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Abstract : 
The paper describes a method for extending domain models in 
classification learning by deriving new attributes from existing 
attributes.  The process starts by finding functional regularities 
within each class.  Such regularities are then treated as 
additional attributes in the subsequent classification learning 
process.  The research  revealed that these techniques can 
reduce the number of clauses required to describe each class, 
enable functional regularities between attributes to be 
incorporated in the classification procedures and,  depending on 
the nature of data, significantly increase the coverage of class 
descriptions and improve the accuracy of classifying novel 
instances when compared to classification learning alone. 
 
 
1. Introduction : 
Attribute-value classification learning algorithms, such as AQ 
(Michals ki, 1980, 1986) or ID3 (Quinlan,1986), aim to derive 
classification procedures capable of defining one class of 
instances as different from other classes.  The condition parts of 
the classification rules are based on the range of values of each 
attribute.  Previous algorithms have not in general  supported 
the derivation of conditions based on relationships between 
attributes.  Discovery learning algorithms, such as BACON 
(Langley & Zytkow, 1989) and ABACUS (Falkehainer & 
Michalski, 1986), aim at discovering functional regularities in 
empirical data.  They do not attempt to include classification 
procedures. 
     This paper reports an attempt to use discovery learning to 
discover relations between attributes, and to use these to extend 
the domain model by creating new attributes in subsequent 
classification learning, with the objective of inducing better 
classification procedures: procedures that incorporate functional 
regularities between attributes.  This idea was first hinted in one 
of  Michalski 's (1984) constructive generalization rules which 
attempts to generate new attributes as arithmetic functions of 
original attributes.  This paper provides a systematic examination 
and elaboration of this idea. 
Let us use a simple example to illustrate the idea.  Consider the 
following data: 
Speed   Speed_limit     Class 
71   70     speeding 
80     60      speeding 
110  100     speeding 
80   110     not_speeding 
60     70     not_speeding 
100  100     not_speeding 

 
     Most attribute-value classification learning methods would be 
unable to discover the underlying relationship between the 
attributes : "Speed" and "Speed_limit". The following results 
obtained by a classification learning algorithm are typical : 
IF ((Speed=110) AND (Speed_limit=100)) OR 
     ((71<=Speed<=80)  AND  (60<=Speed_limit<=70)) 
THEN  class = speeding 
IF ((Speed=60)  AND (Speed_limit=70))   OR 
     ((80<=Speed<=100) AND (100<=Speed_limit<=110)) 
THEN  class = not_speeding 
     As we can see, existing classification methods induce rules 
based on the values of individual attributes.  A more general 
result for the above task would be the rules : 
IF  (Speed − Speed_limit) > 0   THEN class = speeding 
IF  (Speed − Speed_limit) <= 0   THEN class = not_speeding 
     If we can induce from the above data the relation:    
((Speed−Speed_limit) > 0) and then transform it into  an 
additional attribute in classification learning, we can arrive at the 
above rules.  The research reported herein seeks to achieve this 
goal.  To this end, before performing traditional classification 
learning, we induce functional relations between attributes and 
then use these relations to arrive at better, more concise rules. 
     In the following sections, we discuss the theoretical 
perspective of function finding in classification learning and 
summarize the research background of both classification 
learning and discovery learning.  Two algorithms, one from each 
research area, will be discussed in more detail.  The selected 
algorithm in the inductive classification learning area is DLG 
(Disjunctive Least Generalization, Webb, 1991a) and that in 
discovery learning is BACON (Langley & Zytkow, 1989;  
Langley, Zytkow, Simon and Bradshaw 1984).  The paper then 
discusses and illustrates with examples, the objectives, rationale 
and procedure of employing discovery learning within a 
classification learning system. 
 
 
2. Theoretical perspective of function finding in 
classification learning: 
Function finding in classification learning can be viewed as one 
type of constructive induction, which refers to the use of 
background knowledge or a domain theory to derive additional 
information about an example.  Obviously, if the class 
description is outside the description space that is defined by 
the domain model which is stated in terms of available attributes 
or features, then it can only be learnt by extending that space.  
Indeed, it is possible that the relevant attributes or best features 
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that could be used in the class description may not be explicit or 
included in the examples (Elio & Watanabe, 1991).  Constructive 
induction was first formalised by Michalski (1984), who 
identified several constructive generalization rules.  The one 
relevant to this paper is  the detecting descriptor 
interdependence rule. 
 
2.1 The detecting descriptor interdependence rule :  
To paraphrase Michalski (1984), suppose we are given attribute 
descriptions characterizing a class of objects.  Such descriptions 
specify only attribute values of objects, they do not characterize 
the objects' structure.  If a system observes that the values of 
attribute X increase as the values of attribute Y increase,  a two-
attribute descriptor: M(x,y) can be created, signifying that x and 
y have a monotonic relationship.  The idea can be extended in 
two directions.  The first is to create M-descriptors dependent 
on some condition (COND) that must be satisfied by the events 
under consideration : M(x,y)-COND.  For example, descriptor 
M(length,weight)-blue states that the length and weight have a 
monotonic relationship for blue objects.  The second direction of 
extension is to relax the requirement for the relationship.  For 
example, the correlation coefficient between x and y can be 
evaluated and if the coefficient value is within a range, a 
descriptor R(x,y) is created.  Similar to the M- descriptors, R- 
descriptors can be extended to R-COND descriptors.  The M- or 
R-descriptors can also be used to generate new descriptors.  For 
example, using a BACON like algorithm, if the values of x 
increases with values of y, a new descriptor: z=x/y  may be 
generated. 
     In finding functions to enhance class descriptions, we 
perceive two main objectives : a. increase class specificity   b. 
increase generality and thus the boundary of the class set.  A 
good class description must be general enough to cover new 
positive instances and specific enough to reject new negative 
instances.  The learning task is to find the best combination of 
general and specific descriptions (Elio & Watanabe, 1991). 
 
2.2 Function finding in classification learning within a finite 
set: 
Consider the following data: 
Suppose we have a set S of all values of x and y attributes : 
 S = { x:N; y:N }     N = {1,2...9,10} 
There are 100 elements in S.  Assuming each element can be 
classified as either positive or negative, suppose we have the 
following training set : 
x y class 
2 4 positive 
4 8 positive 
5 10 positive 
5 4 negative 
6 3 negative 
 
Without function finding, the class description may be : 
IF ((2<=x<=4) & (4<=y<=8))      V  
     ((x=5) & (y=10))   THEN  class = positive 
IF ((5<=x<=6) & (3<=y<=4) )   THEN  class = negative 
Or 
Positive = {x:N;y:N | ((2<=x<=4) & (4<=y<=8))  V 
                                      ((x=5) & (y=10)) } 

Negative = {x:N;y:N | ((5<=x<=6) & (3<=y<=4)) } 
With such a description, the positive set consists of 16 elements 
:{(2,4),(2,5),(2,6)...} and the negative set 4 elements 
:{(5,3),(5,4),(6,3),(6,4)}.  The remaining 80 elements are uncovered 
by the description.     Suppose we discover the regularity within 
the positive class :  y = x * 2.  Using such a regularity as a 
Boolean attribute, the class description can be: 
Positive = {x:N;y:N | y = x * 2}      ; 
Negative = {x:N;y:N | y ≠ x * 2} 
With such a description, the positive set consists of 5 elements 
:{(1,2),(2,4),(3,6),(4,8),(5,10)} and the negative set 95 elements.  
Thus, the specificity of the description is increased and the 
number of uncovered cases reduced to zero. 
Let us now look at a different training set : 
x y class 
2 4 positive 
4 10 positive 
5 7 positive 
5 4 negative 
6 3 negative 
 
Without function finding, the class description may be : 
Positive = {x:N;y:N | ((2<=x<=4) & (4<=y<=10))  V  
                                      ((x=5) & (y=7)) } 
Negative = {x:N;y:N | ((5<=x<=6) & (3<=y<=4)) } 
Suppose we discover, from the training set,  the regularity :  
Positive : 2<= (y − x) <=6  ;    Negative: -3<= (y − x) <=-1 
This regularity is more general than that of the previous training 
set.  If we transform this regularity as an additional attribute, the 
data becomes: 
x y y−x  class 
2 4 2  positive 
4 10 6  positive 
5 7 2  positive 
5 4 -1  negative 
6 3 -3  negative 
 
With this derived training set, the class description can be : 
Positive = {x:N;y:N | 2<=(y − x)<=6 };  
Negative = {x:N;y:N | -3<=(y − x)<= -1} 
With such a description, the positive set has 36 elements, the 
negative set 24 and the uncovered set 40.  
 
Suppose, we can generalize the regularity further and the class 
description becomes : 
Positive = {x:N;y:N | y > x }    ; 
Negative = {x:N;y:N | y < x } 
With such a description, the positive and negative class both 
have 45 elements each and the number of uncovered cases is 
decreased to 10. 
     This example shows that incorporating regularity can reduce 
the number of uncovered cases and reduce the number of 
conjunctive clauses in class descriptions.  It  also illustrates the 
impact of incorporating regularities with different degree of 
specificity. 
 
 
3. Classification Learning: 
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An important objective of inductive learning from a set of 
positive and negative examples is to determine a general 
description capable of discriminating positive from the negative 
examples.  Such induced descriptions can be used as 
classification procedures in knowledge-based systems to 
classify novel instances.   AQ (Michalski,1980,1986) is typical of 
an induction algorithm that utilizes class descriptions. 
 
3.1  Disjunctive Least Generalization algorithm (DLG) : 
The inductive rule learning algorithm used in this research is 
disjunctive least generalization (DLG) ( Webb, 1991a).  It is a 
variant of the AQ algorithm (Michalski,1980,1986) that can 
process continuous attributes and does not use arbitrary 
parameters to constrain its search.  It is an efficient data driven 
learning algorithm that can generate disjunctive class 
descriptions.  It differs from other members of the AQ family in 
the manner in which it develops disjuncts.  These are developed 
by least generalization (Plotkin, 1970,1971).   The DLG algorithm 
can be expressed as follows : 
Input : POS ( a training set of instances belonging to the  class 
                          of interest) 
            NEG  ( a training set of instances NOT belonging to 
                          the class of interest) 
Output : R ( a disjunction of  non-disjunctive descriptions for 
                       the class ) 
Initialize R to False; 
While POS is not empty 
Begin 
     Initialize C to False; 
     For X set to each successive instance in POS 
          Set L to the least generalization of C that covers X; 
          If L does not cover any instances in NEG set C to L; 
     Remove from POS all instances covered by C; 
     Set R to R v C; 
End . 
 
For example, with DLG and given the following training 
instances :  
X C  class 
3 red  positive 
5 yellow  positive 
1 brown  positive 
1 red  negative 
4 brown  negative 
6 blue  negative 
 
the class descriptions for each class (expressed in rules ) that 
might be induced are :  
IF ((3<=X<=5) & (C∈{red,yellow}) ) V 
     ((X=1) & (C∈{brown}))     THEN class= positive 
IF ((X=1 )&(C∈{red} ) ) V 
     ((4<=X<=6)&(C∈{brown, blue}) )THEN class= negative 
Thus, given the above induced rules and a novel object with 
attribute values of, for example, X=4, and C= red, one may 
classify that object as of class "positive".  In this example, there 
are only two classes.  For data with more than two classes, the 
class under focus is positive and other classes are regarded as 
negative. 
 

 
4. Function finding from observations :  
Another type of inductive learning is learning from observation.  
In this case, the program or the observer searches  for 
regularities and general rules explaining all or at least most  
observations.   
 
4.1 BACON 
BACON (Langley, Zytkow, Simon and Bradshaw, 1984) is a 
sequence of discovery systems (version 1 to 6) .  For 
discovering simple laws, BACON's most basic operation 
involves discovering a functional relation between two numeric 
terms.   To discover laws relating two numeric variables, BACON 
employs three simple heuristics : 
INCREASING : if the values of X increase as the values of    Y 
increase,  then define the ratio X/Y and examine its values. 
DECREASING : if the values of X increase as the values of Y 
decrease, then define the product XY and examine its values. 
CONSTANT : if the values of X are nearly constant for a number 
of values, then hypothesize that X always has this value. 
 
For example, consider the following empirical data : 
X Y Z 
2 2 30 
4.5 3 20 
8 4 15 
12.5 5 12 
 
The BACON system, on examining the data and applying its 
"INCREASING" heuristic will find that the values of X increase 
with the values of Y.  It will then define the ratio X/Y.  It further 
realizes that the values of X/Y increase with the values of Y  and 
so define the ratio (X/Y)/Y or X/Y

2
.  On applying the 

"CONSTANT" heuristics, it will realize that the values of X/Y
2
  

always equal to 0.5; thus it will conclude that X/Y
2
 = 0.5.  

Similarly, on applying the "DECREASING" and then the 
"CONSTANT" heuristics, it will conclude that Y*Z = 60.   Later 
versions of BACON can dis cover more complex regularities. 
 
 
 
5. BACONC (BACON within Classification): 
In the research, we applied BACON to example data within 
different classes, to see if we can discover regularities 
descriptive of that class.  The BACON algorithm implemented to 
achieve such end, which we  refer to as BACONC, was modified 
from the original BACON. 
     As mentioned above, a good class description must be 
general enough to cover new positive instances and specific 
enough to reject new negative instances.  Thus, using function 
finding to enhance class descriptions, we attempt to find two 
types of functions: one to increase the specificity of the class 
descriptions, the other, the generality.  To find specific 
functions, BACONC incorporates BACON algorithms to 
discover specific functions within each class.  To find class 
description generality, BACONC searches from a pre-defined 
function space for functions with a generalized range (e.g. 
2<=(y

2
*x)<= 9), capable of discriminating the positive class from 

the negative.  If a function with generalized range derived from 
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the positive class covers no negative instance, that function is 
accepted.  The algorithm is described in the next section. 
 
5.1 Discriminant function finding algorithm (DFFA): 
DFFA, which finds functions with generalized range, 
discriminating the positive class from the negative, can be 
expressed as follows: 
Input:  POS (a set of instances  belonging to the class of 
                           interest) 
 NEG (a set of instances NOT belonging to the class of 
                           interest) 
Output:  a function from the function space with generalized 
                range or (Function not found) 
Initialize a boolean variable FOUND to False; 
Initialize all functions in the function space to unchecked; 
While not FOUND and not all functions checked 
Begin 
     Select the next unchecked function from the function space; 
     Derive a generalized range for the function from the 
                POS instances; 
     If the function does not cover any instance of NEG, 
                set FOUND = True; 
End. 
 
Suppose we have a pre-defined function space consisting of the 
following functions, which involve two numeric terms (X and Y) 
and two constants (K1 and K2) :   
K1<=(Y+X)<=K2;   K1<=(Y−X)<=K2;    K1<=(Y*X)<=K2; 
K1<=(Y/X)<= K2;   K1<=(Y*X

2
)<=K2;  K1<=(Y

2
*X)<= K2; 

K1<=(Y/X
2
)<=K2;  K1<=(X/Y

2
)<=K2 

Consider the following data: 
X Y Class 
4 5 positive 
6 3 positive 
5 3 positive 
1 8 negative 
10 7 negative 
6 10 negative 
 
The algorithm looks at the first function (Y+X) and derives from 
the positive instances : 8<=(Y+X)<=9.  Since it covers a negative 
instance, it is abandoned.  The next function in the function 
space is then examined. The function derived from the positive 
instances is: -3<=(Y−X)<=1.  Since it covers a negative instance, 
it is also abandoned.  The third function derived : 
15<=(Y*X)<=20  covers all positive instances and no negative 
instance; so it is accepted as the function capable of 
discriminating the positive class from the negative. 
 
5.2 BACONC algorithm: 
Incorporating the ideas introduced so far, BACONC  can be 
expressed as follows : 
Input: POS ( a training set of instances belonging to the  class 
                       of interest) 
            NEG ( a training set of instances NOT belonging to the 
                        class of interest) 
Output  :  S  ( a set of functions descriptive of  the class) 
Initialize S to empty; 
For each non-redundant non-numeric condition 

     For each non-redundant numeric attribute combination 
          Find a function (if any) with BACON that covers all the 
                   instances of POS  and not any instance of NEG;  
          If the above function is not found then find a function  
              (if any) with a generalized range with DFFA  
              (as defined above) that covers all the instances of 
              POS  and not any instance of NEG;  
          Include such function so found in S .  
 
 
6.Using function finding in classification learning: 
In this section, we discuss incorporating function finding in 
classification learning.  First, by applying discovery learning to 
instances belonging to a certain class, functions that are 
relevant to that class may be found.  Such functions can be 
treated as additional attributes in the subsequent step of 
classification learning.  To complete the induction process, 
following DLG induction, we performed "Conservative Conjunct 
Deletion" and "Range generalization".     
     Conservative conjunct deletion is achieved by two scans 
through the clauses of each rule in opposite directions.  For each 
clause, delete it and then see if the rule covers any cases in other 
classes.  If it does, restore it.  Start each scan from the full rule.  
Finally, delete only those conjuncts that were deleted in both 
scans.  
     Range generalization (Webb, 1991b) is a step to further 
generalize the constant range of functions discovered by DFFA.  
Consider the rules: 
IF  (5<=(y−x)<=10)  &  (6<=w<=10)  THEN class = positive.   
IF  (-20<=(y−x)<=-5)  &  (-1<=w<=3) THEN class = negative 
Suppose we want to range extend 5<=(y−x)<=10. Range 
generalization first deletes this clause and then examines all 
negative instances mis -classified by this description.  Suppose, 
it mis-classifies three negative instances with values of (y − x) 
equal to -20, -10 and -5.  Range generalization finds, among the 
above values,  the maximum value that is below the lower bound 
of the function to be extended, and the minimum value that is 
above the upper bound.  The values are -5 and none 
respectively.  Thus, for the lower bound of the function, we 
know that we can extend it to somewhere between 5 and -5 (in 
this research, we take the mid-point).  As to the upper bound, we 
can generalize that direction to infinity.  Using this process, and 
depending on the examples in the training set, the above rule 
may be generalized to : 
IF ((y−x)>0)  &  (6<=w<=10)   THEN class = positive 
IF ((y−x)<=0)  &  (-1<=w<=3)   THEN class = negative 
Since this function range generalization step is more radical, its 
execution can be made dependent on application domain and 
certain user-defined criteria. 
     The resulting algorithm is called DLG

ff
  (function finding in 

disjunctive least generalization) :  
Input :  POS ( a training set of instances belonging to the  class 
                        of interest) 
           NEG  ( a training set of instances NOT belonging to the 
                       class of interest) 
Output  :  R  ( a disjunction of  non-disjunctive  descriptions 
                       for the class ) 
functions <-- BACONC(POS, NEG); 
Extend the descriptions of cases in POS & NEG to 
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         include each  function as additional attribute; 
rules <-- DLG(POS, NEG); 
Generalize rules using Conservative Conjunct Deletion; 
Generalize rules using function range generalization  
                                   (if applicable). 
 
7. Evaluation : 
The DLG

ff
 algorithm can be illustrated by the following examples 

: 
Study  1 :  Let us examine another example on "Speed Limit" 
using DLG

ff
 : 

Siren Speed Speed_limit Class 
No 71 70  speeding 
No 80 60  speeding 
No 110 100  speeding 
No 80 110  not_speeding 
No 60 70  not_speeding 
No 100 100  not_speeding 
Yes 110 100  not_speeding 
Yes 90 110  not_speeding 
When DLG alone is applied to this data, the result is five 
separate disjunctive clauses created for the class description : 
IF ((Siren ∈ {No}) & (Speed=110) & (Speed_limit=100) )    V 
     ((71<=Speed<=80) & (60<=Speed_limit<=70) )   
THEN  class = speeding 
IF (Siren ∈ {Yes})    V    
     ((80<=Speed<=100) &  (100<=Speed_limit<=110) )   V      
     ((Speed= 60) & (Speed_limit=70) )   
THEN  class = not_speeding 
 
With DLG

ff
 we first apply BACONC on each class, the 

regularities discovered are: 
For class = speeding  &  Siren ∈  {No} :  
        1<=(Speed−Speed_limit)<=20 
For class = not_speeding &  Siren ∈  {No} :  
         -30<=(Speed−Speed_limit)<=0 
If we transform the above functions into additional attributes 
and apply DLG on the data, the class descriptions induced 
becomes : 
IF     (71<=Speed<=110) & (60<=Speed_limit<=100) &  
         (Siren ∈  {No}) & (1<= (Speed−Speed_limit)<=20) 
THEN  class = speeding 
IF ((60<=Speed<=100) & (70<=Speed_limit<=110) & 
       (Siren ∈  {No}) & (-30<=(Speed−Speed_limit)<=  0) ) V 
     ((90<=Speed<=110) & (100<=Speed_limit<=110) &  
       (Siren ∈  {Yes})  & (-20<=(Speed−Speed_limit)<=10)) 
THEN  class = not_speeding 
 
The Conservative conjunct deletion step improves the 
descriptions to : 
IF (Siren ∈  {No}) & ( 1<=(Speed−Speed_limit)<=20)   
THEN  class = speeding 
IF (-30 <=(Speed−Speed_limit)<=0) V (Siren ∈ {Yes}) 
THEN class = not_speeding 
Range generalization further refines the rules to : 
IF  (Siren ∈  {No}) & ((Speed−Speed_limit)>0)   
THEN class = speeding. 
IF  ((Speed−Speed_limit)<=0 )    V   (Siren ∈ {Yes})   
THEN class = not_speeding. 

DLG
ff

 greatly simplifies the rules by extending the domain model 
to include the new variable : (Speed−Speed_limit).  The five 
disjuncts produced by DLG are reduced to three.  The result is 
also much more general in that it is able to correctly classify any 
new case even if it involves a Speed and Speed_limit that did not 
appear in the training set. 
 
Study  2: 
Langley,Simon,Bradshaw and Zytkow(1987) discussed the use 
of BACON to discover intrinsic properties of materials.  For 
example, consider the following data ( from Langley, Simon, 
Bradshaw and Zytkow ,1987): 
weight(W)  volume(V) composition 
55.923   5.326  silver 
74.708   7.115  silver 
99.561   9.482  silver 
121.841   6.313  gold 
91.135   4.722  gold 
170.168   8.817  gold 
57.182   5.016  lead 
39.820   3.493  lead 
77.828   6.827  lead 
 
BACON would notice that : 
composition  weight/volume(W/V) 
silver   10.5 
gold   19.3 
lead   11.4 
BACON would then postulate an intrinsic property of the 
material called d  (d=weight/volume), and associate it with the 
nominal values of composition.   Let us insert into the above 
data set some noise data.  Suppose the  noise data are : 
weight(W)  volume(V) composition 
58.0   3.3  gold   
99.0   8.0  lead   
 
     BACON's method of determining deviations from constancy 
is to incorporate a maximum percentage deviation (P) around the 
mean (M), and require all observations of a numeric term to fall in 
the interval [M(1-P), M(1+P)] before that numeric term can be 
qualified as constant (Langley, Simon, Bradshaw and Zykow, 
1987).  Setting percentage deviation (P) to 0.05 and applying 
DLG

ff
 on the above data, an additional attribute of W/V is added 

and the following classification rules are induced : 
IF (5.33<=V<=9.48)  &  (55.92<=W<=99.56) & 
     (W/V=10.50)   THEN  class = silver 
IF (3.01<=V<=8.82) & (58.0<= W <=170.17)& 
     (17.58<=W/V <=19.30)  THEN  class = gold 
IF (3.49<=V<=9.0) & (39.82<=W=99.0) & 
     (11.0<=W/V=12.38) THEN class = lead 
The Conservative Conjunct Deletion step will further refine the 
rules to : 
IF    (W/V = 10.50)    THEN  class = silver 
IF    (17.58 <= W/V <= 19.30)  THEN  class = gold 
IF    (11.0 <= W/V <= 12.38)   THEN  class = lead 
     When compared to BACON, DLG

ff
 can also postulate 

intrinsic properties when it added the new attribute : W/V.  In 
addition, by assuming a range for the values associated with the 
intrinsic properties, it can provide robustness against noise data.  
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With BACON alone, increasing the value of percentage 
deviation (P) may provide similar robustness to noise data, but 
that will be at the expense of discovering specific functions. 
 
Study  3: 
In this example, we show that for certain types of data, 
combining discovery learning and classification learning has 
advantages over the classification method alone, both in 
reducing the number of disjunctive clauses in the class 
descriptions and improving the classification of novel instances 
accuracy.  We can illustrate by using hypothetical data 
generated with a formula:  Y=a*X, and arbitrary assign  a= 2.0   
for class=positive and  a= 3.0   for class=negative.  We can 
generate the following test data  for x=0.5,1.00...to 50 
X Y  class 
0.50 1.00  positive 
. .  . 
. .  . 
50.00 100.00  positive 
0.50 1.50  negative 
. .  . 
. .  . 
50.00 150.00  negative 
 
 
     Using half of the 100 cases (selected randomly) in the data as 
training cases and the remaining half as novel instances for 
testing the accuracy of the classification procedure, we found 
that with DLG

ff
, the combined technique, there are only 2 

disjunctive clauses in the class descriptions and the accuracy is 
100%.  Whereas when using classification learning alone, there 
are 18 disjunctive clauses, and the accuracy is 82%.  In this 
example, we can also observe that by setting  a= 2.0 for 
"positive" and a= 3.0 for "negative"; the range of Y values of 
positive instances is 1.0 to 100.0 and that of negative is 1.5 to 
150.0.  In other words, some Y values of positive instances 
overlap with that of the negative. In fact, 82% of the values of Y 
across both classes fall within one common range.  This example 
suggests that for cases where some hidden relationship between 
attributes underlies the classification and there is overlap in the 
attribute values across different classes,  DLG

ff
  has significant 

advantages . 
 
 
8. Further research : 
8.1 Using function finding and long term memory to handle 
uncovered cases: 
It is not uncommon that training examples are initially classified 
according some easily observable attributes.  Since these 
observable attributes can achieve the classification objective, 
numeric relations between attributes found by BACONC may 
become redundant and be deleted during the conservative 
conjunct deletion step in DLG

ff
.  If these redundant attributes 

are stored but suppressed in long term memory instead of being 
deleted, they may be retrieved later to help classify uncovered 
novel cases as well as to learn incrementally.  A few systems, 
such as Zhou's (1990) cumulative learning and  Michalski, 
Mozetic, Hong and Lavrac's (1986) AQ15, had been reported to 
use computer secondary memory as perfect long term memory.  

Information stored in long term memory can be retrieved later to 
help incremental learning and noise handling.  In DLG

ff
, before 

the conservative conjunct deletion step, all class descriptions 
can be stored in long term memory.  Conjunctive clauses made 
redundant by the conservative conjunct deletion step  can be 
flagged and suppressed.  In classifying novel instances, if the 
instance is uncovered by the class description, clauses 
suppressed in long term memory may be retrieved to assist the 
classification.  To illustrate, suppose we have the following 
examples: 
Colour  X Y Class 
blue  2 4 positive 
blue  3 6 positive 
red  5 10 positive 
brown  2 8 negative 
brown  9 1 negative 
 
Regularity discovered by BACONC of DLG

ff
 is: 

for class=positive,  Y=2*X 
Initial class descriptions by DLG

ff
 is: 

IF(colour∈{blue, red})&(2<=X<=5)&(4<=Y<=10)&(Y=2*X) 
THEN class = positive 
IF(colour ∈{brown})&(2<=X<=9)&(1<=Y<=8)&(Y≠2*X) 
THEN class =negative 
 
After conservative conjunct deletion, class description becomes 
: 
IF  colour ∈ {blue, red } THEN class = positive 
IF  colour ∈ {brown}  THEN class = negative 
If, for example, we have a novel case :  colour = orange, X = 8,  Y 
= 16.  With the current class description, the case is uncovered.  
But with the initial class description retrieved from long term 
memory , then based on the clause : Y=2*X,  the novel case can 
be classified as positive.  
 
8.2  Incremental learning in function incorporated 
classification learning: 
Incremental learning refers to modifying current concepts to 
accommodate new learning events. An incremental method 
should be able to specialize a concept so that it no longer covers 
a negative event and generalize a concept  so that it covers a 
new positive event.  If  new events cannot be accommodated by 
modifying the current concepts or when there is noise detected,  
then, all events and concepts are re-examined.  In this paper, we 
shall discuss  incremental learning of function derived attributes. 
     By noting the number (N), mean  and range of attributes of 
examples of each class learned, function derived attributes can 
be generalized  or specialized to learn incrementally. 
Generalization of functions in incremental learning can take two 
forms : 
(1) Generalizing a specific function : To accommodate new 
positive examples, specific functions (e.g. Y=2*X) may be 
generalized to a function with a constant interval (e.g. 
1.9<=Y/X<=2.0), as long as the interval does not overlap with 
that of the negative class.  (2) Extending a function range : To 
accommodate new positive examples, the constant range of a 
function may be extended (e.g. from 1.9<=Y/X<= 2.0    to    
1.9<=Y/X<=2.2), if it does not overlap with that of the negative 
class.  
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Specializing a function in incremental learning  can also take two 
forms:  
(1)  Reducing a function range:  Suppose we have an initial class 
description of : 
For class= positive :   2<=(y−x)<=20;    
For class= negative:   -30<=(y−x)<=-2; 
Suppose, with range generalization, the class description was 
generalized to : 
For class= positive :   0<(y−x) ;   
For class= negative:   (y−x)<0; 
To accommodate a new negative example of  say, y = 4, x = 3;  
the class description may be modified to:    
For class= positive:1<(y−x);  
For class = negative: (y−x)<= 1. 
(2) Specializing a function can also occur when new positive 
examples shift the mean of the function constant term and thus 
the interval required for constancy. 
Consider the following class description: 
IF ( 0.92<=Y/X

2
<=1.0)  

THEN class = positive    (N=4 ,  mean of Y/X
2
=0.98) 

IF ( 3.2<=Y/X
2
<=5.3)   

THEN class = negative    (N=10, mean of Y/X
2
=4.3) 

With new positive examples of , say, :     X= 6, Y=34  and X=8, 
Y=60, the values of N and Y/X

2
 are updated to : N=6 , mean of 

Y/X
2
 = 0.96698. 

With mean changed to 0.96698, the required range for constancy 
(with percentage deviation(P) =0.05)  is  0.91863 to 1.01533.  The 
class description can then be specialized to : 
IF ( Y/X

2
=0.96698)  

THEN class = positive  (N=6, range of Y/X
2
 = 0.92 to 1.0) 

IF ( Y/X
2
≠0.96698)   

THEN class = negative (N=10, range of 
 
Y/X

2
 =3.2 to 5.3) 

     It is obvious that, with incremental learning, functions are 
more likely to be generalized than specialized. Should the rules 
fail to accommodate new examples in incremental learning, all 
examples and rules can be retrieved from secondary memory for 
re-learning . 
 
 
9. Conclusion : 
In this paper, we have presented an algorithm (DLG

ff
) based on 

combining the merits of classification and discovery learning.  
Our objective is to incorporate function-finding features in 
classification learning.  Existing classification learning 
algorithms, such as DLG, derive classification procedures based 
on values of single attributes.  Intuitively, incorporating 
functions between attributes should enhance class descriptions 
and thus improve classification procedures derived by data-
driven methods, by reducing the number of disjunctive sets in 
the descriptions, classifying cases which would otherwise be 
uncovered and improving the accuracy of classifying novel 
instances.   
     Evaluation of DLG

ff
 showed that the objectives are met for 

data of different classes  with overlapping ranges in their 
attribute values.  Given such data, the individual attributes 
cannot be used effectively as the basis to derive classification 
procedures.  Functions characteristic of each class, if any,  will 
then be crucial in deriving classification procedures.  Thus, a 

combination of discovery and classification learning can 
improve upon existing classification learning methods.  An 
important contribution of BACON.4 is its ability to postulate 
intrinsic properties characteristic of different types or class of 
objects.  When we regard the nominal values of the independent 
variable as representing different classes of objects and apply 
the function finding-classification procedure, the combined 
algorithm proved to be an extension of the BACON effort, in that 
it renders robustness by providing a range for the values of the 
intrinsic properties.  In the absence of complete data, the 
presence of noise data and the need for approximation of non-
linear functions and/or functions which are too complex to be 
discovered by BACON, the combined algorithm, which allows a 
range for a function constant term, can improve upon existing 
function finding systems.  Further research can focus on the 
incremental and cumulative learning aspect of function finding 
and real world applications. 
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