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Abstract 
 
This paper describes a method for incorporating 
canonical discriminant attributes in classification 
machine learning.  Though decision trees and rules 
have semantic appeal when building expert 
systems, the merits of discriminant analysis are well 
documented.  For data sets on which discriminant 
analysis obtains significantly better predictive 
accuracy than symbolic machine learning, the 
incorporation of canonical discriminant attributes 
can benefit machine learning.  The process starts 
by applying canonical discriminant analysis to the 
training set.  The canonical discriminant attributes 
are included as additional attributes.  The expanded 
data set is then subjected to machine learning.  
This enables linear combinations of numeric 
attributes to be incorporated in the classifiers that 
are learnt.  Evaluation on the data sets on which 
discriminant analysis performs better than most 
machine learning systems, such as the Iris flowers 
and Waveform data sets, shows that incorporating 
the power of discriminant analysis in machine 
classification learning can significantly improve the 
predictive accuracy and reduce the complexity of 
classifiers induced by machine learning systems. 

 
1. Introduction 
 
Attribute-based or selective inductive classification 
learning algorithms aim to develop procedures capable of 
correctly classifying instances of disjoint classes. The 
condition parts of the classifiers are based on the values 
of attributes provided in the examples.  These algorithms 
have not in general supported the derivation of conditions 
based on relationships between attributes.  "It is obvious 
that if the class description is outside the description 
space that is defined in terms of available attributes or 
features, then it can only be learnt by extending that 
space.  Indeed, it is possible that the relevant attributes or 
best features that could be used in the class description 
may not be explicit or included in the examples" [Elio and 
Watanabe, 1991].  The issue of constructing new 
attributes or features is closely related to constructive 

induction [e.g. Rendell and Seshu, 1990; Michalski, 1983a, 
Bloedorn and Michalski, 1991].  This paper describes 
methods of constructing new attributes by incorporating 
discriminant analysis.  
     Discriminant analysis is another popular classification 
method [e.g. Klecka, 1980].  There are two major types of 
discriminant analysis.  Parametric methods assume normal 
distribution of the attributes while the nonparametric 
methods have no such assumption.  Though discriminant 
analysis is a powerful classification method, unlike 
symbolic machine learning, the classifiers it develops do 
not have the semantic appeal of decision trees and rules.  
The latter offers modularized clearly explained formats for 
describing a decision procedure and are compatible with a 
human's reasoning procedures and expert system 
knowledge bases.  Unlike parametric discriminant analysis, 
machine learning systems do not depend on the 
assumption that the attributes are normally distributed and 
uncorrelated. Previous research has shown that both 
symbolic machine learning and statistical techniques 
produce superior classifiers to those produced by the 
other on differing data sets [Weiss and Kapouleas, 1989; 
Holte, 1993; Breiman et al, 1984]. 
     This paper describes techniques for incorporating 
parametric discriminant analysis in symbolic machine 
learning.  Previous machine learning systems which 
attempt to incorporate parametric discriminant analysis 
include CART [Breiman et al., 1984] and LMDT (Linear 
machine decision tree) [Utgoff and Brodley, 1991].  In 
these systems, linear combinations of attributes are 
searched and evaluated before each node of a decision 
tree is created.  In CART, which uses piecewise linear 
discriminants, the computation cost increases 
tremendously as the number of attributes and nodes 
increases.  In LMDT, a complicated encoding and weight 
training system is implemented at each node.  Another 
approach is used by SWAP1 [Weiss and Indurkhya, 1991] 
where discriminant functions are transformed to binary 
attributes.  One binary attribute per class is added to the 
attribute space.  Each binary attribute represents the 
classification result of a discriminant function.  The system 
reports rules such as:  
     If  ( LD1 &  (x > 109))  then class=1;  
where x is a continuous attribute and LD1 represents the 
condition that the instance is classified by a set of linear 
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discriminant functions as class 1. The use of such  
attributes greatly reduces the ease with which the rule is 
comprehended.  In the above approaches, the discriminant 
functions are based on the equation: 
      fi(x) + ln(P(Ci)) > fj(x) + ln(P(Cj))   ∀ i≠j 
For each class Ci, fi(x), a linear function of the set of 
attributes, x, is derived.  An unknown case is classified by 
applying the functions and choosing the class whose 
linear score is the largest.  Another discriminant analysis 
technique is canonical discriminant analysis which is 
based on a different type of function.  This paper reports 
methods of deriving and incorporating canonical 
discriminant attributes in classification learning.  
 
2. Incorporating canonical discriminant   
   analysis 
 
Canonical discriminant analysis is a dimension-reduction 
technique related to principle component analysis and 
canonical correlation. [e.g. Klecka, 1980].  It derives 
combinations of attributes to maximise the difference of 
the centroid of different classes.  This research 
investigates incorporating canonical discriminant analysis 
in inductive classification learning.  A canonical 
discriminant function is a linear combination of the 
discriminating attributes.  It has the following mathematical 
form: 
     fkm = uo + u1X1km + u2X2km + .... + upXpkm          
where fkm=the value (score) on the canonical discriminant 
function for case m in the class k; Xikm= the value on 
discriminant attribute Xi for case m in class k; 
ui=coefficients which produce the desired characteristics 
in the function. 
     The maximum number of unique functions that can be 
derived is equal to the number of classes minus one or the 
number of attributes, whichever is fewer.  The coefficients 
(the u's) for the each function are derived so as to 
maximise the distance between the class centroids.  A 
class centroid is a imaginary point which has coordinates 
that are the class's mean on each of the attributes.  In 
discriminant analysis, classification is a separate activity.  
The canonical discriminant functions can be used to 
predict the class to which an unseen case most likely 
belongs.  Several classification procedures exist, but they 
all use the notion of comparing the case's position to each 
of the class centroids in order to locate the closest 
centroid.  Since canonical functions aim to maximise the 
distance between class centroids, they can be utilised to 
transform the instance space (space containing training 
instances for learning) so as to maximise the linear 
separability of cases.  As symbolic machine learning 
systems seek to develop linear part itions of the instance 
space, in this research, we incorporate the canonical 
function(s) as additional attribute(s) in the attribute space 
before submitting the expanded data set to inductive 
classification learning.  Two classification learning 

systems are employed, C4.5 [Quinlan, 1993] and Einstein 
[Webb, 1992a].  C4.5, is decision tree based while Einstein, 
based on the algorithm DLG [Webb, 1992b], a variant of 
Aq [Michalski, 1983a], induces decision rules.  To 
illustrate, suppose we have the following data: 
X Y Z Class 
2 9 11 P 
4 8 12 P 
7 3 15 P 
5 12 20 N 
15 7 12 N 
11 9 10 N 
2 8 17 Q 
3 10 15 Q 
7 6 20 Q 
With C4.5 [Quinlan, 1993], the decision tree induced is: 
X > 7 : N (2.0) 
X <= 7 : 
|  Z <= 15 : P (4.0/1.0) 
|   Z > 15 : Q (3.0/1.0) 
With Einstein [Webb, 1992a], the rules induced are: 
If (X <= 7  &  Y <= 9  & Z <= 15) then  class=P [3] 
If (X >= 5.00  &  Y >= 7.00) then  class=N [3] 
If (6<=Y<=10  &  Z >= 15) then class=Q [3] 
     To incorporate canonical discriminant analysis, we can 
perform the following.  By applying canonical  discriminant 
analysis (available from most statistical packages such as 
SAS, [1990]), canonical functions are derived.  With 
three classes, two canonical discriminant functions are 
derived.  The raw coefficients of the first canonical 
function for attributes X, Y and Z are 0.711, 0.903 and 0.226, 
respectively.  Since the relative values of canonical 
attributes are the focus of classification, we can ignore the 
constant term in the canonical function.  Thus, the value 
of the first canonical attribute (CAN1) for the first case is 
thus equal to: 2*0.711 + 9*0.903 + 11*0.226 = 12.04.  
Similarly, we can derive other canonical attribute values.  
The expanded data set is as follows: 
X Y Z CAN1 CAN2 class 
2 9 11 12.04 3.28 P 
4 8 12 12.78 3.45 P 
7 3 15 11.08 3.95 P 
5 12 20 18.91 5.74 N 
15 7 12 19.70 3.13 N 
11 9 10 18.21 2.79 N 
2 8 17 12.49 4.83 Q 
3 10 15 14.56 4.37 Q 
7 6 20 14.92 5.42 Q 
    Submitting the expanded data set to a classification 
learning algorithm, the following concise trees or rules are 
derived: 
With C4.5 [Quinlan, 1993], the decision tree induced is: 
CAN1 > 14.92 : N (3.0) 
CAN1 <= 14.92 : 
|   CAN2 <= 3.95 : P (3.0) 
|   CAN2 > 3.95 : Q (3.0) 
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With Einstein [Webb, 1992a], the rules are: 
If (CAN1 <= 12.78 &  CAN2 <= 3.95) then class=P [3] 
If (CAN1 >= 18.21) then  class=N [3] 
If (CAN1 <= 14.92 & CAN2 >= 4.37) then class=Q [3] 
     From the theoretical perspective, incorporating 
canonical discriminant attributes is a form of empirical 
constructive induction.  According to the framework for 
constructive induction developed by Rendell & Seshu, 
[1990], creating new attributes from existing attributes is 
termed feature construction.  Feature construction can 
supplement the deficiency of selective induction in 
learning hard  concepts.  A concept is hard if its attributes 
have accurate class membership information but the 
concept cannot be learned by selective inductive methods.  
Hard concepts are characterised by dispersed and oddly 
shaped peaks in the instance space.  Feature construction 
is the process of bringing together uniform regions that 
are dispersed in the instance space.  Examination of the 
scatter plots on the above example supports the  
theoretical perspective.   
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   Figure 1:  Scatter plot of X-Y 
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   Figure 2:  Scatter plot of X-Z 
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   Figure 3:  Scatter plot of canonical attributes 
      (dotted lines showing simple decision surfaces) 
 
In the scatter plots of (X-Y) and (X-Z), i.e. Fig.1 and 2, we 
can observe that the class members are dispersed.  No 
simple decision surfaces can be found.  In the scatter plot 

of the canonical attributes (Fig.3), the class members are 
grouped together and simple decision surfaces are easily 
found. 
 
3. CAF (Canonical attribute finding) 
 
We call the process of deriving and incorporating 
canonical attributes as CAF.  The objective of the 
procedure is to find combinations of existing attributes 
that can contribute to the discrimination performance of 
existing attributes.  When they are derived, each of the 
combinations is transformed into a single attribute and 
added to the attribute space.   The application of CAF is 
indicated when the predictive accuracy of discriminant 
analysis for the domain is significantly higher than that 
obtained by the machine learning system under focus.  
The algorithm can be expressed as follows: 
Algorithm: CAF 
Input: a training set of examples 
Output: an expanded training set of examples (ET) 
Begin  
      raw canonical coefficients ←canonical discriminant  
                                          analysis on attributes; 
      canonical attribute values ←(attribute values, 
                                           raw canonical coefficients); 
      ET ←Extend the descriptions of examples to include  
              canonical attribute(s) as additional attribute(s);  
End. 
 
4. CCAF (Clustering before Canonical  
    attribute finding) 
 
Existing methods [e.g. Breiman et al., 1984; Utgoff & 
Brodley, 1991] for finding good attribute combinations 
involve search at each node when constructing the 
decision tree.  Such methods involve high computation 
costs.  If CAF is applied to subsets of data or at each node 
in building decision trees, the search cost at each node 
can be significantly reduced, but the computation cost to 
apply CAF for every node remains.  CCAF is a method for 
tackling part of this problem.  This method starts by 
applying clustering to re-classify the training set before 
deriving canonical attributes.  It is useful when the 
possible partitions of the data are different from that given 
in the training examples.  Two main categories of 
clustering methods exist: conceptual clustering [e.g. 
Michalski, 1983b] and cluster analysis [e.g. Everitt, 1980].  
Since the objective is to derive canonical attributes, cluster 
analysis is used in this research.  The common cluster 
analysis  methods are based on agglomerative hierarchical 
clustering procedures.  Each observation begins in a 
cluster by itself.  Two clusters can be merged to form a 
new cluster that replaces the two old clusters.  Various 
clustering methods differ in how the dis tance between two 
clusters is computed.  In this study, we use Ward's 
minimum-variance method.  
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     By re-classifying a training set of examples into clusters 
before deriving canonical attributes, we can capture the 
partition information of clusters.  CCAF is indicated when 
the predictive accuracy obtained by discriminant analysis 
for the domain is significantly higher than that of the 
machine learning system under focus.  In this research, we 
set the maximum number of clusters to two times the 
number of different classes.  The algorithm can be restated 
as follows: 
Algorithm:  CCAF 
Input: a training set of examples 
Output: an expanded training set of examples (ET) 
Begin 
       clusters ←cluster analysis on attributes; 
       raw canonical coefficients ←canonical discriminant  
            analysis on attributes with clusters as classes;   
       canonical attribute values ←(attribute values,  
                                          raw canonical coefficients) 
       ET ←Extend the descriptions of examples to include  
              canonical attribute(s) as additional attribute(s);  
End. 
 
5. Evaluation 
 
Previous studies comparing discriminant analysis with 
classification machine learning have found that each 
approach outperforms the other on different sets of data. 
[Weiss & Kapouleas, 1989; Holte, 1993; Breiman et al, 
1984].  Since we are interested in improving the 
performance of machine learning by incorporating 
canonical discriminant analysis,  we select the ones on 
which discriminant analysis performs better.  In this 
research, we use the Iris plants and Waveform data sets 
[Murphy & Aha, 1994].  The statistical package SAS 
[1990] is used for canonical discriminant and cluster 
analysis.  The machine learning systems used are C4.5 
[Quinlan, 1993] and Einstein [Webb, 1992a].   
 
5.1 Study 1 (Iris flower data) 
 
In this study, we use the widely examined Iris flower data 
set with 150 examples.  Each example consists of four 
numeric-valued attributes: sepal length, sepal width, petal 
length and petal width in centimetres.  There are 3 classes 
of species: Iris setosa, Iris versicolor and Iris virginica.  To 
enable comparison with other learning algorithms, this 
study uses the "leave-one-out" cross-validation method 
[e.g. Breiman et al., 1984].  The Chi-square test for 
correlated samples is used to compare predictive accuracy 
under different methods and the pair-wise t-test to 
compare complexity of induced classifiers.  In the 
following tabulation of results, complexity refers to the 
number of rules or nodes in the classifier; CAF+C4.5, for 
example, represents the method of treating the data set 
with CAF before submitting to C4.5: 
Method  Accuracy(%) Complexity 
(1) C4.5 

     (pruned)    94.67     10.79 
     (rules)    95.3     4.02 
 
(2) CAF+C4.5 
     (pruned)    98      5 
     compare (1): (χ2=5; p≤.05)       (t=81.32; p≤.0005) 
 
     (rules)    96.67     3.96  
     compare (1): (χ2=1)  (t=2.77;  p≤.025) 
 
(3) CCAF+C4.5 
     (pruned)    94      10.8 
     compare (1): (χ2=0.33)        (t=-0.38) 
 
     (rules)    94.67     4.05 
     compare (1): (χ2=0.33) (t=-1.91) 
 
(4) Einstein    96     7.03 
 
(5) CAF+Einstein    96      5.98 
     compare (4): (χ2=0)  (t=36.21; p≤.0005) 
 
(6) CCAF+Einstein  95.3      6.05 
     compare (4): (χ2=0.33) (t=39.04; p≤.0005) 
 
     In the above tabulation, we observe that by deriving 
and adding canonical attributes in a data set with CAF, the 
performance of induced decision trees or rules can be 
significantly improved and the complexity significantly 
reduced.  The results of applying CCAF are insignificant.  
The best result of incorporating canonical discriminant 
analysis can be compared to other methods that use leave-
one-out  evaluation design: 
             Accuracy(%) 
(5) CAF+C4.5(pruned) [this paper]  98   
(6) Linear discriminant [this paper] 98 
(7) Quadratic discriminant [this paper] 97.33 
(8) Nearest neighbor, k=1 [this paper] 96.67 
(9) CART [Weiss & Kapouleas, 1989] 95.3  
(10) EACH [Salzberg, 1991]  95.3 
(11) Neural net [Weiss & Kapouleas, 1989] 96.7  
(12) PVM [Weiss & Kapouleas, 1989] 96.0 
(13) SWAP1 [this paper]   97.33 
(14) SWAP1+discriminant1 [this paper] 96.67 
     In the above comparison to other methods, the 
predictive accuracy of  C4.5 (pruned tree) is improved to 
equal that of linear discriminant analysis.  The effect of 
CAF can be further examined by plotting the performance 
vs. training size graph.  In this study, 20% of the data set 
is used as the evaluation set and the training set consists, 
in turns, of 40%, 60% or 80% of the data set.  The 
performance of the induced trees or rules of each training 
set is evaluated over 10 runs.  The comparative predictive 
accuracy and complexity is illustrated in the following 
graphs: 

                                                                 
1 Represents SWAP1 with discriminant analysis option 
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  Figure 4:  CAF+C4.5(pruned) vs. C4.5(pruned) Accuracy-   
             Training_size-plot on Iris data 
 
In Figure 4, the predictive accuracy of CAF+C4.5(pruned) 
is significantly better than that of C4.5(pruned) at all three 
training set sizes (t40%=6.71, p≤.0005; t60%=6.05, p≤.0005; 
t80%=6.71, p≤.0005).  In the above presentation, "t40%", 
for example, represents the t-value when the training set 
size equals 40% of the data set. 
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   Figure 5:  CAF+C4.5(pruned) vs. C4.5(pruned) Complexity-   
             Training_size-plot on Iris data 
 
Figure 5 shows that the complexity of pruned trees 
induced by CAF+C4.5 is significantly less than that of 
C4.5 alone, at all three training sizes (t40%=3.25, p≤.005; 
t60%=4.81, p≤.0005; t80%=4.58, p≤.005).  The pattern of the 
performance vs. training size graphs of C4.5 rules is similar 
to that of C4.5 pruned trees. 
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   Figure 6:  CAF+Einstein vs. Einstein Accuracy-   
             Training_size-plot on Iris data 
 
In Figure 6, we can observe that the predictive accuracy of 
CAF+Einstein is significantly better than that of Einstein 
alone at all three training set sizes (t40%=2.33, p≤.025; 
t60%=2.59, p≤.025; t80%=4.71, p≤.005).   

Training set size (% of data set)

C
om

pl
ex

ity
 (#

 o
f r

ul
es

)

0

1

2

3

4

5

6

7

40 60 80

Einstein

CAF+Einstein

 
Figure 7:  CAF+Einstein vs. Einstein Complexity- 
             Training_size-plot on Iris data 
 
Figure 7 shows that the complexity of rules learned by 
CAF+Einstein is significantly less that learned by Einstein 
alone at all three training sizes (t40%=7.75, p≤.0005; 
t60%=2.45, p≤.025; t80%=7.75, p≤.0005).  
     In this study, we observe that by deriving and 
incorporating canonical discriminant attributes in machine 
learning, we can significantly improve the predictive 
accuracy and reduce the complexity of classifiers induced 
from various size of the training data.  The predictive 
accuracy of CAF+C4.5(pruned) can be compared to that of 
other methods as follows: 
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Figure 8: CAF+C4.5(pruned) vs. Linear discriminant vs.  
             SWAP1+discriminant Accuracy-Training_size-plot  
             on Iris data 
 
Figure 8 shows that the predictive accuracy of 
CAF+C4.5(pruned) is better than that of Linear 
discriminant analysis (t40%=2.46, p≤.025; t60%=2.08; 
t80%=0.13) and SWAP1+discriminant (t40%=3.78, p≤.005; 
t60%=3.5, p≤.005; t80%=5.02, p≤.0005).  The performance of 
CAF+C4.5(pruned) at training set size of 40% is 
particularly notable. 
 
5.2  Study 2 
 
5.2.1  Waveform data set 
 
In this study, we use the waveform data set used by the 
CART system [Breiman et al., 1984].  The data were 
generated with the program published in the UCI data base 
[Murphy & Aha, 1994].  It is a three class problem based 
on the three waveforms h1(t), h2(t) and h3(t) graphed as 
follows: 
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   Figure 9:  The three underlying waveforms 
 
     Each class consists of a random convex combination of 
two of these waveforms sampled at the integers with noise 
added.  The measurement vectors are of 21 dimensions: 
x=(x1,..x21).  To generate each vector x, a uniform random 
number u and 21 random numbers ε1,....ε21 normally 
distributed with mean zero and variance 1 are generated: 
For class 1 vectors, set: xm=uh1(m) + (1-u)h2(m) + εm   
For class 2 vectors, set: xm=uh1(m) + (1-u)h3(m) + εm  
For class 3 vectors, set: xm=uh2(m) + (1-u)h3(m) + εm 
where m=1,... 21 
     In order to compare performance with that of other 
studies, in this research, training sets of 300 examples 
using prior probabilities of (1/3, 1/3, 1/3) and a test data set 
of 5000 records are generated.  The mean performance over 
10 runs are as follows: 
Method  Accuracy(%) Complexity  
(1) C4.5  
    (pruned)    71.08     57.6 
    (rules)    70.44     14.9 
 
(2) CAF+C4.5  
   (pruned)    76.1     43.8 
   compare (1): (t=8.15, p≤.0005)  (t=6.65, p≤.0005) 
 
     (rules)    76.58     10.3 
   compare (1): (t=8.30; p≤.0005)   (t=2.9, p≤.01) 
 
(3)CCAF+C4.5 
    (pruned)    78.47     46.0 
   compare (1): (t=11.05; p≤.0005) (t=5.41, p≤.0005) 
 
     (rules)    78.91     11.6 
  compare (1): (t=10.42; p≤.0005)  (t=2.41, p≤.025) 
 
(4) Einstein    71.53     11.0 
 
(5) CAF+Einstein    73.83     9.8 
   compare (4): (t=6.23, p≤.0005)  (t=4.33, p≤.005) 
 
(6) CCAF+Einstein  73.51    10.1 

   compare (4): (t=4.5, p≤.005) (t=3.0, p≤.01) 
 
     In the above tabulation, we observe that by 
incorporating canonical discriminant attributes in machine 
learning, the predictive performance can be significantly 
improved and the complexity of classifiers significantly 
reduced. The best result of incorporating canonical 
discriminant attributes in this study can be compared to 
other learning systems as follows: 
Method               Accuracy(%) 
(7) Linear discriminant [this paper] 80.72 
(8) Quadratic discriminant [this paper] 78.45 
(9) CCAF+C4.5 (pruned) [this paper]  78.47  
      CCAF+C4.5 (rules) [this paper] 78.91  
(10) CART [Breiman et al., 1984]  72  
(11) Nearest neighbor    78 
       [Breiman et al., 1984] 
(12) CART with 55 attributes added 80 
       [Breiman et al., 1984] 
(13) CART with linear combination 80 
       [Breiman et al., 1984] 
(14) SWAP12 [this paper]    73.06 
(15) SWAP1+discriminant [this paper] 79.0 
     In method (12), the 55 new attributes added were based 
on the averages, Xm1,m2, over the attributes from m1 to 
m2 for odd values of  m1 & m2 , where  

 Xm1,m2 =  1/(m2-m1+1) 
m m

m

=
∑

1

2

Xm,  m2 > m1 

     In method (13), the linear attribute combination 
algorithm used by CART [Breiman et al, 1984] involves 
repetitive search for the best combination of attributes at 
each node to make up the best split when generating the 
classification tree.  The computation cost of this method is 
high and the attribute evaluation function is system 
dependent.  By using CCAF as an independent pre-
machine learning step, the predictive performance of C4.5 
rules is increased from 70.44% to 78.91%, and the classifier 
complexity is reduced from 14.9 rules to 11.6 rules.  
However, the accuracy performance is still less than that 
of linear discriminant analysis (t=2.99, p≤.01) and 
SWAP1+discriminant (t=0.14). 
     In this evaluation, we showed that by incorporating 
canonical discriminant analysis as a pre-symbolic 
classification learning step, the predictive accuracy and 
complexity of classifiers can be significantly improved 
when compared to classification learning alone. 
  
 
5.2.2 Waveform data set with noise 
 
In the evaluation of the CART system, waveform data sets 
containing the original 21 attributes plus 19 noise 
attributes were also used.  In this study, we use a similar 
noisy data set generated by the published program of UCI 

                                                                 
2 The data set, which contains noise, is offset by +4, 
because SWAP1 accepts only positive numbers. 
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database.  Again, a training data set with 300 examples and 
a testing data set with 5000 cases were generated.  
Because of system limitations of Einstein and SWAP1, 
only C4.5 is used in this part. The results, based on 10 
runs can be presented as follows: 
Method  Accuracy(%) Complexity  
(1) C4.5  
   (pruned)    68.63     58.0 
   (rules)     67.80     12.30 
 
(2) CAF+C4.5  
   (pruned)    73.35     38.60 
  compare (1): (t=7.72, p≤.0005)   (t=12.93, p≤.0005) 
 
    (rules)     72.89     8.8 
  compare (1): (t=7.02; p≤.0005)   (t=5.22, p≤.0005) 
 
(3) CCAF+C4.5 
    (pruned)    74.45     46.20 
   compare (1): (t=7.3; p≤.0005)     (t=5.5, p≤.0005) 
 
    (rules)    75.06     12.0 
  compare (1): (t=7.7;  p≤.0005)    (t=0.2) 
 
     In the above tabulation, we also observe that by 
incorporating canonical discriminant attributes in machine 
learning, the predictive accuracy can be significantly 
improved and the complexity of classifiers significantly 
reduced. The best result of incorporating canonical 
discriminant attributes in this study can be compared to 
other learning systems as follows: 
Method            Accuracy(%) 
(4) CCAF+C4.5 (rules) [this paper] 75.06  
(5) Linear discriminant analysis [this paper] 76.26 
(6) Quadratic discriminant [this paper] 70.72 
(7) CART [Breiman et al., 1984]   72 
(8) Nearest neighbor [Breiman et al., 1984]  38 
     By using CCAF as an independent pre-machine 
learning step, the predictive accuracy of C4.5 rules is 
increased from 67.8% to 75.06% but still slightly less than 
that of linear discriminant analysis (t=1.65).  In this study, 
very noisy data sets are used.  Evaluation shows that by 
re-classifying the data with cluster analysis and deriving 
canonical discriminant attributes as additional attributes 
before submitting to classification learning, the predictive 
accuracy can be significantly improved and classifier 
complexity significantly reduced when compared to 
classification learning alone.  
 
5.3  Study 3 
 
Parametric discriminant analysis is quite robust to 
violation of the assumption that the attributes are normally 
distributed.  The purpose of this study is to illustrate the 
incorporation of canonical discriminant analysis on mixed 
attributes and the merit  of CCAF under certain conditions.  
In this study, we use an artificial data set generated with 
the following decision tree in mind: 

             

N

neg pos neg pos

d2d1

ax + by=c ax + by =c

c1 c2 c1c2

 
     In the above decision tree, N is a discrete attribute; x 
and y are continuous attributes; d1 and d2 are different 
discrete values; a, b, c, c1, and c2 are continuous values 
where   a≠b; c1≠c2.  To generate an artificial set, we set 
d1=2, d2=3, a=3, b=2, c1=135 and c2=150. The class 
values are {pos, neg}.  With the above decision tree in 
mind, we generated 400 cases, with 100 for each of the 4 
leaves.  For each case, x is assigned a random value 
between 1 and 40.  With 10-fold cross validation, the 
performance of different methods can be presented as 
follows: 
Method  Accuracy(%) Complexity 
(1) C4.5 
    (pruned)    81.0     92.2 
    (rules)    84.0     37.9 
 
(2) CAF+C4.5  
   (pruned)    74.25     109.2 
  compare (1): (t=-3.62, p≤.005)   (t=-2.58, p≤.025) 
 
    (rules)    75     40.8 
 compare (1): (t=-4.19, p≤.005)   (t=-1.39) 
 
(3) CCAF+C4.5  
     (pruned)     98.75     8.2 
 compare (1): (t=8.63, p≤.0005)   (t=19.82, p≤.0005) 
 
    (rules)    98.75     4.1 
 compare (1): (t=7.17, p≤.0005)   (t=25.54, p≤.0005) 
 
(4) Einstein    90.5     40.1 
 
(5) CAF+Einstein    85.5     42.3 
  compare (4):   (t=-1.96)   (t=-1.99) 
 
(6) CCAF+Einstein  100     4.4 
   compare (4): (t=6.22, p≤.0005)   (t=52.2 p≤.0005) 
 
              Accuracy(%) 
(7) Linear discriminant   43.5 
(8) Quadratic discriminant  100 
(9) Nearest neighbor (k=1)   100 
(10) SWAP1         96.5 
(11) SWAP1+discriminant  55.75 
     As illustrated above, the use of CAF worsens the 
performance of classifiers obtained by the machine 
learning systems, but the use of CCAF leads to significant 
increases in predictive accuracy and decreases in classifier 
complexity. The improved performance is comparable to 
that of quadratic discriminant and nearest neighbour 
methods.  The incorporation of linear combinations of 
mixed attributes may reduce the semantic appeal of 
classifiers.  Alternatively, linear combinations of 
continuous attributes only can be derived. 
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6. Discussion and Conclusion 
 
In this paper, we presented two methods: CAF and CCAF, 
which incorporate the power of discriminant analysis into 
symbolic machine learning by deriving canonical 
discriminant attributes and adding them to the original 
attribute space. The expanded data set is then subjected to 
classification learning.  Evaluation on data sets on which 
discriminant analysis performs better than most machine 
learning systems, shows that such techniques can 
significantly improve the performance of the machine 
learning systems.  Linear combinations of attributes are 
derived with low search and computation costs.  Stepwise 
discriminant analysis can also be used to reduce the 
number of terms in the linear combination.  Alternatively, 
terms with coefficients close to zero can be discarded.  
Experiments on other data sets suggest that the better in 
accuracy performance of discriminant analysis over 
selective induction, the more significant is the positive 
effect on selective induction by incorporating canonical 
discriminant analysis.  
     In conclusion, discriminant analysis  and symbolic 
inductive machine learning have been two important 
techniques in classification learning.  Each has its own 
advantages and limitations.  This paper demonstrates 
methods for combining these techniques.  With a pre-
machine learning step to derive and incorporate canonical 
discriminant attributes, we can significantly improve the 
predictive accuracy and decrease complexity of classifiers 
obtained by existing symbolic machine learning systems. 
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