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Abstract— We conduct a large-scale comparative study
on linearly combining superparent-one-dependence estimators
(SPODEs), a popular family of semi-naive Bayesian classifiers.
Altogether 16 model selection and weighing schemes, 58 bench-
mark data sets, as well as various statistical tests are employed.
This paper’s main contributions are three-fold. First, it formally
presents each scheme’s definition, rationale and time complexity;
and hence can serve as a comprehensive reference for researchers
interested in ensemble learning. Second, it offers bias-variance
analysis for each scheme’s classification error performance.
Third, it identifies effective schemes that meet various needs in
practice. This leads to accurate and fast classification algorithms
with immediate and significant impact on real-world applications.
Another important feature of our study is using a variety of
statistical tests to evaluate multiple learning methods across
multiple data sets.

Index Terms— Classification learning, Bayesian probabilistic
learning, ensemble learning, model selection, model weighing,
superparent-one-dependence estimator (SPODE).

I. I NTRODUCTION

Ensemble learning is a popular method in classification
learning. It combines multiple learning models’ decisions to
produce more accurate results than single models [1]–[5].
This paper focuses on two particular aspects of ensemble
learning, selection and weighing of models for linear model
combination. The goal is to study formally alternative selection
or linear weighing schemes in theory and to identify effective
and efficient ones for practical use.

The general problem for model selection is, given some
sample data, how to decide which are the most effective
models within some model space. The general problem of
linear model weighing focuses on calculating the weight
associated with each model within some model space and
accordingly weighing their decisions when ensembling.

This paper looks at the model space of Bayesian net-
work classifiers. In particular, superparent-one-dependence es-
timators (SPODEs) [6], [7], a popular family of semi-naive
Bayesian classifiers, are taken as a vehicle of illustration
throughout the research.

This paper presents 16 alternative model selection or weigh-
ing schemes. Selection schemes include Akaike’s information
criterion (AIC), Bayesian information criterion (BIC), min-
imum description length (MDL), minimum message length

(MML), random selection (RAN), cross validation (CV), for-
ward sequential addition (FSA), backward sequential elimina-
tion (BSE), lazy elimination (LE). Weighing schemes include
Akaike’s information criterion (AIC), Bayesian information
criterion (BIC), minimum description length (MDL), min-
imum message length (MML), Bayesian model averaging
(BMA), maximum a posteriori linear mixture of discriminative
distributions (MAPLMD), and maximum a posteriori linear
mixture of generative distributions (MAPLMG). A large-
scale empirical comparison using 58 benchmark data sets is
conducted to test the classification accuracy and efficiency of
ensembles that result from using alternative schemes. A variety
of statistics are employed to thoroughly evaluate and rank their
performances.

By doing this research, we seek answers to the following
questions:

1) What are every scheme’s strength and weakness for
ensemble learning?

2) Which scheme is consistently among the best algorithms
for our large suite of data sets?

3) In general, which is more effective and/or more efficient,
model selection or model weighing?

4) How to choose which scheme to use in practice?

II. BACKGROUND

This section defines terminology and notation that will be
used throughout this paper. It also explains how a SPODE and
an ensemble of SPODEs carry out classification.

A. Terminology and Notation

This paper addresses the problem of classification learning
using Bayesian network classifiers. The following terminology
and notation will be used.

An instancex 〈x1, x2, · · · , xm〉 is a vector ofm attribute
values xi, each observed for an attribute variableXi (i ∈
[1,m]). As SPODEs currently require discrete-valued data,
numeric attributes are discretized. An instance can also have
a class labely corresponding to the class variableY . If its
class label is known, an instance islabeled. Otherwise, it is
unlabeled. Whenever applicable, for the purpose of uniformity
in formulae,Xi represents the class variable wheni = m+1.



2

Y

X1 X2 X3 X4

(a) NB

X4

C

X1 X2 X3

(b) ODE

Y

X1 X2 X3 X4

(c) SPODE

Fig. 1. Illustration of NB, ODE and SPODE. An arc points from a parent to
a child. A child only depends on its parents. NB assumes each attribute only
depends on the classY and is independent of other attributes given the class.
ODE allows each attribute depends on at most one other attribute in addition
to the class. SPODE assumes that each attribute can depend on acommon
attribute (the superparentX2) in addition to the class.

Training dataD is a set of labeled instances from which a
classifier is learned to predict the class labels of unlabeled
instances. The number of training instances isn. The number
of values forXi is vi. Xi’s parent variables areΦ(i). The
number of joint states (joint instantiated values) of parents of
Xi is |φ(i)|. The r-th joint state of the parents isφir. When
applicable,h indicates a SPODE in general andhi indicates
a particular SPODE whose superparent isXi. Generally the
log base in information metrics does not matter. A common
practice is to usee or 2.

B. SPODE

Bayesian network classifiers have long been a core tech-
nique in predictive learning. The naive-Bayesian (NB) clas-
sifier is among the first Bayesian networks introduced into
machine learning. NB assumes attributes conditionally inde-
pendent of each other given the class. It is very efficient
with reasonable prediction accuracy [8]–[15]. In recent years,
there has also been considerable interest in developing variants
of NB that weaken the attribute independence assumption in
order to further improve the prediction accuracy [6], [7], [16]–
[30]. For instance, one-dependence estimators (ODEs) [23]
such as tree-augmented naive Bayes (TAN) [16] provide a
powerful alternative to NB. As depicted in Figure 1, an ODE
is similar to an NB except that each attribute is allowed
to depend on at most one other attribute in addition to the
class. Among ODEs, SPODEs [6], [7] have received a lot of
attention because they offer a combination of high training
efficiency, high classification efficiency and high classifica-
tion accuracy [30]–[47]. Those merits give SPODEs a great
potential to substitute for naive Bayes classifiers in numerous
real-world classification systems, including medical diagnosis,
fraud detection, email filtering, document classification and
webpage prefetching. As illustrated in Figure 1, a SPODE re-
laxes NB’s attribute independence assumption by allowing all
attributes to depend on a common attribute, thesuperparent,
in addition to the class.

To classify an instancex, a Bayesian network classifier
calculatesP̂ (y | x) for each y ∈ Y , an estimate of the
probability of the class label given this instanceP (y | x).
The label attaining the highest probability will be assigned
to x. SinceP (y | x) = P (y,x)

P (x) and P (x) is invariant across

different class labels, one only needs to estimateP (y,x) as:

argmaxy P (y | x) = argmaxy P (y,x). (1)

A SPODE with superparentXp uses Formula (2) to cal-
culate P̂ (y,x). The second equation results from SPODEs’
assumption that all attributes are independent of each other
given the classY and the superparentXp.

P̂ (y,x) = P̂ (y, xp)P̂ (x | y, xp)

= P̂ (y, xp)
m∏

i=1

P̂ (xi | y, xp) (2)

C. SPODE Ensemble

There has been a strong interest in ensembling SPODEs
because it can decrease a single SPODE’s classification vari-
ance, and attain high classification accuracy with moderate
time requirement [30]–[47].

For a training data set withm attributes, there can bem
candidate SPODEs, each taking a different attribute as its
superparent. A SPODE ensemble is a linear combination of
multiple SPODEs’ probability estimates. It classifiesx using
Formula (3), where eacĥPj(y,x) is calculated by a SPODE
using Formula (2) withp = j.

P̂ (y,x) =
m∑

j=1

wjP̂j(y,x) (3)

The first approach to ensembling SPODES used equal
weight combination of all SPODEs whose parent value oc-
curred above a user-specified minimum frequency in the train-
ing data [30]. Subsequent research suggested that frequency
is not a useful model selection criterion and that appropriate
weighing can substantially improve upon equal weighing, such
as in MAPLMD and MAPLMG weighing schemes [31]. On
the other hand, it has also been shown that model selection
can be effective when ensembling SPODEs [35], [44]. This
paper presents a comprehensive investigation into the relative
merits of alternative approaches to weighing and selecting.

III. M ODEL SELECTIONSCHEMES

The general problem for model selection is, given some
sample data, how to decide which are the most effective
models within some model space. This paper looks at the space
of SPODE models. Only selected SPODEs will be included in
the ensemble. Strictly speaking, model selection is an extreme
form of model weighing where the weights are either 1 or 0.
That is,

wj =
{

1 if SPODEj is selected
0 otherwise

However, because information-theoretic schemes take different
forms when used in model selection versus weighing, this
study differentiates selection from weighing.
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A. Information-Theoretic Metrics

Information-theoretic metrics including AIC, BIC, MDL
and MML [48]–[51], provide a combined score, as in For-
mula (4), for a proposed explanatory model (a SPODE in our
context) and for the data given the model. They aim to find
a balance between goodness of fit (minimizingI(D|h)) and
model simplicity (minimizingI(h)), and thereby achieve good
modeling performance without overfitting the data. The best
score is the smallest. Hence the lower the score a SPODE gets,
the higher its priority to appear in the ensemble.

score = I(D|h) + I(h). (4)

The termI(D|h) is sharedby information-theoretic metrics
and is:

I(D|h) = n

(
m+1∑

i=1

H(Xi)−
m+1∑

i=1

H(Xi,Φ(i))

)
(5)

whereH(Xi) is the entropy ofXi, and H(Xi,Φ(i)) is the
mutual information betweenXi and its parents:

H(Xi) = −
vi∑

j=1

(P (Xi = xij) log P (Xi = xij)) (6)

H(Xi, Φ(i)) =
vi∑

j=1

|φi|∑
r=1

(
P (xij , φir) log

P (xij , φir)
P (xij)P (φir)

)
.

How to computeI(h) variesamong different schemes and
is presented below.

a) Akaike’s Information Criterion (AIC):According to
Akaike [48],

IAIC(h) = 2




m+1∑

i=1

(vi − 1)
∏

j∈Φ(i)

vj


 . (7)

For any root nodeXi (whereΦ(i) = ∅), the product term
on the right should be replaced by 1. The same principle also
applies to BIC and MDL, below.

b) Bayesian Information Criterion (BIC):According to
Schwarz [49],

IBIC(h) = (log n)




m+1∑

i=1

(vi − 1)
∏

j∈Φ(i)

vj


 . (8)

c) Minimum Description Length (MDL):According to
Suzuki [50],

IMDL(h) = (
1
2

log n)




m+1∑

i=1

(vi − 1)
∏

j∈Φ(i)

vj


 . (9)

d) Minimum Message Length (MML):According to
Korb and Nicholson [51],

IMML(h) = log(m + 1)! + Cm+1
2 − log(m− 1)!

+
m+1∑

i=1

vi − 1
2

(log
π

6
+ 1)

− log
m+1∏

i=1

|φi|∏

j=1

(
(vi − 1)!

(Sij + vi − 1)!

vi∏

l=1

αijl!

)
(10)

whereSij is the number of training instances where the parents
Φ(i) take their joint j-th value, andαijl is the number of
training instances whereXi takes itsl-th value andΦ(i) take
their j-th joint value. For any rootXi, |φi| should be treated as
1 and every instance should be treated as matching the parents
for the purposes of computingSij andαijl. Formula (10) looks
complicated, but it can be computed in polynomial time [52].

Each information-theoretic metric can order a sequence of
SPODEs by their supposed merits. One should then expect
that excluding poorly predictive SPODEs could improve the
classification accuracy. For instance, after it has reached the
optimal classification accuracy, an ensemble should not pro-
ceed to include additional SPODEs that are counterproductive,
even when there are some left. To decide when SPODEs of
sufficient merit are no longer to be found for the ensemble
given an ordered sequence ofm SPODEs,m ensembles are
tested. Starting with an empty ensemble, each ensemble in turn
includes further one SPODE in the queue. Every ensemble’s
leave-one-out cross validation accuracy is calculated. The
ensemble with the lowest error is the one to be selected.

B. Random Selection (RAN)

RAN randomly orders SPODEs. Following the practice with
information-theoretic metrics, it then testsm ensembles from
size 1 to sizem; and the one with the lowest leave-one-out
cross validation error is selected. RAN has low computational
overhead and offers a useful comparator against which to judge
the impact on classification error of other selection schemes.

C. Cross Validation (CV)

CV [35] scores each individual SPODE by its cross val-
idation error in the training data. Particularly in this study,
leave-one-out cross validation is employed. Given a SPODE,
CV loops through the training datan times, each time training
the SPODE from (n − 1) instances to classify the remaining
1 instance. The misclassifications are summed and averaged
overn iterations. The resulting classification error rate is taken
as the metric value of the SPODE. The lower the metric, the
higher priority for the SPODE to be used. This process is very
efficient as the model need only be updated for each instance
that is left out, rather than recalculated from scratch.

Following the practice with information-theoretic metrics,
after CV orders SPODEs according to their merits, it testsm
ensembles from size 1 to sizem; and the one with the lowest
leave-one-out cross validation error is selected.

D. Forward Sequential Addition (FSA)

Inspired by the forward sequential selection strategy for
attribute selection in NB [21], FSA [35] begins with an empty
ensemble. It then uses hill-climbing search to iteratively add
SPODEs most helpful for lowering the ensemble’s classifica-
tion error. In each iteration, suppose the current ensemble is
Ecurrent with k SPODEs. FSA in turn adds each candidate
SPODE, one that has not been included intoEcurrent, and
obtains an ensembleEtest of size (k + 1). It then calculates
the leave-one-out cross validation error ofEtest. The Etest



4

who obtains the lowest error is retained. The corresponding
added SPODE is permanently included into the ensemble and
deleted from the candidate list. The same process is applied to
the new SPODE ensemble of size (k+1) and so on, until every
SPODE has been included. The order of addition produces a
ranking order for SPODEs. The earlier a SPODE is added, the
more merit it possesses and the higher its priority to be used.

The ensemble that achieves the lowest leave-one-out cross
validation error in training during the addition process is
selected. If multiple ensembles attain the lowest error, the one
that includes most SPODEs is chosen, as a means to reduce
variance caused by model selection [30].

E. Backward Sequential Elimination (BSE)

Inspired by the backward sequential elimination strategy for
attribute selection in NB [21], BSE [35] starts out with a full
ensemble including every SPODE. It then uses hill-climbing
search to iteratively eliminate SPODEs whose individual ex-
clusion most helpful for lowering the classification error.
In each iteration, suppose the current ensemble isEcurrent

involving k SPODEs. BSE eliminates each member SPODE
in turn from Ecurrent and obtains an ensembleEtest of size
(k − 1). It then calculates the leave-one-out cross validation
error of Etest. The Etest which yields the lowest error is
retained. The corresponding eliminated SPODE is permanently
deleted from the ensemble. The same process is applied to the
new SPODE ensemble of size (k − 1) and so on, until the
ensemble is empty. The order of the elimination produces a
ranking order for SPODEs. The earlier a SPODE is eliminated,
the less merit it possesses and the lower its priority to be used.

The ensemble that achieves the lowest leave-one-out cross
validation error in training during the elimination process is
selected. If multiple ensembles attain the lowest error, the one
that includes most SPODEs is chosen, as a means to reduce
variance caused by model selection [30].

F. Lazy Elimination (LE)

The above schemes studied sofar select at training time a
subset of SPODEs that are used to classify all test instances.
An alternative approach delays selection until classification
time. LE [44] is based on the observation that∀a, b, c : P (a |
b) = 1.0 entailsP (c | a, b) = P (c | b). Hence, if it can
be inferred that one attribute value entails another, assuming
conditional independence between the values is likely to be
harmful and the more general valuea may safely be deleted.
To this end, before a test instance is classified LE deletes any
attribute valuexi of the instance that occurs in the training data
more than a user-defined minimum number of times (in this
research, 30) and for which there is another valuexj(j 6= i)
such thatxi is present in every training instance containing
xj . If xi andxj are identical, only one is deleted. Effectively,
LE performs lazy selection, by not using SPODEs whose
superparents are generalizations of other values of the instance
to be classified. Note however that it also deletes children from
within SPODEs and hence is not solely a SPODE selection
algorithm.

IV. L INEAR MODEL WEIGHING SCHEMES

Linear model weighing focuses on calculating the weight
associated with each SPODE to linearly combine their proba-
bility estimates ofP (y,x) as in Formula (3).

A. Information Theoretic Metrics

Since the information-theoretic metrics AIC, BIC, MDL
and MML as defined in Section III-A rely upon Shannon
information theory [53] for their motivation and interpretation,
it is appropriate to ask what kind of probabilistic weight they
imply for purpose of prediction. In principle, they should
support the inversion of Shannon’s law to derive the posterior
probability of a model given the data for such purposes. Hence,
the weightw for a SPODEh is:

w = P̂ (h|D)
= e−I(h|D)

= e−(I(D|h)+I(h)−I(D)) (11)

whereI(D) = n
∑m+1

i=1 H(Xi) is the entropy of data whose
H(Xi) calculated by Equation (6);I(D|h) is calculated by
Equation (5); andI(h) is calculated by Equations (7, 8, 9, 10)
respectively for AIC, BIC, MDL and MML to be weights.

B. Bayesian Model Averaging (BMA)

BMA [54], [55] is theoretically the optimal method for
combining learned models. It provides a coherent mechanism
to ensemble classification models by accounting for single
models’ uncertainty of generating the data. In the Bayesian
view, using a single model to make predictions ignores the
uncertainty caused by training data as to which is the correct
model; thus all possible models in the model space under
consideration should be used when making predictions, with
each model weighted by its probability of being the correct
modelP (hi | D).

Given an instancex and a set of classifiershi, BMA
estimates the probability of each class label givenx using:

P̂ (y | x) =
m∑

i=1

P̂ (y | hi)P̂ (hi | D) (12)

whereP̂ (y | hi) is the class probability estimated by a SPODE
as in Formula (2). One common approach to estimating the
weight was proposed by Cooper and Herskovits [52]:

wi = P̂ (hi | D) =
P̂ (hi, D)∑m
i=1 P̂ (hi, D)

(13)

where

P̂ (hi, D) = P̂ (hi)
m+1∏

k=1

|φi|∏

j=1

(
(vk − 1)!

(Skj + vk − 1)!

vk∏

l=1

αkjl!

)
,

P̂ (hi) =
1
m

if there arem candidate SPODEs,

andSkj andαkjl have the same meanings as in Equation (10).
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C. Maximum a Posteriori Linear Mixture of Generative Dis-
tributions (MAPLMG)

The method of maximum a posteriori (MAP, or posterior
mode) estimation can be used to obtain a point estimate of
an unobserved quantity on the basis of empirical data. It is
closely related to Fisher’s method of maximum likelihood
(ML), but employs an augmented optimization objective which
incorporates a prior distribution over the quantity one wants
to estimate. MAPLMG and MAPLMD both assume as prior
distribution a Dirichlet over the SPODE ensemble weights.
Once this is done, they use MAP estimation to find the
most probable set of weights for a SPODE ensemble given
a concrete dataset. The difference between MAPLMG and
MAPLMD is that the former finds the MAP weights for an
ensemble of generative probabilistic models whilst the latter
finds the MAP weights for an ensemble of discriminative
probabilistic models.

MAPLMG [31] constructs a SPODE ensemble that max-
imizes the supervised posterior probability of the weights
given the training data. It determines the weighing vector
w 〈w1, . . . , wm〉 as

w = argmaxw P̂LMG(w|D) (14)

where

P̂LMG(w|D) =
∏

〈x,y〉∈D




m∑
i=1

wiP̂
LOO
i (y,x)

∑
y∈Y

m∑
i=1

wiP̂LOO
i (y,x)

m∏

i=1

wi




and P̂LOO
i (y,x) = P̂ (xi, y)

∏m
j=1 P̂ (xj | xi, y) whose right

hand side is estimated from (D − {〈x, y〉}) for hi. The
maximization appearing in (14) is a constrained nonlinear op-
timization problem that can be solved by means of a sequence
of unconstrained maximizations [56], each of them solved by
a Newton-like optimization procedure such as BFGS [57].

D. Maximum a Posteriori Linear Mixture of Discriminative
Distributions (MAPLMD)

A scheme closely related to MAPLMG is MAPLMD. It also
constructs a SPODE ensemble that maximizes the supervised
posterior probability of the weights. It differs from MAPLMG
in that the ensemble constructed linearly combinesP̂i(y | x)
instead ofP̂i(y,x) in Formula (3):

P̂ (y | x) ≈
m∑

i=1

wiP̂i(y | x).

It determines weights as

w = argmaxw P̂LMD(w|D) (15)

where

P̂LMD(w|D) ∝
∏

〈x,y〉∈D

(
m∑

i=1

wiP̂
LOO
i (y|x)

m∏

i=1

wi

)

and P̂LOO
i (y|x) is hi’s probability estimate forx’s true class

given (D − {〈x, y〉}). The maximization appearing in (15)
can be computed by means of the Expectation-Maximization
algorithm [58].

V. T IME COMPLEXITY ANALYSIS

Assume that the number of training instances and attributes
are n and m, and number of classes isc. Let the average
number of values for an attribute bev.

A. Training Overhead

The time complexity of each scheme to order SPODEs by
their merits or to calculate their weights is as follows.

1) AIC, BIC and MDL: The complexity of calculating
I(D|h) is O(mv2c). The dominating part is fromH(Xi, Φ(i))
which iterates through every attribute (O(m)), and then every
value (O(v)), and then every joint value of the superparent
and the class (O(vc)). The complexity of calculatingI(h) is
O(m).1 Since the selection repeats for each attribute (O(m)),
the overall complexity isO(m× (mv2c + m)) = O(m2v2c).

2) MML and BMA: The dominating complexity
of MML as well as BMA for SPODEs is from∏m+1

i=1

∏|φi|
j=1

(vi−1)!
(Sij+vi−1)!

∏vi

l=1 αijl!. MML iterates through
each attribute (O(m)); and then each joint value of the
superparent and the class (O(vc)) for which two factorials
are calculated (O(v) + O( n

vc )). On top of that it loops
through each attribute value (O(v)) for which a third
factorial is calculated (O( n

v2c )). Hence the complexity is
O(m ∗ vc ∗ (v + n

vc ) ∗ v ∗ n
v2c ) = O(mn(v + n

vc )). This repeats
for each attribute (O(m)) and the overall complexity is hence
O(m2n(v + n

vc )).
3) CV: To classify an instance, a SPODE will multiply

the conditional probability of each attribute value given each
class label and one (constant) superparent value. This results in
O(mc). To do leave-one-out cross validation, the classification
will repeat n times. Hence the complexity isO(mcn). This
repeats for each attribute (O(m)) and the overall complexity
is henceO(m2cn).

4) FSA: The hill climbing procedure of increasing a
SPODE ensemble from empty to sizem will render a com-
plexity of O(m2). In the first round, it alternatively adds each
of m SPODEs. In the second round, it alternatively adds each
of (m−1) SPODEs. Following this line of reasoning, the total
number of probing a SPODE ism + (m− 1) + · · ·+ 2 + 1 =
O(m2). As explained for CV, to test each SPODE by leave-
one-out cross validation will incur complexity ofO(mcn). As
a result, the overall complexity isO(m3cn).

5) BSE: The hill climbing procedure of reducing a SPODE
ensemble of sizem to 0 will render a complexity ofO(m2). In
the first round, it alternatively eliminates each ofm SPODEs.
In the second round, it alternatively eliminates each of (m−1)
SPODEs. Following this line of reasoning, the total number of
probing a SPODE ism+(m− 1)+ · · ·+2+1 = O(m2). As
explained for CV, to test each SPODE by leave-one-out cross
validation will incur complexity ofO(mcn). As a result, the
overall complexity isO(m3cn).

6) LE: LE does not require any additional information to be
gathered at training time and hence has no impact on training
time.

1Although MDL has an extra loop
Q

j∈Φ(i) vj , in case of a SPODE,|Φ(i)|
is of maximum value 2 (the superparent and the class). Hence it can be treated
as a constant and does not increase the order of the complexity.
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Data set Ins. Att.Data Ins. Att. Data Ins. Att.
Abalone 4177 8Ionosphere 351 34PrimaryTumor 339 17
JapaneseVowels 9961 12IrisPlant 150 4Promoter 106 57
Annealing 898 38KRvsKP 3196 36Satellite 6435 36
Audiology 226 69LaborRelations 57 16ImageSegmentation 2310 19
Automobile 205 25LEDDisplay 1000 7SickEuthyroid 3772 29
BalanceScale 625 4LetterRecognition 20000 16AustralianSignLanguage 12546 8
Bands 539 36LiverDisorders 345 6Sonar 208 60
BreastCancer 699 9LungCancer 32 56Soybean 683 35
Chess 551 39Lymphography 148 18Spambase 4601 57
ContraceptiveMethodChoice 1473 9MultipleFeaturesMorphological 2000 6SpliceJunction 3177 60
CreditScreening 690 15Mushrooms 8124 22SyntheticControl 600 60
Echocardiogram 131 6Musk 476 166Thyroid 9169 29
German 1000 20NettalkPhoneme 5438 7TicTacToe 958 9
GlassIdentification 214 9NewThyroid 215 5Vehicle 846 18
HeartDiseaseCleveland 303 13OpticalDigits 5620 48Vowel 990 11
Hepatitis 155 19PageBlocks 5473 10Waveform 5000 40
HorseColic 368 21PenBasedRecognition 10992 16Wine 178 13
CongressionalVoting 435 16PimaIndiansDiabetes 768 8Yeast 1484 8
HeartDiseaseHungarian 294 13Postoperative 90 8Zoo 101 16
Hypothyroid 3772 29

TABLE I

STATISTICS OF EXPERIMENTAL DATA SETS. ‘I NS.’ AND ‘ATT.’ ARE THE NUMBER OF INSTANCES AND ATTRIBUTES RESPECTIVELY.

7) MAPLMD: The computation of the optimal weights can
be implemented in two steps. In the first step,PLOO

i (y|x)
of each hi is computed for each training instance. This
takesO(m2cn), as reasoned in Section V-A.3. After that, the
EM algorithm iterates until convergence or until a maximum
number of 10000 iterations is reached. Each EM iteration takes
O(nmc). The complete computational complexity is therefore
O(m2cn + Kmnc) where K is the bound of the number of
iterations in the maximization algorithm. Since K is fixed,
it does not affect the theoretical computational complexity,
but influences the computing time when m, n and c are not
relatively large enough. Hence we keep the large constant K
in the complexity expression.

8) MAPLMG: The computation of the optimal weights can
be implemented in two steps. In the first step,PLOO

i (y,x)
of each hi is computed for each training instance. This
takes O(m2cn), as reasoned in Section V-A.3. After that,
the maximum is found by a sequence of applications of
the BFGS minimization algorithm until convergence or a
maximum number of 1000 iterations is reached. Each BFGS
iteration computes both the value of the function it tries to
maximize and the value of its derivative. In this case this can
be done inO(nmc). Following the same reasoning as for the
above MAPLMD, The complete computational complexity is
thereforeO(m2cn + Kmnc).

B. Classification overhead

For selection schemes, the result is a linear combination
of SPODEs. Hence, each scheme’s complexity is of the same
order O(m2c), resulting from theO(mc) SPODE algorithm
applied over anO(m) sized ensemble. Please note that lazy
elimination requires a test each time a pair of attribute values
is considered to determine whether one is a generalization of
the other, incurring an additional complexityO(m2).

For weighing schemes, following the above lines of reason-
ing, its classification complexity isO(m2c). More precisely,
weighing’s complexity is higher than selection’s by O(1),
resulting from multiplying each SPODE’s probability estimate
by its weight.

VI. EXPERIMENTS

Empirical tests, observations, analyses and evaluations are
presented here for each selection or weighing scheme. The
objective function is to maximize the learning accuracy and
efficiency of resulting ensemble classifiers. AODE [30], a
complete SPODE ensemble without any selection or weighing
applied, is also included to offer a baseline in comparing
alternative schemes.

A. Data

Rival schemes are implemented in the WEKA machine
learning environment [59], and are validated using a large
suite of 58 benchmark data sets from the UCI machine
learning repository and KDD archive [60], as described in
Table I. Because SPODEs currently require discrete-valued
data, numeric attributes are discretized using the WEKA
MDL discretizer [59]. Since part of the software (information
metrics) does not handle missing values, following WEKA’s
practice, missing values for nominal and numeric attributes in
a data set are replaced with the modes and means respectively.

B. Design

Each scheme is tested on each data set using a 30-trial
2-fold cross validation. Ans-fold cross validation divides a
data set intos equal-size subsets. Each subset is used in
turn as a test set with the remaining (s − 1) data sets used
for training. One may conducts-fold cross validation fort
trials, each trial shuffling the instances and formings different
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Fig. 2. Compare alternative methods’ mean ranks of reducing error.

subsets. The reason that we use a substantial number (30)
of trials is because we perform bias-variance decomposition
analysis, which is more accurate when sufficient trials are
conducted [61]. The reason that we use 2-fold cross validation
is to maximize the variation in the training data from trial to
trial.

Five performance measures are recorded on each data set:
training time, classification time, classification errorwhich
can be decomposed into abias term and avarianceterm [61]–
[65]. A third irreducible term is the error of an optimal
algorithm (the level of noise in the data). In our study,
following Kohavi and Wolpert’s method, it is merged into
bias [64].

Please note that varying from our previous research, we no
longer impose a frequency threshold on SPODEs. Previously
as a means to reduce classification variance, a SPODE was
considered a candidate for ensembling only if the parent
value’s frequency was above 30 [35]. However, subsequent
research demonstrated better results when the minimum fre-
quency was reduced to 1 [31]. Accordingly, some experimental
results differ from those obtained in previous otherwise equiv-
alent experiments [35].

C. Bias-variance decomposition of error

It is useful to look into bias and variance of a classifier
because they each offer a different perspective on classification
error. Bias describes the component of error that results from
systematic error of the learning algorithm. Variance describes
the component of error that results from random variation in
the training data and from random behavior in the learning
algorithm, and thus measures how sensitive an algorithm is to
changes in the training data. As the algorithm becomes more
sensitive, the variance increases.

Moore and McCabe [66] illustrated bias and variance
through shooting arrows at a target, as reproduced in Figure 3.
We can think of the perfect model as the bull’s-eye on a target,
and the learned classifier as an arrow fired at the bull’s-eye.
Bias and variance describe what happens when an archer fires
many arrows at the target. Bias means that the aim is off
and the arrows land consistently off the bull’s-eye in the same
direction. Large variance means that repeated shots are widely
scattered on the target. They do not give similar results but
differ widely among themselves. A good learning scheme, like
a good archer, should have both low bias and low variance. We
use Kohavi and Wolpert’s definitions of bias and variance [64].

(a) High
bias, low
variance

(b) Low
bias, high
variance

(c) High
bias, high
variance

(d) Low
bias, low
variance

Fig. 3. Bias and variance in shooting arrows at a target. Bias means that
the archer systematically misses the bull’s eye in the same direction. Variance
means that the arrows are scattered. [66]

Each instance is classified once in each trial and hence 30
times in all.

D. Statistics

A variety of statistics are employed to evaluate measured
performance of each competing scheme.

• Mean of ranks Following the practice of Friedman [67],
[68], for each data set, we rank competing algorithms.
The one that attains the best performance is ranked 1,
the second best ranked 2, so on and so forth. A method’s
mean rank is obtained by averaging its ranks across all
data sets. Compared with mean value (the arithmetic
mean of measured performance, such as error, across
all data sets), mean rank can reduce the susceptibility to
outliers that, for instance, allows a classifier’s excellent
performance on one data set to compensate for its overall
bad performance [69].

• Friedman test As recommended by Demsar [69], the
Friedman test is effective for comparing multiple al-
gorithms across multiple data sets. It compares mean
ranks of schemes to decide whether to reject the null-
hypothesis, which states that all the schemes are equiva-
lent and so their ranks should be equal.

• Nemenyi test If the Friedman test rejects its null-
hypothesis, we can proceed with a post-hoc test, the
Nemenyi test. It can be applied to mean ranks of com-
peting schemes and indicate whose performances have
statistically significant differences (here we use the 0.05
critical level).

• Win/lose/tie record (w/l/t) can be calculated for each pair
of competitorsA and B with regard to a performance
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Fig. 4. Compare alternative methods’ mean ranks of reducing variance.

measureM . The record represents the number of data
sets in whichA respectively beats, loses to or ties with
B on M . To avoid breaking the flow of the main text, the
w/l/t records on error, bias and variance are respectively
listed in Tables II, III and IV in the Appendix.

E. Observations and analyses

Because information metrics can act as both selection and
weighing schemes, we add a suffix ‘s’ to each selection
scheme while a ‘w ’ to each weighing scheme. When acting
as selection schemes, AIC, BIC and MDL produce the same
order of SPODEs and select the same ones. Hence MDLs

represents the results for AICs and BICs as well.

MAPLMGw

MAPLMDw

BMAw

MMLw

MDLw

BICw

AICw

LEs

BSEs

FSAs

CVs

MMLs

MDLs

RANs

AODE

 2  4  6  8  10  12  14

Mean rank of error

Fig. 6. Apply the Nemenyi test to alternative schemes’ mean ranks of
reducing error.

1) Reducing classification error: To compare each
scheme’s influence on the SPODE ensemble’s classification
error, their mean ranks of reducing error are illustrated in
Figure 2. It indicates that among selection schemes, LEs is the
most effective on reducing classification error; while among
weighing schemes, MAPLMGw is the most effective. It also
reveals an interesting point that AODE, which simply linearly
combines every SPODE without any selection or weighing, is
actually more effective than the majority of rival schemes. We
partially attribute this to AODE’s outstanding performance on
reducing variance, which will be discussed in Section VI-E.2.

When we apply the Friedman test, with 15 algorithms2 and
58 data sets,FF is distributed according to the F distribution
with (15− 1) = 14 and(15− 1)× (58− 1) = 798 degrees of
freedom. The critical value ofF (14, 798) at the 0.05 critical
level is 1.7.FF calculated from the mean ranks is 28.3. Since
28.3 > 1.7, we can reject the null hypothesis and infer that
there exists significant difference among rival schemes.

To find out exactly which schemes are significantly dif-
ferent, we proceed to the Nemenyi test, whose results are
illustrated in Figure 6. In the graph, the mean rank of each
scheme is pointed by a circle. The horizontal bar across each
circle indicates the ‘critical difference’. The performance of
two methods is significantly different if their corresponding
mean ranks differ by at least the critical difference. That
is, two methods are significantly different if their horizontal
bars are not overlapping. For instance, Figure 6 reveals that
MAPLMGw is ranked best and is significantly better than
RANs, MDLs, MML s, CVs, FSAs, BSEs, AICw, BICw,
MDLw and BMAw.

MAPLMGw

MAPLMDw

BMAw

MMLw

MDLw

BICw

AICw

LEs

BSEs

FSAs

CVs

MMLs

MDLs

RANs

AODE

 3  4  5  6  7  8  9  10  11  12  13  14

Mean rank of variance

Fig. 7. Apply the Nemenyi test to alternative schemes’ mean ranks of
reducing variance.

2) Reducing classification variance:Figure 4 illustrates
each scheme’s mean rank of reducing variance. The Friedman
test indicates that there exist significant differences among

2We have studied 16 schemes. For experimental purpose, AICs and BICs

are presented by MDLs because they produce the same results. AODE is
added as a benchmark algorithm. As a result, there are 15 algorithms tested.
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Fig. 5. Compare alternative methods’ mean ranks of reducing bias.

schemes on reducing variance and Figure 7 depicts the results
of the Nemenyi test to reveal what those differences are.

It is observed that AODE and MMLw are the best at
reducing classification variance among alternative methods.
Between themselves, AODE beats MMLw more often than
not (w/l/t being 11/8/39) according to Table IV. We suggest
the reason for AODE’s outstanding performance on variance
reduction is that selection and weighing will increase the
classifier’s sensitivity to training data because weights as well
as selection metrics are calculated therefrom. In contrast,
AODE minimizes dependence on training data and hence can
minimize classification variance.

MAPLMGw

MAPLMDw

BMAw

MMLw

MDLw

BICw

AICw

LEs

BSEs

FSAs

CVs

MMLs

MDLs

RANs

AODE

 3  4  5  6  7  8  9  10  11  12  13

Mean rank of bias

Fig. 8. Apply the Nemenyi test to alternative schemes’ mean ranks of
reducing bias.

3) Reducing classification bias:Figure 5 illustrates each
scheme’s mean rank of reducing bias. The Friedman test indi-
cates that there exist significant differences among schemes on
reducing bias and Figure 8 depicts the results of the Nemenyi
test to reveal what those differences are.

It is observed that on reducing bias, model selection
schemes like FSAs, CVs and BSEs are the most effective.
However, their outstanding capability for bias reduction is
overshadowed by their inferior performance on variance reduc-
tion (refer to Figure 7). The net effect is that they are worse at
reducing error for SPODE ensembles. In contrast, schemes like
LEs and MAPLMGw reduce bias as well as control variance
and turn out to be more effective at error reduction for SPODE
ensembles.

4) Capability for fast training:Figure 9 illustrates the mean
ranks of alternative schemes’ training time. Consistent with
our time complexity analyses in Section V-A, AODE and
LEs that do not conduct any selection or weighing work in
training are the most efficient. MAPLMDw and MAPLMGw

optimize multiple weights simultaneously, which very likely
contributes to their effectiveness since others calculate the
weights for individual SPODEs in isolation. On the other
hand, this optimization demands time and hence MAPLMDw

and MAPLMGw are slower than every other scheme except
MML w and BMAw.

MML and BMA can return large values. In that case, when
serving as weighing schemes, MMLw and BMAw involve
calculating large exponentials in Formula (11). This often
leads to arithmetic overflow when using 32-bit computing
machines. Our solution to this problem is to use the java
classBigDecimal that implements arbitrary-precision signed
decimal numbers. A BigDecimal consists of an arbitrary
precision integer unscaled value and a non-negative 32-bit
integer scale, which represents the number of digits to the
right of the decimal point. Although BigDecimal solves the
problem of overflowing, its calculation can be very slow when
the numbers are large. This is why MMLw and BMAw are
ranked the worst in Figure 9 and require large amount of
training time as in Figure 10.

Hence, although MMLw is as effective as AODE at re-
ducing classification variance and is ranked fifth at reducing
classification error, it can be infeasible for modern real-world
applications where large data sets are commonly involved.

5) Capability for fast classification:Figure 11 and Fig-
ure 12 illustrate alternative schemes’ training time. Consistent
with our time complexity analyses in Section V-B, model
selection schemes identify a subset of SPODEs to carry out
classification, and hence are faster than AODE that uses all
SPODEs. Model weighing schemes uses all SPODEs and
multiply each with calculated weights, and hence are slower
than AODE. Among all schemes, FSAs delivers the fastest
classification and CVs the second.

One very interesting issue to spot is that LEs, a lazy method
that conducts calculation in classification time, turns out to
be faster than AODE. We suggest the reason is that on one
hand, LEs requires a simple test each time when a pair of
attribute values is considered to determine whether one is a
generalization of the other, which causes a small increase in
the compute time. On the other hand, once a generalization
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Fig. 9. Compare alternative schemes’ mean ranks of training time.
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Fig. 10. Compare alternative schemes’ mean values of training time. MMLw and BMAw suffer from the overflowing problem in practice. To keep a readable
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relationship is detected, LEs need not calculate or multiply
related conditional probabilities, which decreases the compute
time. The time saved in the latter often exceeds the time cost
in the former. Hence, LEs, although ‘lazy’, can still deliver
faster classification than AODE.
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Fig. 12. Compare alternative schemes’ mean values of test time.

6) Best schemes’ relative performance:LEs and
MAPLMGw are respectively the best model selection and
model weighing schemes for reducing SPODE ensembles’
classification error. Figure 13 graphs the relative bias,
variance and error between LEs, MAPLMGw and AODE.
The values on the y-axis are the outcome for LEs divided by

that for AODE. The values of the x-axis are the outcome for
MAPLMGw divided by that for AODE. Each point on the
graph represents one of the 58 data sets. Points on the left of
the vertical line at MAPLMGw/AODE=1 in each subgraph
are those of which MAPLMGw outperforms AODE. Points
below the horizontal line at LEs/AODE=1 indicate that LEs
outperforms AODE. Points below the diagonal line Y=X
represent that MAPLMGw outperforms LEs. It is observed
that on one hand, both LEs and MAPLMGw frequently
reduce bias compared with AODE as the majority of points
fall within the boundaries X=1 and Y=1 in Figure 13 (a).
On the other hand, AODE is better at reducing variance as
the majority of points fall beyond the boundaries X=1 and
Y=1 in Figure 13 (b). The end effect is that both LEs and
MAPLMGw outperform AODE on reducing error (w/l/t being
27/8/23 and 33/6/19 respectively as in Table II).

Between LEs and MAPLMGw themselves, it is observed
that MAPLMGw slightly outperforms LEs on both bias and
variance reduction (w/l/t being 25/23/10 and 22/20/16 re-
spectively as in Tables III and IV). The end effect is that
MAPLMGw more frequently attains lower error than LEs

(w/l/t being 28/19/11 as in Table II). On the other hand, in
terms of training efficiency and classification efficiency, LEs

is much faster than MAPLMGw as detailed in Sections VI-E.4
and VI-E.5.

VII. C ONCLUSION AND FUTURE WORK

This paper presents a comprehensive study, both theoreti-
cally and empirically, of 16 representative model selection and
model weighing schemes for linearly ensembling superparent-
one-dependence estimators, a popular family of semi-naive
Bayesian classifiers.
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Fig. 13. Illustrate LEs and MAPLMGw ’s performance relative to AODE.

For each scheme, this paper provides its definition, rationale
and time complexity. Comprehensive experiments across 58
UCI benchmark data sets are conducted to test each scheme’s
effect on ensemble learning’s accuracy and efficiency.

The study results suggest the following answers to the
questions we have asked at the beginning of the paper:

1) MAPLMGw is ranked the best among all rival schemes
on classification accuracy. It wins more often than not
when compared with every other single scheme across
the suite of 58 data sets. It is significantly better than
RANs, MDLs, MML s, CVs, FSAs, BSEs, AICw, BICw,
MDLw and BMAw. However, its training takes longer
than the majority of the schemes.

2) LEs is ranked the best among model selection schemes
and the second best among all rival schemes on
classification accuracy. It wins more often than not
when compared with every other single scheme except
MAPLMGw across the suite of 58 data sets. It is
significantly better than RANs, MDLs, MML s, CVs,
BSEs, AICw, BICw, MDLw and BMAw. Besides, it is
the most efficient at training as well as very efficient at
classification.

3) AODE is ranked the best among all rival methods on
reducing classification variance. It wins more often than
not compared with every other single scheme across
the suite of 58 data sets. It is significantly better than
CVs, FSAs, BSEs, AICw, BICw, MDLw and BMAw.
It is the most efficient at training. It is faster than
weighing schemes and slower than selection schemes
at classification.

4) Commonly used selection schemes such as CVs, FSAs

and BSEs turn out to be less effective than simply
including every candidate classifier (AODE). The reason
is that they incur high classification variance. Although
they are ranked among the best on reducing classification
bias, their wins in bias reduction are overshadowed by
their losses in variance reduction. The end effect is that
they are less effective at reducing error on the learning
tasks investigated.

5) The observation that MAPLMDw is less effective than
MAPLMGw suggests that combining joint (generic)
probabilitiesPi(y,x) leads to more accurate classifica-
tion than combining conditional (discriminative) proba-
bilities Pi(y | x). In practice,Pi(y,x) is estimated from
count(y,x), the count of training instances< x, y >;
whereasPi(y | x) is estimated from the count of
training instancesx in addition to count(y,x). Hence

it is suggested that estimatingPi(y | x) is less reliable
than estimatingPi(y,x) and is not preferred.

6) In general, information-theoretic metrics (either as se-
lection or as weighing schemes) are not effective at
reducing an ensemble’s classification error. Although
MML w as a weighing scheme is ranked fairly well
(5th), its high time requirement for calculating weights
hinders its deployment in practice. A further thought
is that currently information-theoretic metrics measure
the merit of individual classifiers. It might help to
generalize them so as to measure the collective merit of
an ensemble. This can be an interesting research issue
to further explore.

7) Hence, whether to use model selection or model weigh-
ing depends on the specific requirements of a particular
classification task. If one needs to maximize accuracy,
we recommend MAPLMGw. If one seeks both high
learning accuracy and efficiency, we recommend LEs.
If one needs to minimize variance while obtaining a
reasonable accuracy, we recommend AODE.

The model selection and weighing schemes studied here can
be generalized to other Bayesian network classifiers. RAN,
CV, FSA and BSE only utilize a classifier’s classifications.
Hence they can be applied to any classifier. LD seeks general-
ization relationships among attribute values. If such a relation-
ship exists, it deletes the more general value from the network
structure. The calculations for AIC and BIC, MDL, MML,
and BMA with MML have already been extended to arbitrary
Bayesian network structures respectively [70] [71] [51] [72].
MAPLMG and MAPLMD were introduced as linear mixture
inducers for either generative or discriminative probabilistic
classifiers [31] and are then particularized to SPODE in this
study. Hence, they can be directly applied to any Bayesian
network classifier. An interesting direction for future research
is to examine the extent to which our results generalize to
other Bayesian network classifiers.
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