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Abstract—\We conduct a large-scale comparative study (MML), random selection (RAN), cross validation (CV), for-
on linearly combining superparent-one-dependence estimators ward sequential addition (FSA), backward sequential elimina-

(SPODEsSs), a popular family of semi-naive Bayesian classifiers. U i ;
Altogether 16 model selection and weighing schemes, 58 bench-i?(n.(kB,SE.)’flazy ?.“mma.ttlon (LE?&I\ével%hmg S_che_mfes m(;I_Ude
mark data sets, as well as various statistical tests are employed. aike’s information criterion (AIC), Bayesian information

This paper’s main contributions are three-fold. First, it formally ~ criterion (BIC), minimum description length (MDL), min-
presents each scheme’s definition, rationale and time complexity; imum message length (MML), Bayesian model averaging

and hence can serve as a comprehensive reference for researcher§BMA), maximum a posteriori linear mixture of discriminative
interested in ensemble learning. Second, it offers bias-variance distributions (MAPLMD), and maximum a posteriori linear

analysis for each scheme’s classification error performance. . . C
Third, it identifies effective schemes that meet various needs in mixture of generative distributions (MAPLMG). A large-

practice. This leads to accurate and fast classification algorithms Scale empirical comparison using 58 benchmark data sets is
with immediate and significant impact on real-world applications. conducted to test the classification accuracy and efficiency of

Another important feature of our study is using a variety of ensembles that result from using alternative schemes. A variety
statistical tests to evaluate multiple learning methods across . giatistics are employed to thoroughly evaluate and rank their
multiple data sets.

performances.

Index Terms— Classification Iearning, Bayesian prObabi”StiC By doing this research, we seek answers to the fo”owing
learning, ensemble learning, model selection, model Weighing'questionS'

superparent-one-dependence estimator (SPODE).
1) What are every scheme’s strength and weakness for
ensemble learning?
2) Which scheme is consistently among the best algorithms
Ensemble learning is a popular method in classification  for our large suite of data sets?
learning. It combines multiple learning models’ decisions to 3) In general, which is more effective and/or more efficient,
produce more accurate results than single models [1]-[{5]. model selection or model weighing?
This paper focuses on two particular aspects of ensembler) How to choose which scheme to use in practice?
learning, selection and weighing of models for linear model
combination. The goal is to study formally alternative selection Il. BACKGROUND

or linear weighing schemes in theory and to identify effective This section defines terminology and notation that will be

and efficient ones for practical use. L . used throughout this paper. It also explains how a SPODE and

The general problem for model selection is, given some e
. . .an ensemble of SPODEs carry out classification.

sample data, how to decide which are the most effective

models within some model space. The general problem of _ )

linear model weighing focuses on calculating the weigh- Terminology and Notation

associated with each model within some model space andrhis paper addresses the problem of classification learning

accordingly weighing their decisions when ensembling. using Bayesian network classifiers. The following terminology
This paper looks at the model space of Bayesian n&nd notation will be used.

work classifiers. In particular, superparent-one-dependence esAn instancex (z1, 2, -+ , &) iS & vector ofm attribute

timators (SPODEs) [6], [7], a popular family of semi-naivevalues z;, each observed for an attribute variablg (i €

Bayesian classifiers, are taken as a vehicle of illustratioh m]). As SPODEs currently require discrete-valued data,

throughout the research. numeric attributes are discretized. An instance can also have
This paper presents 16 alternative model selection or weigh-class labely corresponding to the class variabte If its

ing schemes. Selection schemes include Akaike’s informatiolass label is known, an instancelabeled Otherwise, it is

criterion (AIC), Bayesian information criterion (BIC), min-unlabeled Whenever applicable, for the purpose of uniformity

imum description length (MDL), minimum message lengtm formulae,X; represents the class variable whea m + 1.

I. INTRODUCTION



different class labels, one only needs to estim@fg, x) as:

AN AN

K) (2 () &) (K00 (K3 X2 —~K3) &) A SPODE with superparenk, uses Formula (2) to cal-
culate P(y,x). The second equation results from SPODES’
(a) NB (b) ODE (c) SPODE assumption that all attributes are independent of each other
given the clasy” and the superparent,,.

Fig. 1. lllustration of NB, ODE and SPODE. An arc points from a parent to

a child. A child only depends on its parents. NB assumes each attribute only P(y,x) = P(y,zp)P(x|y,xp)

depends on the clads and is independent of other attributes given the class. m

ODE allows each attribute depends on at most one other attribute in addition _ p( ) H ]3( ] | ) (2)
to the class. SPODE assumes that each attribute can depend¢a@nnaon - Y Tp Ti | Y, Tp

attribute (the superparedis) in addition to the class. i=1

Training data D is a set of labeled instances from which ac' SPODE Ensemble

classifier is learned to predict the class labels of unlabeled There has been a strong interest in ensembling SPODEs
instances. The number of training instances.iShe number because it can decrease a single SPODE'’s classification vari-
of values forX; is v;. X;'s parent variables ar@(i). The ance, and attain high classification accuracy with moderate
number of joint states (joint instantiated values) of parents tfne requirement [30]-[47].

X; is |¢(4)|. Ther-th joint state of the parents is;.. When  For a training data set wittn attributes, there can be
applicable, indicates a SPODE in general and indicates candidate SPODEs, each taking a different attribute as its
a particular SPODE whose superparentXis Generally the superparent. A SPODE ensemble is a linear combination of
log base in information metrics does not matter. A commamultiple SPODES’ probability estimates. It classifiesising

practice is to use or 2. Formula (3), where eack;(y, x) is calculated by a SPODE
using Formula (2) withp = j.
B. SPODE A mo
Bayesian network classifiers have long been a core tech- Ply.x) = ijpj(y’x) )

nigue in predictive learning. The naive-Bayesian (NB) clas- =1

sifier is among the first Bayesian networks introduced into The first approach to ensembling SPODES used equal
machine Iearning. NB assumes attributes Conditiona”y |ndﬁfe|ght combination of all SPODEs whose parent value oc-
pendent of each other given the class. It is very efficieBlirred above a user-specified minimum frequency in the train-
with reasonable prediction accuracy [8]-[15]. In recent yealigg data [30]. Subsequent research suggested that frequency
there has also been considerable interest in developing variggtgot a useful model selection criterion and that appropriate
of NB that weaken the attribute independence assumptionyjighing can substantially improve upon equal weighing, such
order to further improve the prediction accuracy [6], [7], [16]as in MAPLMD and MAPLMG weighing schemes [31]. On
[30]. For instance, one-dependence estimators (ODEs) [28b other hand, it has also been shown that model selection
such as tree-augmented naive Bayes (TAN) [16] providecan be effective when ensembling SPODEs [35], [44]. This
powerful alternative to NB. As depicted in Figure 1, an ODlgaper presents a comprehensive investigation into the relative

is similar to an NB except that each attribute is allowegherits of alternative approaches to weighing and selecting.
to depend on at most one other attribute in addition to the

class. Among ODEs, SPODEs [6], [7] have received a lot of

attention because they offer a combination of high training I1l. M ODEL SELECTIONSCHEMES

efficiency, high classification efficiency and high classifica- L )

tion accuracy [30]-[47]. Those merits give SPODEs a great | "€ general problem for model selection is, given some
potential to substitute for naive Bayes classifiers in numerog@Mple data, how to decide which are the most effective
real-world classification systems, including medical diagnosf€©dels within some model space. This paper looks at the space
fraud detection, email filtering, document classification arff SPODE models. Only selected SPODES will be included in
webpage prefetching. As illustrated in Figure 1, a SPODE rthe ensemble. Str!ctly speaking, mode! selection is an extreme
laxes NB's attribute independence assumption by allowing 4§r™m of model weighing where the weights are either 1 or 0.

attributes to depend on a common attribute, sheerparent That is,

in addition _to the glass. ' 3 _ [ 1 if SPODE is selected
To classify an instance;, a Bayesian network classifier wj = { 0 otherwise

calculatesP(y | x) for eachy € Y, an estimate of the

probability of the class label given this instané¥y | x). However, because information-theoretic schemes take different

The label attaining the highest probability will be assignefdrms when used in model selection versus weighing, this

to x. SinceP(y | x) = % and P(x) is invariant across study differentiates selection from weighing.



A. Information-Theoretic Metrics wheresS;; is the number of training instances where the parents

Information-theoretic metrics including AIC, BIC, MDL ®(i) take their jointj-th value, anda;; is the number of
and MML [48]-[51], provide a combined score, as in Foriraining instances wher&; takes itsi-th value and®(i) take
mula (4), for a proposed explanatory model (a SPODE in offt€ir j-th joint value. For any rook;, |¢;| should be treated as
context) and for the data given the model. They aim to finjand every instance shoulid be treated as matching the parents
a balance between goodness of fit (minimizih@|h)) and for the purposes of computin; anda;;. Formula (10) looks
model simplicity (minimizingZ (1)), and thereby achieve goodcomplicated, but it can be computed in polynomial time [52].
modeling performance without overfitting the data. The bestEach information-theoretic metric can order a sequence of
score is the smallest. Hence the lower the score a SPODE gefRODEs by their supposed merits. One should then expect

the higher its priority to appear in the ensemble. that excluding poorly predictive SPODEs could improve the
classification accuracy. For instance, after it has reached the

score = I(D|h) + I(h). (4)  optimal classification accuracy, an ensemble should not pro-
The termI(D|h) is sharedby information-theoretic metrics ceed to include additional SPODEs that are counterproductive,
and is: even when there are some left. To decide when SPODEs of

S e sufficient merit are no longer to be found for the ensemble
I(D|h) = n (Z H(X;) — Z H(Xi,<I>(z'))> (5) given an orQered. sequence of SPODEs,m ensembles are

P P tested. Starting with an empty ensemble, each ensemble in turn
includes further one SPODE in the queue. Every ensemble’s
leave-one-out cross validation accuracy is calculated. The
ensemble with the lowest error is the one to be selected.

where H(X;) is the entropy ofX;, and H(X;, ®(:)) is the
mutual information betweeX; and its parents:

(X5) ;( ( )log P( i) © B. Random Selection (RAN)
vs |di] ( ) RAN randomly orders SPODEs. Following the practice with
. ~ P(zij, bir information-theoretic metrics, it then tests ensembles from
H X“q) 1)) = P Lijy Qir lo e . . . ! .
( (@) ZZ < (%3, $r) log P(-’Eij)P(¢7;r)> size 1 to sizem; and the one with the lowest leave-one-out
) ) cross validation error is selected. RAN has low computational
How to computel (k) variesamong different schemes and,yerhead and offers a useful comparator against which to judge

is presented below. _ o _ the impact on classification error of other selection schemes.
a) Akaike’s Information Criterion (AIC):According to

Akaike [48],

j=1r=1

C. Cross Validation (CV)
m—+1

_ , , CV [35] scores each individual SPODE by its cross val-
Tarc(h) =2 Z(U’ -1 H vl ) idation error in the training data. Particularly in this study,
leave-one-out cross validation is employed. Given a SPODE,

For any root nodeX; (where ®(i) = (), the product term CV loops through the training datatimes, each time training
on the right should be replaced by 1. The same principle algfe SPODE from( — 1) instances to classify the remaining

i=1 JED(i)

applies to BIC and MDL, below. 1 instance. The misclassifications are summed and averaged
b) Bayesian Information Criterion (BIC)According to overn iterations. The resulting classification error rate is taken
Schwarz [49], as the metric value of the SPODE. The lower the metric, the
mal higher priority for the SPODE to be used. This process is very
Isre(h) = (logn) Z (v; — 1) H v | (8) efficient as the model need only be updated for each instance
st JED() that is left out, rather than recalculated from scratch.

Following the practice with information-theoretic metrics,

¢) Minimum Description Length (MDL)According to after CV orders SPODEs according to their merits, it tests

Suzuki [50], ensembles from size 1 to size; and the one with the lowest
m+1 leave-one-out cross validation error is selected.
Ipn(h) = (21 1 1. @
MDL(N D) ogn) Z(Uz ) H vj |-
=t jee(® D. Forward Sequential Addition (FSA)
d) Minimum Message Length (MML)According 0  |nhgpired by the forward sequential selection strategy for
Korb and Nicholson [51], attribute selection in NB [21], FSA [35] begins with an empty
Iunp(h) = log(m+ 1)+ Cl —log(m —1)! ensemble. It then uses hill-climbing search to iteratively add
mal SPODEs most helpful for lowering the ensemble’s classifica-
+ Z vi 1(10gf +1) tion error. In each iteration, suppose the current ensemble is
= 2 6 Eurrent With k SPODEs. FSA in turn adds each candidate

m+1 ¢ i v; SPODE, one that has not been included if#Q,,,¢,:, and
—log H H ( (v = 1)! ) (10) obtains an ensemblg}.s; of size ¢ + 1). It then calculates

! S1es
i1 o \ S o= 1! ll_[ the leave-one-out cross validation error Bf.;. The Eyey

=1



who obtains the lowest error is retained. The corresponding IV. LINEAR MODEL WEIGHING SCHEMES

added SPODE is permanently included into the ensemble amli_inear model weighing focuses on calculating the weight

deleted from the candidate list. The same process is applied to . . . .
the new SPODE ensemble of size(1) and so on, until every associated with each SPODE to linearly combine their proba-

SPODE has been included. The order of addition produceglgty estimates ofP(y,x) as in Formula (3).

ranking order for SPODEs. The earlier a SPODE is added, the
more merit it possesses and the higher its priority to be used. |nformation Theoretic Metrics
The ensemble that achieves the lowest leave-one-out cross. . . . .
§|nce the information-theoretic metrics AIC, BIC, MDL

validation error in training during the addition process is . . .
9 9 P d MML as defined in Section IlI-A rely upon Shannon

selected. If multiple ensembles attain the lowest error, the o ) ) o . .
that includes most SPODEs is chosen. as a means to redi] %rmann theory [53] for their motivation and interpretation,
variance caused by model selection [3(’)] it IS appropriate to ask what kind of probabilistic weight they

imply for purpose of prediction. In principle, they should
support the inversion of Shannon’s law to derive the posterior
E. Backward Sequential Elimination (BSE) probability of a model given the data for such purposes. Hence,

Inspired by the backward sequential elimination strategy fg?e weightw for a SPODEA is:
attribute selection in NB [21], BSE [35] starts out with a full P P(h|D)
ensemble including every SPODE. It then uses hill-climbing _ _1(hD)
search to iteratively eliminate SPODEs whose individual ex- = ¢
clusion most helpful for lowering the classification error. =

In each iteration, suppose the current ensembl& s ¢t m1 .

involving £ SPODEs. BSE eliminates each member SPO[YI@ereI(DI) :I "%:i’):l EH(X%) IS t6he en}tlropy ofldalta v(\;hgse

in turn from E.,,.n: and obtains an ensemblg,.,; of size H(X")_ calculate y quation (6)(D|h) IS calcu ated by
drduation (5); and (h) is calculated by Equations (7, 8, 9, 10)

(k — 1). It then calculates the leave-one-out cross validati velv for AIC. BIG. MDL and MML to b ioh
error of E.s;. The Ei.s; Which yields the lowest error is respectively for ! ! an to be weights.

retained. The corresponding eliminated SPODE is permanently

deleted from the ensemble. The same process is app!ied toé'?eBayesian Model Averaging (BMA)

new SPODE ensemble of sizé ¢ 1) and so on, until the . : _

ensemble is empty. The order of the elimination produces aBMA [54], [55] is theoretically the optimal method for
ranking order for SPODES. The earlier a SPODE is eliminateg?MPining learned models. It provides a coherent mechanism

the less merit it possesses and the lower its priority to be usé.ensemble classification models by accounting for single

The ensemble that achieves the lowest leave-one-out Crg.g%dels’ uncertainty of generating the data. In the Bayesian

validation error in training during the elimination process j¥iew, using a single model to make predictions ignores the

selected. If multiple ensembles attain the lowest error, the oyjgcertainty caused by training data as to which is the correct

that includes most SPODESs is chosen, as a means to redfi@slel; thus all possible models in the model space under
variance caused by model selection [30]. consideration should be used when making predictions, with

each model weighted by its probability of being the correct
model P(h; | D).
F. Lazy Elimination (LE) Given an instancex and a set of classifieré;, BMA
The above schemes studied sofar select at training tim&gimates the probability of each class label gixensing:
subset of SPODEs that are used to classify all test instances. m
An alternative approach delays selection until classification P(y|x) = Zﬁ(y | hy)P(h; | D) (12)
time. LE [44] is based on the observation that b, ¢ : P(a | i=1
b) = 1.0 entailsP(c | a,b) = P(c | b). Hence, if it can A i . )
be inferred that one attribute value entails another, assummegrep(y | hi) is the class probability estimated by.a S'_DODE
conditional independence between the values is likely to B \N Formula (2). One common approach to estimating the
harmful and the more general valuemay safely be deleted. Weight was proposed by Cooper and Herskovits [52]:

o~ (I(DIR)+I(R)~1(D)) (11)

To this end, before a test instance is classified LE deletes any . P(h;, D)
attribute valuer; of the instance that occurs in the training data w; = P(h;|D)=——+ (13)
more than a user-defined minimum number of times (in this 21 P(hi, D)

research, 30) and for which there is another vatyg # i) where

sucr:c thatxz-dis pres%nt in elveryI training cijnTtanc(j:e c]:cfontainilng 1l )
x;. If z; andz; are identical, only one is deleted. Effectively, . ~ g ] v — 1)! ’
LfE performs jlazy selection, by not using SPODEs whos%(hi’D) = P(hi) H H (WH“’W’”) ’
superparents are generalizations of other values of the instance k? =1 =1

to be classified. Note however that it also deletes children from P(hi) = — if there arem candidate SPODES
within SPODEs and hence is not solely a SPODE selection m
algorithm. andSy; anday;; have the same meanings as in Equation (10).



C. Maximum a Posteriori Linear Mixture of Generative Dis- V. TIME COMPLEXITY ANALYSIS

tributions (MAPLMG) Assume that the number of training instances and attributes
The method of maximum a posteriori (MAP, or posterioare n and m, and number of classes is Let the average

mode) estimation can be used to obtain a point estimate mfmber of values for an attribute he

an unobserved quantity on the basis of empirical data. It is

closely related to Fisher's method.of_ mgximum Ii'kelihopg\_ Training Overhead

(ML), but employs an augmented optimization objective which ) )

incorporates a prior distribution over the quantity one wants The tlme complexity of each sch_eme t_o order SPODEs by

to estimate. MAPLMG and MAPLMD both assume as priop"e'r merits or to calculate their weights is as follows. .

distribution a Dirichlet over the SPODE ensemble weights. 1 A'_C’ BICQand MDL: T_he_comple_xny of caIcqutmg

Once this is done, they use MAP estimation to find the(DIh) is O(muv”c). The dominating part is fronil (X;, (i)

most probable set of weights for a SPODE ensemble giv}gﬁ‘ICh iterates through every a'ttr'|but@(m)), and then every

a concrete dataset. The difference between MAPLMG aN@lue O(v)), and then every joint value of the superparent

MAPLMD is that the former finds the MAP weights for anand thle C_IaSSQ(”C))' The complexity of calculat!ng(h) IS

ensemble of generative probabilistic models whilst the Iattgr(m)' Since the sgleqnon repeatSQfor each attnbﬁlf:;@)),

finds the MAP weights for an ensemble of discriminative'e Overall complexity i€)(m x (mv ¢+m)) = O(mv-c).

probabilistic models, 2) MML and BMA: The dominating co.mplexny
MAPLMG [31] constructs a SPODE ensemble that maﬁfnLMMl‘Was (v‘,"iel)l. as BMA for SPODEs is from

imizes the supervised posterior probability of the Weighlg[izl Hj,zll mnlélaiﬂ!' MML -|t.erates through

given the training data. It determines the weighing vect§@ch attribute @(mm)); and then each joint value of the

W (W, .., wy) as superparent and the clas®(c)) for which two chtorials
. are calculated @(v) + O(:%)). On top of that it loops
w = argmay, Pryc(w|D) (14) through each attribute valueO(v)) for which a third

where factorial is calculated @(;z;)). Hence the complexity is
m . O(mxvex (v+ ) xvx 5-) = O(mn(v+ 1%)). This repeats

A > wiPO%y,x)  m for each attribute@(m)) and the overall complexity is hence

PuewiD) = [ | —=%— [T O(m*n(v + &)).
xyed \ D > w; PEOO(y, x) i=1 3) CV: To classify an instance, a SPODE will multiply
yey i=1 the conditional probability of each attribute value given each

and PLOO(y)X) _ P(xi,y) e, p(xj | 2;,y) whose right class label and one (constant) superparent value. This results in
hand side is estimated frorJ{D(_ {(x,9)}) for h;. The O(mc). To do leave-one-out cross validation, the classification

maximization appearing in (14) is a constrained nonlinear opill repeatn times. Hence the complexity i©(mcn). This

timization problem that can be solved by means of a sequerig@eats for each attribut€(m)) and the overall complexity

of unconstrained maximizations [56], each of them solved B henceO(m?cn).

a Newton-like optimization procedure such as BFGS [57]. 4) FSA: The hill climbing procedure of increasing a
SPODE ensemble from empty to size will render a com-

D. Maximum a Posteriori Linear Mixture of DiscriminativePlexity of O(m?). In the first round, it alternatively adds each
Distributions (MAPLMD) of m SPODESs. In the second round, it alternatively adds each

. of (m —1) SPODEs. Following this line of reasoning, the total
A scheme closely related to MAPLMG is MAPLMD. It also {rpber of probing a SPODE i+ (m — 1) 4 -+ +2 +1 —

constructs a SPODE ensemble that maximizes the supervi%gmz) As explained for CV, to test each SPODE by leave-
posterior probability of the weights. It differs from MAPLMG one-ou.t cross validation will i’ncur complexity 6f(men). As

in that the ensemble constructed linearly combiix o
Y Y | x) a result, the overall complexity i©(m3cn).

instead ofF(y, x) in Formula (3): 5) BSE: The hill climbing procedure of reducing a SPODE
A N ensemble of size: to 0 will render a complexity of)(m?2). In
Py | x)~ Z;wipi(y | x). the first round, it alternatively eliminates each/ofSPODEs.
= In the second round, it alternatively eliminates eachnof(1)
SPODEs. Following this line of reasoning, the total number of
w = argmax, P p(w|D) (15) probing a SPODE isn+ (m—1)+---+2+1 = O(m?). As
explained for CV, to test each SPODE by leave-one-out cross
validation will incur complexity ofO(mcn). As a result, the
R 5100 ' overall complexity isO(m>cn).
Prup(wlD)oc ] (2 wib 7 (y|x) 111 wl) 6) LE: LE does not require any additional information to be
(y)eD A= = gathered at training time and hence has no impact on training
and P99 (y|x) is h;'s probability estimate fox’s true class time.
given (D — {{x,y)}). The maximization appearing in (15) 1Although MDL has an extra Ioo;()?je(b 4y V4, in case of a SPODE®(i)|

ion- imi i ; (1) .
can pe computed by means of the Expectation MaX|m'Zat"iybf maximum value 2 (the superparent and the class). Hence it can be treated
algorithm [58]. as a constant and does not increase the order of the complexity.

It determines weights as

where



Data set Ins. Att.Data Ins.  Att|Data Ins.  Att.
Abalone 4177  8lonosphere 351 3@PrimaryTumor 339 17
JapaneseVowels 9961 [iAsPlant 150 4Promoter 106 57
Annealing 898 38KRvsKP 3196 36Satellite 6435 36
Audiology 226  69LaborRelations 57 18mageSegmentation 2310 19
Automobile 205 25LEDDisplay 1000 7SickEuthyroid 3772 29
BalanceScale 625 detterRecognition 20000 1@wstralianSignLanguage 12546 8
Bands 539 36LiverDisorders 345 bSonar 208 60
BreastCancer 699 QungCancer 32 5BSoybean 683 35
Chess 551  3Bymphography 148 1B8Spambase 4601 57
ContraceptiveMethodChoice 1473 |MultipleFeaturesMorphological 2000 BpliceJunction 3177 60
CreditScreening 690 1B/ushrooms 8124  25yntheticControl 600 60
Echocardiogram 131 ®/usk 476  166Thyroid 9169 29
German 1000 2NettalkPhoneme 5438 TicTacToe 958 9
Glassldentification 214 NewThyroid 215 5Vehicle 846 18
HeartDiseaseCleveland 303 |WpticalDigits 5620 48Vowel 990 11
Hepatitis 155 19PageBlocks 5473  1Waveform 5000 40
HorseColic 368 2]PenBasedRecognition 10992 |(1@ine 178 13
CongressionalVoting 435 1fimalndiansDiabetes 768 ‘Beast 1484 8
HeartDiseaseHungarian 294  |B®stoperative 90 Zoo 101 16
Hypothyroid 3772 29

TABLE |

STATISTICS OF EXPERIMENTAL DATA SETS ‘INS.” AND ‘ATT.” ARE THE NUMBER OF INSTANCES AND ATTRIBUTES RESPECTIVELY

7) MAPLMD: The computation of the optimal weights can For weighing schemes, following the above lines of reason-
be implemented in two steps. In the first stdp©°(y|x) ing, its classification complexity i€ (m?c). More precisely,
of each h; is computed for each training instance. Thisveighing’s complexity is higher than selection’s by O(1),
takesO(m?cn), as reasoned in Section V-A.3. After that, theesulting from multiplying each SPODE’s probability estimate
EM algorithm iterates until convergence or until a maximurby its weight.
number of 10000 iterations is reached. Each EM iteration takes
O(nmc). The complete computational complexity is therefore VI. EXPERIMENTS

5 ;
O(mZcn + Kmnc) where K is the bound of the number of Empirical tests, observations, analyses and evaluations are

iterations in the maximization algorithm. Since K is fixed resented here for each selection or weighing scheme. The

it does not affect the theoretical computational complexity, .~ . C L .
: ) : jective function is to maximize the learning accuracy and
but influences the computing time when m, n and c are nof. _. f i ble classifi AODE
relatively large enough. Hence we keep the large constant K ey O Tesu ting ensemue Classiiers. .O [3.0]’ a
' complete SPODE ensemble without any selection or weighing

in the complexity expression. . ) . applied, is also included to offer a baseline in comparing
8) MAPLMG: The computation of the optimal weights car,iarnative schemes.

be implemented in two steps. In the first stdp-©°(y,x)

of each h; is computed for each training instance. This

takes O(m?2cn), as reasoned in Section V-A.3. After thatA- Data

the maximum is found by a sequence of applications of Rival schemes are implemented in the WEKA machine

the BFGS minimization algorithm until convergence or &arning environment [59], and are validated using a large

maximum number of 1000 iterations is reached. Each BFG8ite of 58 benchmark data sets from the UCI machine

iteration computes both the value of the function it tries tlearning repository and KDD archive [60], as described in

maximize and the value of its derivative. In this case this camable |. Because SPODEs currently require discrete-valued

be done inO(nmc). Following the same reasoning as for thelata, numeric attributes are discretized using the WEKA

above MAPLMD, The complete computational complexity i81DL discretizer [59]. Since part of the software (information

thereforeO(m?cn + Kmnc). metrics) does not handle missing values, following WEKA's
practice, missing values for nominal and numeric attributes in
a data set are replaced with the modes and means respectively.

B. Classification overhead

For selection schemes, the result is a linear combinatifh D€sign
of SPODEs. Hence, each scheme’s complexity is of the samdeach scheme is tested on each data set using a 30-trial
order O(m?c), resulting from theO(mc) SPODE algorithm 2-fold cross validation. Ans-fold cross validation divides a
applied over arO(m) sized ensemble. Please note that laajata set intos equal-size subsets. Each subset is used in
elimination requires a test each time a pair of attribute valuasn as a test set with the remaining { 1) data sets used
is considered to determine whether one is a generalizationfof training. One may conduci¢-fold cross validation fort
the other, incurring an additional complexi®(m?). trials, each trial shuffling the instances and formingifferent
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Fig. 2. Compare alternative methods’ mean ranks of reducing error.

subsets. The reason that we use a substantial number (30)
of trials is because we perform bias-variance decomposition
analysis, which is more accurate when sufficient trials ar
conducted [61]. The reason that we use 2-fold cross validatio
is to maximize the variation in the training data from trial to
trial.

Five performance measures are recorded on each data set:(a) High (b) Low (c)  High (d) Low
training time classification time classification errorwhich bias, low bias, high bias, high  bias, low
can be decomposed intdbéasterm and avarianceterm [61]— variance variance variance variance
[65]. _A third irreducible ter_m I? the error of an optimal Fig. 3. Bias and variance in shooting arrows at a target. Bias means that
algorithm (the level of noise in the data). In our studyhe archer systematically misses the bull's eye in the same direction. Variance
following Kohavi and Wolpert's method, it is merged intoneans that the arrows are scattered. [66]
bias [64].

Please note that varying from our previous research, we no ] » ) ]
longer impose a frequency threshold on SPODEs. Previougi?Ch !nstance is classified once in each trial and hence 30
as a means to reduce classification variance, a SPODE W&s in all.
considered a candidate for ensembling only if the parent
value’s frequency was above 30 [35]. However, subsequgmt Statistics
research demonstrated better results when the minimum freA
guency was reduced to 1 [31]. Accordingly, some experimen?é
results differ from those obtained in previous otherwise equiv-
alent experiments [35].

variety of statistics are employed to evaluate measured
rformance of each competing scheme.

« Mean of ranks Following the practice of Friedman [67],
[68], for each data set, we rank competing algorithms.
_ ) - The one that attains the best performance is ranked 1,
C. Bias-variance decomposition of error the second best ranked 2, so on and so forth. A method’s
It is useful to look into bias and variance of a classifier mean rank is obtained by averaging its ranks across all
because they each offer a different perspective on classification data sets. Compared with mean value (the arithmetic
error. Bias describes the component of error that results from mean of measured performance, such as error, across
systematic error of the learning algorithm. Variance describes all data sets), mean rank can reduce the susceptibility to
the component of error that results from random variation in  outliers that, for instance, allows a classifier's excellent
the training data and from random behavior in the learning performance on one data set to compensate for its overall
algorithm, and thus measures how sensitive an algorithm is to bad performance [69].
changes in the training data. As the algorithm becomes more Friedman test As recommended by Demsar [69], the
sensitive, the variance increases. Friedman test is effective for comparing multiple al-
Moore and McCabe [66] illustrated bias and variance gorithms across multiple data sets. It compares mean
through shooting arrows at a target, as reproduced in Figure 3. ranks of schemes to decide whether to reject the null-
We can think of the perfect model as the bull's-eye on a target, hypothesis, which states that all the schemes are equiva-
and the learned classifier as an arrow fired at the bull’'s-eye. lent and so their ranks should be equal.
Bias and variance describe what happens when an archer fireé Nemenyi test If the Friedman test rejects its null-
many arrows at the target. Bias means that the aim is off hypothesis, we can proceed with a post-hoc test, the
and the arrows land consistently off the bull’'s-eye in the same Nemenyi test. It can be applied to mean ranks of com-
direction. Large variance means that repeated shots are widely peting schemes and indicate whose performances have
scattered on the target. They do not give similar results but statistically significant differences (here we use the 0.05
differ widely among themselves. A good learning scheme, like critical level).
a good archer, should have both low bias and low variance. We Win/lose/tie record (w/l/t) can be calculated for each pair
use Kohavi and Wolpert’s definitions of bias and variance [64]. of competitorsA and B with regard to a performance
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measureM. The record represents the number of data When we apply the Friedman test, with 15 algoritRraad
sets in whichA respectively beats, loses to or ties wittb8 data setsf'r is distributed according to the F distribution
B on M. To avoid breaking the flow of the main text, thewith (15— 1) = 14 and (15— 1) x (58 — 1) = 798 degrees of
w/l/t records on error, bias and variance are respectivdigedom. The critical value oF'(14, 798) at the 0.05 critical

listed in Tables Il, Ill and IV in the Appendix.

E. Observations and analyses

Because information metrics can act as both selection f’iﬂﬂ
weighing schemes, we add a suffiy’ to each selection
scheme while a,;’ to each weighing scheme. When actin
as selection schemes, AIC, BIC and MDL produce the sa
order of SPODEs and select the same ones. Hence M

represents the results for AlGnd BIC, as well.

MAPLMG,, | ————O————

D

level is 1.7.F calculated from the mean ranks is 28.3. Since
28.3 > 1.7, we can reject the null hypothesis and infer that
there exists significant difference among rival schemes.

To find out exactly which schemes are significantly dif-
ferent, we proceed to the Nemenyi test, whose results are
strated in Figure 6. In the graph, the mean rank of each
scheme is pointed by a circle. The horizontal bar across each
Zircle indicates the ‘critical difference’. The performance of
'Eﬂﬁo methods is significantly different if their corresponding

ean ranks differ by at least the critical difference. That
is, two methods are significantly different if their horizontal
bars are not overlapping. For instance, Figure 6 reveals that

MAPLMG,, is ranked best and is significantly better than
w ——
MAP;:/IAZ RAN,, MDL,, MML,, CV,, FSA.,, BSE,, AIC,, BIC,,
w —_——
MDL ,, and BMA,,.

MML,, —_——
MDL,, [N
BIC,, —_— MAPLMG,, _—
AIC,, [ MAPLMD,, —_—e—
LEg — BMA,, —_—
BSE, [ MML,, _
FSAg [ o MDL,, [
cv —o—— BIC,, —_——
MMLg ——— AIC,, R
MDLg —_— LEg _—
RAN —e— BSE, [
AODE —_—— FSA —_——

CVs _——

2 4 6 8 10 12 14
MMLg — o
Mean rank of error
MDLg B
Fig. 6.  Apply the Nemenyi test to alternative schemes’ mean ranks of  RAN; —
reducing error. AODE —_——
3 4 5 6 7 8 9 10 11 12 13 14

Mean rank of variance

1) Reducing classification error: To compare each
scheme’s influence on the SPODE ensemble’s classificat'pn . . ,
. . . 1g. 7. Apply the Nemenyi test to alternative schemes’ mean ranks of
error, their mean ranks of reducing error are illustrated ducing variance.
Figure 2. It indicates that among selection schemes,ikEhe
most effective on reducing classification error; while among 2) Reducing classification varianceFigure 4 illustrates

weighing schemes, MAPLM is the most effective. It also each scheme’s mean rank of reducing variance. The Friedman

revea!s an interesting point. that AODE, Whi,Ch simpl){ "n,earIYest indicates that there exist significant differences among
combines every SPODE without any selection or weighing, IS

actually more effective than the majority of rival schemes. We,, _ ,
We have studied 16 schemes. For experimental purpose, ahd BIC,

partia!ly attrit_JUte this tP AOPE,S OHtSta”di“Q perfor.mance OLke presented by MDL because they produce the same results. AODE is
reducing variance, which will be discussed in Section VI-E.2dded as a benchmark algorithm. As a result, there are 15 algorithms tested.
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Fig. 5. Compare alternative methods’ mean ranks of reducing bias.

schemes on reducing variance and Figure 7 depicts the result$) Capability for fast training:Figure 9 illustrates the mean
of the Nemenyi test to reveal what those differences are. ranks of alternative schemes’ training time. Consistent with
It is observed that AODE and MM are the best at our time complexity analyses in Section V-A, AODE and
reducing classification variance among alternative method<€, that do not conduct any selection or weighing work in
Between themselves, AODE beats MilLmore often than training are the most efficient. MAPLMP and MAPLMG,,
not (w/l/t being 11/8/39) according to Table IV. We suggesiptimize multiple weights simultaneously, which very likely
the reason for AODE's outstanding performance on variancentributes to their effectiveness since others calculate the
reduction is that selection and weighing will increase theeights for individual SPODEs in isolation. On the other
classifier’s sensitivity to training data because weights as whknd, this optimization demands time and hence MAPLMD
as selection metrics are calculated therefrom. In contrastid MAPLMG, are slower than every other scheme except
AODE minimizes dependence on training data and hence ddiML ,, and BMA,,.

minimize classification variance. MML and BMA can return large values. In that case, when
serving as weighing schemes, MiJLand BMA,, involve

MAPLMGy - calculating large exponentials in Formula (11). This often
MApgmzw - leads to arithmetic overflow when using 32-bit computing
L - machines. Our solution to this problem is to use the java
MDL: - s class BigDecimal that implements arbitrary-precision signed
BIC, - — decimal numbers. A BigDecimal consists of an arbitrary
ALC,, —_—e— precision integer unscaled value and a non-negative 32-bit
LEs - S— integer scale, which represents the number of digits to the

BSEs — right of the decimal point. Although BigDecimal solves the

problem of overflowing, its calculation can be very slow when

M;Z - the numbers are large. This is why MMLand BMA,, are
MDL, P ranked the worst in Figure 9 and require large amount of
RAN, - — training time as in Figure 10.
AODE —— Hence, although MM, is as effective as AODE at re-
3 4 5 6 7 8 s 10 1 12 13 ducing classification variance and is ranked fifth at reducing
Mean rank of bias classification error, it can be infeasible for modern real-world

Fig. 8. Apply the Nemenyi test to alternative schemes’ mean ranks gppllcatlons where Iarge data sets are Commonly involved.
reducing bias. 5) Capability for fast classification:Figure 11 and Fig-
ure 12 illustrate alternative schemes’ training time. Consistent
3) Reducing classification biasFigure 5 illustrates each with our time complexity analyses in Section V-B, model
scheme’s mean rank of reducing bias. The Friedman test ingglection schemes identify a subset of SPODEs to carry out
cates that there exist significant differences among schemegt@ssification, and hence are faster than AODE that uses all
reducing bias and Figure 8 depicts the results of the Neme@FODEs. Model weighing schemes uses all SPODEs and
test to reveal what those differences are. multiply each with calculated weights, and hence are slower
It is observed that on reducing bias, model selectidhan AODE. Among all schemes, FSAlelivers the fastest
schemes like FSA CV, and BSE are the most effective. classification and Cythe second.
However, their outstanding capability for bias reduction is One very interesting issue to spot is that,.& lazy method
overshadowed by their inferior performance on variance redubat conducts calculation in classification time, turns out to
tion (refer to Figure 7). The net effect is that they are worse beé faster than AODE. We suggest the reason is that on one
reducing error for SPODE ensembles. In contrast, schemes lilend, LE requires a simple test each time when a pair of
LE, and MAPLMG, reduce bias as well as control variancattribute values is considered to determine whether one is a
and turn out to be more effective at error reduction for SPODgeneralization of the other, which causes a small increase in
ensembles. the compute time. On the other hand, once a generalization
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Fig. 10. Compare alternative schemes’ mean values of training time. Jyisftid BMA,, suffer from the overflowing problem in practice. To keep a readable
scale, the bars of MMJL, and BMA,, are cut short with their true values labeled on top.

relationship is detected, LLEneed not calculate or multiply that for AODE. The values of the x-axis are the outcome for
related conditional probabilities, which decreases the compM&PLMG,, divided by that for AODE. Each point on the
time. The time saved in the latter often exceeds the time cagaph represents one of the 58 data sets. Points on the left of
in the former. Hence, LE although ‘lazy’, can still deliver the vertical line at MAPLMG,/JAODE=1 in each subgraph
faster classification than AODE. are those of which MAPLMG outperforms AODE. Points
below the horizontal line at LEFAODE=1 indicate that LE
outperforms AODE. Points below the diagonal line Y=X
represent that MAPLMG outperforms LE. It is observed
that on one hand, both LEand MAPLMG, frequently
reduce bias compared with AODE as the majority of points
fall within the boundaries X=1 and Y=1 in Figure 13 (a).
On the other hand, AODE is better at reducing variance as
L the majority of points fall beyond the boundaries X=1 and
Y=1 in Figure 13 (b). The end effect is that both L Bnd
Fig. 11. Compare alternative schemes’ mean ranks of test time. MAPLMG,, outperform AODE on reducing error (w/l/t being
27/8/23 and 33/6/19 respectively as in Table ).

Between LE and MAPLMG, themselves, it is observed
that MAPLMG,, slightly outperforms LE on both bias and
variance reduction (w/l/t being 25/23/10 and 22/20/16 re-
spectively as in Tables Il and V). The end effect is that
MAPLMG,, more frequently attains lower error than LE

H H (w/llt being 28/19/11 as in Table Il). On the other hand, in
10—
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terms of training efficiency and classification efficiency,,LE
= = — o is much faster than MAPLMG as detailed in Sections VI-E.4
) ) ‘ and VI-E.5.
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Fig. 12. Compare alternative schemes’ mean values of test time.

6) Best schemes’ relative performancelE, and VII. CONCLUSION AND FUTURE WORK
MAPLMG,, are respectively the best model selection and This paper presents a comprehensive study, both theoreti-
model weighing schemes for reducing SPODE ensemblesilly and empirically, of 16 representative model selection and
classification error. Figure 13 graphs the relative biasjodel weighing schemes for linearly ensembling superparent-
variance and error between LEMAPLMG,, and AODE. one-dependence estimators, a popular family of semi-naive
The values on the y-axis are the outcome for, Idivided by Bayesian classifiers.
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lllustrate LE and MAPLMG,,’s performance relative to AODE.

For each scheme, this paper provides its definition, rationale
and time complexity. Comprehensive experiments across 58
UCI benchmark data sets are conducted to test each scheme®
effect on ensemble learning’s accuracy and efficiency.

The study results suggest the following answers to the
guestions we have asked at the beginning of the paper:

1)

2)

3)

4)

5)

MAPLMG,, is ranked the best among all rival schemes
on classification accuracy. It wins more often than not
when compared with every other single scheme across
the suite of 58 data sets. It is significantly better than
RAN,, MDL,, MML ,, CV,, FSA,, BSE,, AIC,,, BIC,,,
MDL ,, and BMA,,. However, its training takes longer
than the majority of the schemes.

LE, is ranked the best among model selection schemes/)
and the second best among all rival schemes on

06 07 08 09 1 11 12
X =MAPLMG,, / AODE

0.6

06 07 08 09 1 11 12
X =MAPLMG,, / AODE

it is suggested that estimating (y | x) is less reliable
than estimatingP;(y,x) and is not preferred.

In general, information-theoretic metrics (either as se-
lection or as weighing schemes) are not effective at
reducing an ensemble’s classification error. Although
MML ., as a weighing scheme is ranked fairly well
(5th), its high time requirement for calculating weights
hinders its deployment in practice. A further thought
is that currently information-theoretic metrics measure
the merit of individual classifiers. It might help to
generalize them so as to measure the collective merit of
an ensemble. This can be an interesting research issue
to further explore.

Hence, whether to use model selection or model weigh-
ing depends on the specific requirements of a particular

classification task. If one needs to maximize accuracy,
we recommend MAPLMG. If one seeks both high
learning accuracy and efficiency, we recommend,.LE

classification accuracy. It wins more often than not
when compared with every other single scheme except
MAPLMG,, across the suite of 58 data sets. It is
significantly better than RAN MDL,, MML,, CV,, If one needs to minimize variance while obtaining a
BSE,, AIC,, BIC,,, MDL,, and BMA,,. Besides, it is reasonable accuracy, we recommend AODE.

the most efficient at training as well as very efficient at The model selection and weighing schemes studied here can
classification. be generalized to other Bayesian network classifiers. RAN,
AODE is ranked the best among all rival methods o6V, FSA and BSE only utilize a classifier’s classifications.
reducing classification variance. It wins more often thaHence they can be applied to any classifier. LD seeks general-
not compared with every other single scheme acro&stion relationships among attribute values. If such a relation-
the suite of 58 data sets. It is significantly better thaship exists, it deletes the more general value from the network
CV,, FSA,, BSE, AIC,, BIC,, MDL,, and BMA,,. structure. The calculations for AIC and BIC, MDL, MML,

It is the most efficient at training. It is faster tharand BMA with MML have already been extended to arbitrary
weighing schemes and slower than selection schengayesian network structures respectively [70] [71] [51] [72].
at classification. MAPLMG and MAPLMD were introduced as linear mixture
Commonly used selection schemes such as,G8A, inducers for either generative or discriminative probabilistic
and BSE turn out to be less effective than simplyclassifiers [31] and are then particularized to SPODE in this
including every candidate classifier (AODE). The reasastudy. Hence, they can be directly applied to any Bayesian
is that they incur high classification variance. Althougihetwork classifier. An interesting direction for future research
they are ranked among the best on reducing classificatisnto examine the extent to which our results generalize to
bias, their wins in bias reduction are overshadowed lother Bayesian network classifiers.

their losses in variance reduction. The end effect is that

they are less effective at reducing error on the learning ACKNOWLEDGMENTS
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The observation that MAPLMD is less effective than help on our statistical tests; and Dr. Gavin Brown for his kind
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training instances in addition to count(y,x). Hence
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