
1

10
2

10
3

10
4

No. of Iterations

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

M
e

a
n

 S
q

u
a

r
e

 E
r
r
o

r

×10
5 Covtype

ANN

WANBIA
C

MSE

10
0

10
1

10
2

10
3

No. of Iterations

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

M
e

a
n

 S
q

u
a

r
e

 E
r
r
o

r

×10
4 Connect-4

ANN

WANBIA
C

MSE

10
0

10
1

10
2

10
3

10
4

No. of Iterations

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

M
e

a
n

 S
q

u
a

r
e

 E
r
r
o

r

×10
4 Census-income

ANN

WANBIA
C

MSE

10
0

10
1

10
2

10
3

No. of Iterations

4000

5000

6000

7000

8000

9000

10000

11000

M
e

a
n

 S
q

u
a

r
e

 E
r
r
o

r

Adult

ANN

WANBIA
C

MSE

Fig. 6. Comparison of rate of convergence of WANBIAC
MSE and ANN on several

datasets. The X-axis (No. of iterations) is on log scale.

– This paper shows that NB preconditioning is effective for an ANN with no
hidden layers. It will be interesting to formulate similar preconditioning for
ANNs with hidden layers. WANBIAC

CLL provides scaling for the nodes in the
input layer, however, for nodes in the hidden layer, what weights one should
use is an open question that needs investigation.

– It will be interesting to run WANBIAC
MSE with MSE with stochastic gradient

descent (SGD) on very large datasets and compare the performance with
WANBIAC

CLL. We anticipate that WANBIAC
MSE will lead to lower error in

fewer iterations.

Acknowledgements

This research has been supported by the Australian Research Council under
grants DP120100553 and DP140100087, and Asian Office of Aerospace Re-
search and Development, Air Force Office of Scientific Research under contracts
FA2386-15-1-4007 and FA2386-15-1-4017.

12 Nayyar A. Zaidi, François Petitjean, Geoffrey I. Webb

All Big
0

0.5

1

1.5

2
Training Time

WANBIA
C

MSE

RF100

All Big
0

5

10

15

20

25

30
Classification Time

WANBIA
C

MSE

RF100

Fig. 7. Comparison of the (geometric)
average of the training and classification
time of RF and WANBIAC

MSE on All and
Big datasets.

WANBIAC
MSE vs. RF100

W-D-L p

All Datasets

Bias 41/5/26 0.086

Variance 32/2/38 0.550

0-1 Loss 30/2/40 0.282

RMSE 27/0/45 0.044

Big Datasets

0-1 Loss 5/0/7 0.774

RMSE 5/0/7 0.774

Table 3. Win-Draw-Loss:
WANBIAC

MSE vs. Random Forest.
p is two-tail binomial sign test. Results
are significant if p ≤ 0.05.

References

1. R. Duda, P. Hart, and D. Stork, Pattern Classification. John Wiley and Sons,
2006.

2. T. P. Minka, “A comparison of numerical optimizers for logistic regression,” 2003.
3. N. A. Zaidi, J. Cerquides, M. J. Carman, and G. I. Webb, “Alleviating naive Bayes

attribute independence assumption by attribute weighting,” Journal of Machine
Learning Research, vol. 14, pp. 1947–1988, 2013.

4. N. A. Zaidi, M. J. Carman, J. Cerquides, and G. I. Webb, “Naive-bayes inspired ef-
fective pre-conditioners for speeding-up logistic regression,” in IEEE International
Conference on Data Mining, 2014.

5. A. Martinez, S. Chen, G. I. Webb, and N. A. Zaidi, “Scalable learning of Bayesian
network classifiers,” Journal of Machine Learning Research, 2015.

6. N. A. Zaidi, G. I. Webb, M. J. Carman, and F. Petitjean, “Deep broad learning -
Big models for Big data,” arXiv:1509.01346, 2015.

7. R. Kohavi and D. Wolpert, “Bias plus variance decomposition for zero-one loss
functions,” in ICML, 1996, pp. 275–283.

8. G. I. Webb, “Multiboosting: A technique for combining boosting and wagging,”
Machine Learning, vol. 40, no. 2, pp. 159–196, 2000.

9. D. Brain and G. I. Webb, “The need for low bias algorithms in classification learn-
ing from small data sets,” in PKDD, 2002, pp. 62–73.

10. U. M. Fayyad and K. B. Irani, “On the handling of continuous-valued attributes
in decision tree generation,” Machine Learning, vol. 8, no. 1, pp. 87–102, 1992.

11. C. Zhu, R. H. Byrd, and J. Nocedal, “LBFGSB, fortran routines for large scale
bound constrained optimization,” ACM Transactions on Mathematical Software,
vol. 23, no. 4, pp. 550–560, 1997.

12. R. Byrd, P. Lu, and J. Nocedal, “A limited memory algorithm for bound con-
strained optimization,” SIAM Journal on Scientific and Statistical Computing,
vol. 16, no. 5, pp. 1190–1208, 1995.

13. L. Breiman, “Random forests,” Machine Learning, vol. 45, pp. 5–32, 2001.
14. D. Brain and G. Webb, “On the effect of data set size on bias and variance in clas-

sification learning,” in Proceedings of the Fourth Australian Knowledge Acquisition
Workshop. University of New South Wales, 1999, pp. 117–128.

