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Abstract—We propose an alternative parameterization of
Logistic Regression (LR) for the categorical data, multi-class
setting. LR optimizes the conditional log-likelihood over the
training data and is based on an iterative optimization proce-
dure to tune this objective function. The optimization proce-
dure employed may be sensitive to scale and hence an effective
pre-conditioning method is recommended. Many problems in
machine learning involve arbitrary scales or categorical data
(where simple standardization of features is not applicable).
The problem can be alleviated by using optimization routines
that are invariant to scale such as (second-order) Newton
methods. However, computing and inverting the Hessian is a
costly procedure and not feasible for big data. Thus one must
often rely on first-order methods such as gradient descent (GD),
stochastic gradient descent (SGD) or approximate second-
order such as quasi-Newton (QN) routines, which are not
invariant to scale. This paper proposes a simple yet effective
pre-conditioner for speeding-up LR based on naive Bayes
conditional probability estimates. The idea is to scale each
attribute by the log of the conditional probability of that
attribute given the class. This formulation substantially speeds-
up LR’s convergence. It also provides a weighted naive Bayes
formulation which yields an effective framework for hybrid
generative-discriminative classification.

Keywords-classification, logistic regression, pre-conditioning,
weighted naive Bayes, stochastic gradient descent, discrimina-
tive/generative learning.

I. INTRODUCTION

Logistic Regression (LR) is a simple and yet highly effec-
tive linear classifier based on a linear log-odds assumption.
It’s use is almost ubiquitous throughout machine learning
and statistics. In this paper, we develop an alternative
parameterisation of LR for the multi-class categorical data
setting, in which we rescale the parameters of the LR model
by the log probabilities of the attribute given the class,
i.e. by the logarithm of their corresponding Naive Bayes’
parameters. This reparameterisation can also be interpreted
as a form of over-parameterized weighted Naive Bayes
with discriminatively trained weights. The reparameterisa-
tion provides a form of diagonal pre-conditioning for the
parameter estimation procedure and leads to substantial
speed-ups in the convergence of the Logistic Regression
model. The accelerated convergence is observed for both
Quasi-Newton (QN) and Stochastic Gradient Descent (SGD)

based parameter estimation, two widely used techniques in
the batch and online setting respectively.

The main contributions of this paper are summarized as
follows:
• We show that the new parameterization, called

WANBIA-C, has an important advantage relative to
LR on categorical data. It has, as expected, near-
identical generalization performance, but much faster
convergence as compared to LR. Faster convergence is
obviously desirable when learning from large quantities
of data.

• We show better convergence for both batch Quasi
Newton (QN) and online Stochastic Gradient Descent
(SGD) based optimization. The latter is often used for
learning with a single pass through the training data. In
this case, the new parameterization effectively allows
for different step sizes in different directions and thus
provides for faster SGD convergence without needing
to adaptively set the coordinate-wise step size.

• We believe the reason for the speed-up is that the infor-
mation from the generatively learned parameters serves
as an effective pre-conditioner for the discriminative
parameter estimation process. We compare with other
pre-conditioning methods and find the new parameter-
ization to outperform them.

• Being a reparameterization of LR, it produces well-
calibrated probability estimates and, therefore, gen-
erally results in more accurate classifiers than, for
example Naive Bayes (NB), weighted Naive Bayes, and
related methods, especially for large datasets.

• We demonstrate that adding a regularization term to the
WANBIA-C objective function provides a framework to
smoothly interpolates between generatively (NB) and
discriminatively (LR) trained parameters.

II. REPARAMETERIZING LOGISTIC REGRESSION

LR optimizes the Conditional Log Likelihood (CLL)
objective function over all labeled training instances:

CLL =
∑
〈x,y〉∈D

log P̂(y|x),
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where

P̂(y|x) =
exp(βy0 +

∑
i βi,yxi)∑

y′ exp(βy′0 +
∑
i βi,y′xi)

,

log P̂(y|x) = βy0 +
∑
i

βi,yxi −

log(
∑
y′

exp(βy′0 +
∑
i

βi,y′xi)).

If x is a vector of categorical feature values – the LR
model must implicitly “binarize” each attribute i, effectively
introducing one parameter βy,i,xi

per attribute value xi, per
class y. Let us assume an extra attribute which has a value of
one for each data point. Therefore, for data with categorical
attributes, the last equation can be written as:

log P̂(y|x) =
∑
i

βy,i,xi − log(
∑
y′

exp(
∑
i

βy′,i,xi)). (1)

Based on Equation 1, LR gradient is defined as:

∂CLL
∂βk,i,j

=
∑
〈x,y〉∈D

(
1y=k − P̂(k|x)

)
1xi=j , (2)

where 1a=b is an indicator function.
Iterative optimization algorithms for LR are based on the

update equation: βt+1 = βt + αtpt, where αt is a positive
scalar characterizing the step size and pt takes the following
form: pt = −B−1t ∇ft, where ∇ft is the gradient vector
with entries ∂CLL

∂βk,i,j
and Bt is a symmetric and non-singular

matrix and takes the form of an identity matrix I in case
of gradient descent and a Hessian matrix in case of Newton
method.

Let us reparameterize β in Equation 1 by introducing
parameter w’s as:

βy,i,xi = wy,i,xi log θxi|i,y. (3)

where θxi|i,y is the MAP estimates of P̂(xi|y) 1. Now
Equation 1 can be written as:

log P̂(y|x) =
∑
i

wy,i,xi
log θxi|i,y −

log(
∑
y′

exp(
∑
i

wy′,i,xi log θxi|i,y)).(4)

The gradient w.r.t w can be computed with chain rule as:

∂CLL
∂wk,i,j

=
∂CLL
∂βk,i,j

∂βk,i,j
∂wk,i,j

=
∑
〈x,y〉∈D

(
1y=k − P̂(k|x)

)
1xi=j log θxi|i,y.(5)

1Assuming symmetric Dirichlet priors

θ̂xi|i,y =
Nxi,y + m

|Xi|

(Ny −Ni,?) +m
,

where Nxiy is the count of data points with attribute value xi and class
label y, Ny is the count just for y, Ni,? is the number of missing values
of attribute i and |Xi| is the cardinality of the attribute.

Note that this reparameterization will have the effect of
scaling each element of the gradient vector by the log of
the conditional probability of that attribute given the class.
An analysis of WANBIA-C’s Hessian will confirm that like
LR, it too leads to a convex optimization problem. Now,
Equation 4 can be decomposed as:

log P̂(y|x) = wy log πy +
∑
i

wy,i,xi
log θxi|i,y −

log(
∑
y′

exp(wy′ log πy′ +
∑
i

wy′,i,xi log θxi|i,y′)).

where πy is the MAP estimates of P̂(y). This leads to
following estimate of posterior probability P̂(y|x) as:

P̂(y|x;π,Θ,w) ∝ πwy
y

∏
i

θ
wy,i,xi

xi|i,y , (6)

where Θ is a matrix constituting θxi|i,y and π is a vector
constituting πy .

It can be seen that our reparameterization results in a
weighted naive Bayes classifier. Weighting in naive Bayes
has been investigated in some detail and leads to several
options. Let us modify Equation 6 as P̂(y|x;π,Θ,w) ∝
π
wy
y
∏
i θ
w(y,i,xi)
xi|i,y . Now, one can place the same weight

on all attributes: w(xi, i, y) = w [1], learn a different
weight for each attribute: w(xi, i, y) = wi [2], or learn
a weight for each attribute value: w(xi, i, y) = wi,xi

[3].
It has been argued that these weighting schemes improve
the calibration of the naive Bayes probability estimates and
provide a mechanism to control the bias-variance trade-
off of the NB classifier. NB is a high bias, low variance
classifier and the introduction of weight parameters results
in reducing its bias at the expense of increasing variance.
It can be seen that our parameterization of LR results in
a novel NB weighting scheme that introduces a weight
per-attribute-value-per-class-value. We argue that this results
in an even lower-bias variant of NB classifier which is
desirable for big data. Inspired from [2], we name this
parameterization WANBIA-C for Weighting to Alleviate the
Naive Bayes Independence Assumption on a per Class basis.
A subtle distinction between WANBIA-C reparameterization
of LR and previous weighted NB formulations is that the
parameters are unconstrained – whereas most weighted NB
methods enforce a constraint 0 < w < 1.

An alternative interpretation of Equation 6 is a two stage
classification. The first stage involves learning generative-
parameters (π, Θ) and the second stage is the learning of
discriminative parameters (w).

III. RELATED WORK

Pre-conditioning is a preprocessing step used in many
optimization methods, which aims to accelerate convergence
to the optimum by reducing the condition number of the
problem. It involves a linear transformation of the variables
that can correct for variables that have wildly different scales



or functions that vary differently in different directions. A
number of pre-conditioners have been proposed for numeric
data but few are applicable to categorical data. For exam-
ple, the scale-based pre-conditioner requires specification of
scale of each variable. Hessian-based pre-conditioners, on
the other hand, require calculating the Hessian matrix or
specifying the diagonal elements of the Hessian matrix for
the optimization routine. Because we are considering only
categorical datasets, we concentrate on (diagonal) Hessian-
based pre-conditioners in this study.

There is a significant body of work that investigates
combining generative and discriminative models. Generally,
a function given by convex combination of the two mod-
els is maximized. For example: α log P̂Disc(y|x) + (1 −
α) log P̂Gen(y,x). However, this equation does not maxi-
mizes any well-defined model. WANBIA-C, on the hand,
maximizes CLL over the data and hence achieves similar
goals of combining the two models in a very elegant
manner. We will show that regularization in WANBIA-C
gives a meta-parameter λ that can be used to control the
generative-discriminative component of the classifier. On
one extreme, one obtains naive Bayes and on the other hand
un-regularized LR.

There has been a significant amount of research into
weighting attributes for naive Bayes [3], [4]. Most of these
works were primarily motivated from the point of view of
increasing the influence of those attributes that are highly
correlated with the class.

IV. EXPERIMENTS - BATCH OPTIMIZATION

In this section, we compare the performance of two
parameterizations of LR in terms of training time. For the
sake of completeness, we also show a comparison between
the two parameterizations (expecting to see near identical
performance) in terms of 0-1 loss and root mean square
error (RMSE) i.e., 1

2

∑
x∈D

∑
y(P(y|x)−P̂(y|x))2, bias and

variance on 73 natural domains from the UCI repository
(Table I). Quantitative attributes are discretized by using
Minimum Description Length (MDL) discretization. Each
algorithm is tested on each dataset using 20 rounds of 2-
fold cross validation. Optimization settings are exactly the
same when comparing the two parameterization.

A. Quasi-Newton Method

For L-BFGS quasi-Newton methods [5], the matrix B is
an approximation to the Hessian that is updated at every
iteration by means of a low-rank formula 2 3. QN are
extremely popular for unconstrained optimization and are
widely used for optimizing LR. A comparative study of

2The algorithm terminates when relative improvement in the objective
function, given by (ft−ft+1)

max{|ft|,|ft+1|,1}
, drops below 10−32, or the number

of iterations exceeds 10000.
3The original L-BFGS implementation of [6] from http://users.eecs.

northwestern.edu/∼nocedal/lbfgsb.html is used.

WANBIA-C vs. LR WANBIA-C vs. NB

W-D-L p W-D-L p

Bias 29/24/20 0.252 62/3/8 <0.001
Variance 28/23/22 0.479 17/3/53 <0.001

All Datasets (73)

0-1 Loss 32/18/23 0.280 45/4/24 0.015
RMSE 29/19/25 0.683 41/3/29 0.188

Top Size Datasets (12)

0-1 Loss 2/9/1 1.000 12/0/0 <0.001
RMSE 2/7/3 1.000 12/0/0 <0.001

Table II
WIN-DRAW-LOSS: WANBIA-C VS LR AND NB. p IS TWO-TAIL
BINOMIAL SIGN TEST. RESULTS ARE SIGNIFICANT IF p ≤ 0.05.

various optimization routines for LR are done in [7], where
quasi-Newton performs better than most alternative routines.

WANBIA-C is compared with LR and NB in terms of
W-D-L on 73 datasets in Table II. The results are shown
separately for 12 biggest datasets. Comparing with NB, it
can be seen that WANBIA-C significantly improves NB’s
Bias and 0-1 loss. It also improves RMSE, though non-
significantly. As expected, variance is significantly worst
than NB. On bigger datasets, WANBIA-C wins on all 12
in terms of 0-1 Loss and RMSE. Comparing with LR,
WANBIA-C has similar bias-variance profile. The 0-1 loss
and RMSE results are not significantly different even on
larger datasets.

The scatter plots of WANBIA-C and LR showing RMSE,
training time and number of iterations taken by each al-
gorithm to converge is shown in Figure 1. These results
are after convergence of each of the two parameterizations.
One can see that the RMSE profile of the two algorithms
is the same but WANBIA-C is greatly advantaged due to
faster training time resulting from fewer iterations. The
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Figure 1. Comparison of RMSE (Left), training time (Middle) and
number of iterations (Right) of WANBIA-C and LR on 73 datasets
using QN. Training time and number of iterations are on log-scale.

convergence analysis on sample datasets is shown in Fig-
ure 2 where variation in conditional log likelihood is plotted
against QN iterations. One can see that WANBIA-C has
steeper ascent as compared to LR.

Until now, parameters of LR (β) are initialized to zero.
A common approach is to set β to a small random set of
values. Yet, another approach is to begin with the MAP



Domain Case Att Class Domain Case Att Class Domain Case Att Class Domain Case Att Class Domain Case Att Class

Activity 3850500 45 19 PenDigits 10992 17 10 Splice-junctionGeneSequences 3190 62 3 Syncon 600 61 6 SonarClassification 208 61 2
USCensus1990 2458300 67 4 Thyroid 9169 30 20 Segment 2310 20 7 Chess 551 40 2 AutoImports 205 26 7
Poker-hand 1175067 11 10 Pioneer 9150 37 57 CarEvaluation 1728 8 4 Cylinder 540 40 2 WineRecognition 178 14 3
MITFaceSetC 839300 361 2 Mushrooms 8124 23 2 Volcanoes 1520 4 4 Musk1 476 167 2 Hepatitis 155 20 2
Covertype 581012 55 7 Musk2 6598 167 2 Yeast 1484 9 10 HouseVotes84 435 17 2 TeachingAssistantEvaluation 151 6 3
MSDYearPrediction 515300 90 90 Satellite 6435 37 6 ContraceptiveMethodChoice 1473 10 3 HorseColic 368 22 2 IrisClassification 150 5 3
MITFaceSetB 489400 361 2 OpticalDigits 5620 49 10 German 1000 21 2 Dermatology 366 35 6 Lymphography 148 19 4
Census-Income(KDD) 299285 40 2 PageBlocksClassification 5473 11 5 LED 1000 8 10 Ionosphere 351 35 2 Echocardiogram 131 7 2
Localization 164860 7 3 Wall-following 5456 25 4 Vowel 990 14 11 LiverDisorders(Bupa) 345 7 2 PromoterGeneSequences 106 58 2
Connect-4Opening 67557 43 3 Nettalk(Phoneme) 5438 8 52 Tic-Tac-ToeEndgame 958 10 2 PrimaryTumor 339 18 22 Zoo 101 17 7
Statlog(Shuttle) 58000 10 7 Waveform-5000 5000 41 3 Annealing 898 39 6 Haberman’sSurvival 306 4 2 PostoperativePatient 90 9 3
Adult 48842 15 2 Spambase 4601 58 2 Vehicle 846 19 4 HeartDisease(Cleveland) 303 14 2 LaborNegotiations 57 17 2
LetterRecognition 20000 17 26 Abalone 4177 9 3 PimaIndiansDiabetes 768 9 2 Hungarian 294 14 2 LungCancer 32 57 3
MAGICGammaTelescope 19020 11 2 Hypothyroid(Garavan) 3772 30 4 BreastCancer(Wisconsin) 699 10 2 Audiology 226 70 24 Contact-lenses 24 5 3
Nursery 12960 9 5 Sick-euthyroid 3772 30 2 CreditScreening 690 16 2 New-Thyroid 215 6 3
Sign 12546 9 3 King-rook-vs-king-pawn 3196 37 2 BalanceScale 625 5 3 GlassIdentification 214 10 3

Table I
DATA SETS
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Figure 2. Objective function’s convergence comparison of WANBIA-C and LR on Localization, Census-income, Covtypemod,
Pendigits, Sign datasets using QN optimization. Number of iterations are on log-scale.

(or MLE) probability estimates computed through generative
process. WANBIA-C is compared with LR where parameters
are initialized to be naive Bayes’ probability estimates in
Figure 3. One can see that even though starting LR with
NB estimates results in some improvements, WANBIA-C
still converges in far fewer iterations.
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Figure 3. Comparison of RMSE (Left) and number of iterations
(Right) of WANBIA-C and LR on 73 datasets using quasi-Newton
optimization. LR parameters are initialized to NB MAP estimates.
Number of iterations are on log-scale.

B. Pre-conditioners for Optimization

The goal of experiments in this section is to compare
WANBIA-C with existing pre-conditioners that are used
with L-BFGS. We use the ALGLIB library implementation
of L-BFGS [8], which allows for diagonal scale-based and
diagonal Hessian-based pre-conditioners. Our preliminary
experiments suggested that simple diagonal Hessian-based

pre-conditioning was ineffective, and so an adaptive pre-
conditioning strategy was investigated whereby the diagonal
elements of the Hessian were recomputed on each iteration.
Results on 10 datasets comparing WANBIA-C, LR and di-
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Figure 4. Comparison of RMSE (Left), Training time (Middle)
and Number of iterations (Right) of WANBIA-C with LR and
LR+Diagonal-Pre-conditioned on 10 datasets using quasi-Newton
optimization. Training time and number of iterations are plotted on
log-scale.

agonally pre-conditioned LR (LR+diag-precond) are shown
in Figure 4. One can see that the classification performance
of three algorithms is exactly the same with the exception of
one dataset: wall-following. Training time for both LR
alternatives is worse than WANBIA-C, with the adaptive pre-
conditioning strategy appears taking even longer than vanilla
LR. And while pre-conditioning helped reduce the number
of iterations to convergence for LR on some datasets, they
are still greater than those of WANBIA-C.



V. EXPERIMENTS - ONLINE OPTIMIZATION

Stochastic Gradient Descent (SGD) methods update the
parameters after analyzing a data point. That is, the gra-
dient vector g is calculated only on a single data point
which is then used (scaled by the step-size) to update
the parameters. This is in contrast to batch optimization
where the parameters are updated after calculating g over
the whole dataset. SGD learners are highly sort after due
to the emergence of big data. We use a learning rate
of η = η0

1+λt , where λ is the regularization parameter
set to 10−2 and the constant η0 is determined through
cross-validation, by searching the best value from the set:
{10−5, 10−4, 10−3, 10−2, 10−1, 10−0, 101, 102}.

The performance of the two parameterizations is com-
pared by plotting the learning curves in terms of RMSE
with time step t. Following is the procedure for generating
the learning curves. Randomize the order of instances in
a dataset. Pick the first data point and use it to learn a
model. Next, pick the second data point and classify it
using the learned model. Compute the RMSE and record the
value. Next, update the model using the second data point.
The same procedure is applied to subsequent data points
and continues until the end of records. In our experiments,
we ran this procedure twice with different randomization
of datasets. To plot the curves, we took the average of
the values across two runs and plotted the results by a
moving average filter of size 10000. A comparison of RMSE
learning curves across various datasets is shown in Figure 5.
It can be seen that WANBIA-C has better learning curves,
i.e, starts from a lower value and asymptotes to a smaller
value than LR. Note that in these experiments, WANBIA-C
is advantaged as it avails two passes through the data. In the
first pass, it computes the probabilities and in the second
pass, it learns the weights – whereas, LR relies on single
pass through the data. However, it is extraordinary to see
how prior information in the form of naive Bayes estimates
of probabilities can result in drastic improvement in the
classification performance of a single-pass learner. Single
pass WANBIA-C has been left as a future work.

VI. INTERPOLATION FRAMEWORK

The objective function for L2 regularized LR takes the
form:

∑
〈x,y〉∈D log P̂(y|x) +C‖β‖2. For WANBIA-C, one

can introduce an identical regularization term as follows:∑
〈x,y〉∈D log P̂(y|x)+C‖w‖2. The new term will penalize

large (and heterogeneous) parameter values, such that larger
C values will cause the classifier to progressively ignore the
data and assign more uniform class probabilities. Alterna-
tively one could penalize deviations from the NB conditional
independence assumption by centering the regularization
term at one rather than zero:

∑
〈x,y〉∈D log P̂(y|x)+C‖w−

1‖2. Doing so allows the regularization parameter C to be
used to interpolate between the generative NB model and the
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Figure 6. Performance comparison for the two versions of reg-
ularized WANBIA-C versus regularized LR in terms of RMSE.
(Left) WANBIA-C regularized towards zero. (Right) WANBIA-C
regularized towards one.
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Figure 7. Variation in RMSE, bias and variance of LR+L2,
WANBIA-C+L2(0) and WANBIA-C+L2(1) with regularization pa-
rameter C. Horizontal lines represent the RMSE, bias and variance
of NB, unregularized LR and unregularized WANBIA-C on sample
dataset (Satellite).

discriminative model by controlling the amount of deviation
from the conditional independence assumption.

We first compare regularized LR with regularized
WANBIA-C in Figure 6. Results were computed by set-
ting the regularization parameter C = 10x for x ∈
{−6,−4,−2, 0, 2, 4, 6}, and then selecting the best per-
forming value for C in terms of RMSE. We see that
WANBIA-C+L2(0), with parameters regularized toward
zero, has a near identical performance profile to that of
regularized LR. The alternative model WANBIA-C+L2(1),
where the parameters are drawn towards one, has more
varied performance with respect to regularized LR.

In order to better understand the effects regularization
has on classifier performance it is instructive to graph
estimates of bias and variance as a function of the level
of regularization. Figure 7 plots RMSE as well as bias
and variance against the regularization parameter C for the
Satellite dataset. The plots also show un-regularized
NB, LR and WANBIA-C values (as horizontal lines) in-
dicating that LR and WANBIA-C have low bias but high
variance with respect to NB on this dataset. As mentioned
previously, the WANBIA-C+L2(1) classifier allows us to
interpolate between WANBIA-C estimates (for small values
of C) and NB estimates (for large values). This mechanism
for blending the two algorithms allows us to directly trade-
off the bias and variance for the classifier. The best value
for C in this case (102) results in much better RMSE
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Figure 5. RMSE comparison of LR and WANBIA-C with SGD on Localization, Census-income, MITFaceSetB,
MSDYearPrediction, Covtype, MITFaceSetC, USCensus1990, and Activity datasets.
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Figure 8. Variation in RMSE of LR+L2, WANBIA-C+L2(0) and
WANBIA-C+L2(1) with regularization parameter C on represen-
tative datasets (Pendigits, Dermatology and Optdigits.
Horizontal lines represent the RMSE of NB, unregularized LR and
unregularized WANBIA-C.

performance than either of the constituent classifiers (NB
and WANBIA-C) as shown in the left-most sub-figure in
Figure 7. In Figure 8 we plot RMSE performance versus the
amount of regularization on sample representative datasets.
We see that in some cases regularization results in significant
performance improvements over the un-regularized tech-
niques, while in other cases the performance improvements
are negligible at best.

VII. CONCLUSION AND FUTURE WORK

In this work, we proposed an effective alternative param-
eterization of logistic regression – WANBIA-C. Parameters
in LR are scaled by NB probability estimates in pursuit
of better convergence. Our reparameterization resulted in a
weighted naive Bayes model. We showed that WANBIA-C
converges much faster than LR when using quasi-Newton
and most importantly stochastic gradient descent optimiza-
tion. We also showed that regularizing the parameters of
WANBIA-C provides an elegant way to mix generatively
and discriminatively learned parameters. This also leads to a
framework for controlling the bias-variance of the classifier.
We showed that the information provided by the initial MAP
estimates in WANBIA-C substantially benefits the gradient-
based optimization methods employed for discriminative

training of weights. In future, we seek to develop a deeper
theoretical understanding of the reasons why the initial MAP
estimates so substantially improve the discriminative search.
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