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Abstract. The use of different discretization techniques can be expected
to affect the classification bias and variance of naive-Bayes classifiers.
We call such an effect discretization bias and variance. Proportional k-
interval discretization (PKID) tunes discretization bias and variance by
adjusting discretized interval size and number proportional to the num-
ber of training instances. Theoretical analysis suggests that this is de-
sirable for naive-Bayes classifiers. However PKID is sub-optimal when
learning from training data of small size. We argue that this is because
PKID equally weighs bias reduction and variance reduction. But for small
data, variance reduction can contribute more to lower learning error and
thus should be given greater weight than bias reduction. Accordingly we
propose weighted proportional k-interval discretization (WPKID), which
establishes a more suitable bias and variance trade-off for small data
while allowing additional training data to be used to reduce both bias
and variance. Our experiments demonstrate that for naive-Bayes classi-
fiers, WPKID improves upon PKID for smaller datasets1 with significant
frequency; and WPKID delivers lower classification error significantly
more often than not in comparison to three other leading alternative
discretization techniques studied.

1 Introduction

Numeric attributes are often discretized for naive-Bayes classifiers [5, 9]. The use
of different discretization techniques can be expected to affect the naive-Bayes
classification bias and variance. We call such an effect discretization bias and
variance. A number of previous authors have linked the number of discretized
intervals to classification error. Pazzani [17] and Mora et al. [16] have mentioned
that the interval number has a major effect on the naive-Bayes classification
error. If it is too small, important distinctions are missed; if it is too big, the
data are over-discretized and the probability estimation may become unreliable.
The best interval number depends upon the size of the training data. Torgo and
1 ‘Small’ is a relative rather than an absolute term. Of necessity, we here utilize an

arbitrary definition, deeming datasets with size no larger than 1000 as ‘smaller’
datasets, otherwise as ‘larger’ datasets.
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Gama [21] have noticed that an interesting effect of increasing the interval num-
ber is that after some threshold the learning algorithm’s performance decreases.
They suggested that it might be caused by the decrease of the number of training
instances per class per interval leading to unreliable estimates due to overfitting
the data. Gama et al. [8] have suggested that discretization with fewer number
of intervals tends to have greater utility. By minimizing the number of intervals,
the dependence of the set of intervals on the training data will be reduced. This
fact will have positive influence on the variance of the generated classifiers. In
contrast, if there are a large number of intervals, high variance tends to be pro-
duced since small variation on the training data will be propagated on to the set
of intervals. Hussain et al. [10] have proposed that there is a trade-off between
the interval number and its effect on the accuracy of classification tasks. A lower
number can improve understanding of an attribute but lower learning accuracy.
A higher number can degrade understanding but increase learning accuracy. Hsu
et al. [9] have observed that as the interval number increases, the classification
accuracy will improve and reach a plateau. When the interval number becomes
very large, the accuracy will drop gradually. How fast the accuracy drops will
depend on the size of the training data. The smaller the training data size, the
earlier and faster the accuracy drops.

Our previous research [24] has proposed proportional k-interval discretiza-
tion (PKID). To the best of our knowledge, PKID is the first discretization
technique that adjusts discretization bias and variance by tuning interval size
and interval number. We have argued on theoretical grounds that PKID suits
naive-Bayes classifiers. Our experiments have demonstrated that when learning
from large data, naive-Bayes classifiers trained by PKID can achieve lower clas-
sification error than those trained by alternative discretization methods. This is
particularly desirable since large datasets with high dimensional attribute spaces
and huge numbers of instances are increasingly used in real-world applications;
and naive-Bayes classifiers are widely deployed for these applications because of
their time and space efficiency. However, we have detected a serious limitation of
PKID which reduces learning accuracy on small data. In this paper, we analyze
the reasons of PKID’s disadvantage. This analysis leads to weighted proportional
k-interval discretization (WPKID), a more elegant approach to managing dis-
cretization bias and variance. We expect WPKID to achieve better performance
than PKID on small data while retaining competitive performance on large data.
Improving naive-Bayes classifiers’ performance on small data is of particular im-
portance as they have consistently demonstrated strong classification accuracy
for small data. Thus, improving performance in this context is improving the
performance of one of the methods-of-choice for this context.

The rest of this paper is organized as follows. Section 2 introduces naive-
Bayes classifiers. Section 3 discusses discretization, bias and variance. Section 4
reviews PKID and three other leading discretization methods for naive-Bayes
classifiers. Section 5 proposes WPKID. Section 6 empirically evaluates WPKID
against previous methods. Section 7 provides a conclusion.



2 Naive-Bayes Classifiers

In classification learning, each instance is described by a vector of attribute values
and its class can take any value from some predefined set of values. Training data,
a set of instances with their classes, are provided. A test instance is presented.
The learner is asked to predict the class of the test instance according to the
evidence provided by the training data. We define:

– C as a random variable denoting the class of an instance,
– X < X1, X2, · · · , Xk > as a vector of random variables denoting observed

attribute values (an instance),
– c as a particular class,
– x < x1, x2, · · · , xk > as a particular observed attribute value vector (a par-

ticular instance),
– X = x as shorthand for X1 = x1 ∧X2 = x2 ∧ · · · ∧Xk = xk.

Expected classification error can be minimized by choosing argmaxc(p(C =
c |X = x)) for each x. Bayes’ theorem can be used to calculate the probability:

p(C = c |X = x) = p(C = c) p(X = x |C = c) / p(X = x). (1)

Since the denominator in (1) is invariant across classes, it does not affect the
final choice and can be dropped, thus:

p(C = c |X = x) ∝ p(C = c) p(X = x |C = c). (2)

Probabilities p(C = c) and p(X = x |C = c) need to be estimated from
the training data. Unfortunately, since x is usually an unseen instance which
does not appear in the training data, it may not be possible to directly estimate
p(X = x |C = c). So a simplification is made: if attributes X1, X2, · · · , Xk are
conditionally independent of each other given the class, then

p(X = x |C = c) = p(∧Xi = xi |C = c) =
∏

p(Xi = xi |C = c). (3)

Combining (2) and (3), one can further estimate the probability by:

p(C = c |X = x) ∝ p(C = c)
∏

p(Xi = xi |C = c). (4)

Classifiers using (4) are called naive-Bayes classifiers.
Naive-Bayes classifiers are simple, efficient, effective and robust to noisy data.

One limitation, however, is that naive-Bayes classifiers utilize the attributes in-
dependence assumption embodied in (3) which is often violated in the real world.
Domingos and Pazzani [4] suggest that this limitation is ameliorated by the fact
that classification estimation under zero-one loss is only a function of the sign
of the probability estimation. In consequence, the classification accuracy can
remain high even while the probability estimation is poor.

3 Discretization, Bias and Variance

We here describe how discretization works in naive-Bayes learning, and introduce
discretization bias and variance.



3.1 Discretization

An attribute is either categorical or numeric. Values of a categorical attribute
are discrete. Values of a numeric attribute are either discrete or continuous [11].

A categorical attribute often takes a small number of values. So does the
class label. Accordingly p(C = c) and p(Xi = xi |C = c) can be estimated
with reasonable accuracy from corresponding frequencies in the training data.
Typically, the Laplace-estimate [3] is used to estimate p(C = c): nc+k

N+n×k , where
nc is the number of instances satisfying C = c, N is the number of training
instances, n is the number of classes and k = 1; and the M-estimate [3] is used
to estimate p(Xi = xi |C = c): nci+m×p

nc+m , where nci is the number of instances
satisfying Xi = xi ∧ C = c, nc is the number of instances satisfying C = c, p is
the prior probability p(Xi = xi) (estimated by the Laplace-estimate) and m = 2.

A numeric attribute usually has a large or even an infinite number of values,
thus for any particular value xi, p(Xi = xi |C = c) might be arbitrarily close
to 0. Suppose Si is the value space of Xi within the class c, the probability
distribution of Xi |C = c is completely determined by a probability density
function f which satisfies [19]:

1. f(Xi = xi |C = c) ≥ 0, ∀xi ∈ Si;
2.

∫
Si

f(Xi |C = c)dXi = 1;

3.
∫ bi

ai
f(Xi |C = c)dXi = p(ai < Xi ≤ bi |C = c), ∀(ai, bi] ∈ Si.

Specifying f gives a description of the distribution of Xi |C = c, and allows
associated probabilities to be found [20]. Unfortunately, f is usually unknown
for real-world data. Thus it is often advisable to aggregate a range of values
into a single value for the purpose of estimating probabilities [5, 9]. Under dis-
cretization, a categorical attribute X∗

i is formed for Xi. Each value x∗i of X∗
i

corresponds to an interval (ai, bi] of Xi. X∗
i instead of Xi is employed for train-

ing classifiers. Since p(X∗
i = x∗i |C = c) is estimated as for categorical attributes,

there is no need to assume the format of f . But the difference between Xi and
X∗

i may cause information loss.

3.2 Bias and Variance

Error of a machine learning algorithm can be partitioned into a bias term, a
variance term and an irreducible term [7, 12, 13, 22]. Bias describes the com-
ponent of error that results from systematic error of the learning algorithm.
Variance describes the component of error that results from random variation in
the training data and from random behavior in the learning algorithm, and
thus measures how sensitive an algorithm is to the changes in the training
data. As the algorithm becomes more sensitive, the variance increases. Irre-
ducible error describes the error of an optimal algorithm (the level of noise
in the data). Consider a classification learning algorithm A applied to a set
S of training instances to produce a classifier to classify an instance x. Sup-
pose we could draw a sequence of training sets S1, S2, ..., Sl, each of size m,
and apply A to construct classifiers, the average error of A at x can be defined
as: Error(A,m, x) = Bias(A, m, x)+V ariance(A, m, x)+ Irreducible(A,m, x).



There is often a ‘bias and variance trade-off’ [12]. As one modifies some aspect
of the learning algorithm, it will have opposite effects on bias and variance. For
example, usually as one increases the number of degrees of freedom in the al-
gorithm, the bias decreases but the variance increases. The optimal number of
degrees of freedom (as far as the expected loss is concerned) is the number that
optimizes this trade-off between bias and variance.

When discretization is employed to process numeric attributes in naive-Bayes
learning, the use of different discretization techniques can be expected to affect
the classification bias and variance. We call such an effect discretization bias and
variance. Discretization bias and variance relate to interval size (the number of
training instances in each interval) and interval number (the number of intervals
formed). The larger the interval (ai, bi] formed for a particular numeric value
xi, the more training instances in it, the lower the discretization variance, and
thus the lower the probability estimation variance by substituting (ai, bi] for xi.
However, the larger the interval, the less distinguishing information is obtained
about xi, the higher the discretization bias, and hence the higher the probability
estimation bias. Low learning error can be achieved by tuning the interval size
and interval number to find a good trade-off between the discretization bias and
variance.

4 Rival Discretization Methods

We here review four discretization methods, each of which is either designed es-
pecially for, or is in practice often used by naive-Bayes classifiers. We believe that
it is illuminating to analyze them in terms of discretization bias and variance.

4.1 Fixed k-Interval Discretization (FKID)

FKID [5] divides sorted values of a numeric attribute into k intervals, where
(given n observed instances) each interval contains n/k instances. Since k is de-
termined without reference to the properties of the training data, this method po-
tentially suffers much attribute information loss. But although it may be deemed
simplistic, FKID works surprisingly well for naive-Bayes classifiers. One reason
suggested is that discretization approaches usually assume that discretized at-
tributes have Dirichlet priors, and ‘Perfect Aggregation’ of Dirichlets can ensure
that naive-Bayes with discretization appropriately approximates the distribution
of a numeric attribute [9].

4.2 Fuzzy Discretization (FD)

FD [14, 15]2 initially discretizes the value range of Xi into k equal-width intervals
(ai, bi] (1 ≤ i ≤ k), and then estimates p(ai < Xi ≤ bi |C = c) from all training
2 There are three versions of fuzzy discretization proposed by Kononenko for naive-

Bayes classifiers. They differ in how the estimation of p(ai < Xi ≤ bi |C = c) is
obtained. Because of space limits, we present here only the version that, according
to our experiments, best reduces the classification error.



instances rather than from instances that have values of Xi in (ai, bi]. The influ-
ence of a training instance with value v of Xi on (ai, bi] is assumed to be normally
distributed with the mean value equal to v and is proportional to P (v, σ, i) =∫ bi

ai

1
σ
√

2π
e−

1
2 ( x−v

σ )2dx. σ is a parameter to the algorithm and is used to control
the ‘fuzziness’ of the interval bounds. σ is set equal to 0.7 × max−min

k where
max and min are the maximum value and minimum value of Xi respectively3.
Suppose there are N training instances and there are Nc training instances with
known value for Xi and with class c, each with influence P (vj , σ, i) on (ai, bi]

(j = 1, · · · , Nc): p(ai < Xi ≤ bi |C = c) = p(ai<Xi≤bi∧C=c)
p(C=c) ≈

∑Nc

j=1
P (vj ,σ,i)

N×p(C=c) .
The idea behind FD is that small variation of the value of a numeric attribute
should have small effects on the attribute’s probabilities, whereas under non-
fuzzy discretization, a slight difference between two values, one above and on
below the cut point can have drastic effects on the estimated probabilities. But
when the training instances’ influence on each interval does not follow the nor-
mal distribution, FD’s performance can degrade.

Both FKID and FD fix the number of intervals to be produced (decided by the
parameter k). When the training data are very small, intervals will have small
size and tend to incur high variance. When the training data are very large,
intervals will have large size and tend to incur high bias. Thus they control well
neither discretization bias nor discretization variance.

4.3 Fayyad & Irani’s Entropy Minimization Discretization (FID)

FID [6] evaluates as a candidate cut point the midpoint between each succes-
sive pair of the sorted values for a numeric attribute. For each evaluation of a
candidate cut point, the data are discretized into two intervals and the resulting
class information entropy is calculated. A binary discretization is determined by
selecting the cut point for which the entropy is minimal amongst all candidate
cut points. The binary discretization is applied recursively, always selecting the
best cut point. A minimum description length criterion (MDL) is applied to de-
cide when to stop discretization. FID was developed in the particular context of
top-down induction of decision trees. It uses MDL as the termination condition.
This has an effect to tend to minimize the number of resulting intervals, which
is desirable for avoiding the fragmentation problem in the decision tree learn-
ing [18]. As a result, FID always focuses on reducing discretization variance, but
does not control bias. This might work well for training data of small size, for
which it is credible that variance reduction can contribute more to lower naive-
Bayes learning error than bias reduction [7]. However, when training data size is
large, it is very possible that the loss through bias increase will soon overshadow
the gain through variance reduction, resulting in inferior learning performance.

3 This setting of σ is chosen because it achieved the best performance in Kononenko’s
experiments [14].



4.4 Proportional k-Interval Discretization (PKID)

PKID [24] adjusts discretization bias and variance by tuning the interval size
and number, and further adjusts the naive-Bayes’ probability estimation bias
and variance to achieve lower classification error. As described in Section 3.2,
increasing interval size (decreasing interval number) will decrease variance but
increase bias. Conversely, decreasing interval size (increasing interval number)
will decrease bias but increase variance. PKID aims to resolve this conflict by
setting the interval size and number proportional to the number of training in-
stances. With the number of training instances increasing, both discretization
bias and variance tend to decrease. Bias can decrease because the interval num-
ber increases. Variance can decrease because the interval size increases. This
means that PKID has greater capacity to take advantage of the additional infor-
mation inherent in large volumes of training data than previous methods. Given
a numeric attribute, supposing there are N training instances with known values
for this attribute, the desired interval size is s and the desired interval number
is t, PKID employs (5) to calculate s and t:

s× t = N

s = t. (5)

PKID discretizes the ascendingly sorted values into intervals with size s. Exper-
iments have shown that although it significantly reduced classification error in
comparison to previous methods on larger datasets, PKID was sub-optimal on
smaller datasets. We here suggest the reason. Naive-Bayes learning is probabilis-
tic learning. It estimates probabilities from the training data. According to (5),
PKID gives equal weight to discretization bias reduction and variance reduction
by setting the interval size equal to the interval number. When N is small, PKID
tends to produce a number of intervals with small size. In particular, small in-
terval size should result in high variance. Thus fewer intervals each containing
more instances would be of greater utility.

5 Weighted Proportional k-Interval Discretization

The above analysis leads to weighted proportional k-interval discretization (WP-
KID). This new discretization techniques sets a minimum interval size m. As
the training data increase, both the interval size above the minimum and the
interval number increase. Given the same definitions of N , s and t as in (5), we
calculate s and t by:

s× t = N

s−m = t

m = 30. (6)

We set m as 30 since it is commonly held to be the minimum sample from
which one should draw statistical inferences [23]. WPKID should establish a



more suitable bias and variance trade-off for training data of small size. By in-
troducing m = 30, we ensure that in general each interval has enough instances
for reliable probability estimation for naive-Bayes classifiers. Thus WPKID can
be expected to improve upon PKID by preventing intervals of high variance. For
example, with 100 training instances, WPKID will produce 3 intervals containing
approximately 33 instances each, while PKID will produce 10 intervals contain-
ing only 10 instances each. At the same time, WPKID still allows additional
training data to be used to reduce both bias and variance as PKID does.

6 Experiments

We want to evaluate whether WPKID can better reduce classification errors of
naive-Bayes classifiers compared with FKID, FD, FID and PKID.

6.1 Experimental Design

We run experiments on 35 natural datasets from UCI machine learning repos-
itory [2] and KDD archive [1]. This experimental suit comprises two parts.
One is all the 29 datasets used by PKID [24]. The other is an addition of 6
datasets4 with size smaller than 1000, since WPKID is expected to improve
upon PKID for small data. Table 1 describes each dataset, including the num-
ber of instances (Size), numeric attributes (Num.), categorical attributes (Cat.)
and classes (Class). Datasets are ascendingly ordered by their sizes and broken
down to smaller and larger ones. ‘Small’ is a relative rather than an absolute
term. Of necessity, we here utilize an arbitrary definition, deeming datasets with
size no larger than 1000 as ‘smaller’ datasets, otherwise as ‘larger’ datasets. For
each dataset, we implement naive-Bayes learning by conducting a 10-trial, 3-
fold cross validation. For each fold, the training data is separately discretized by
FKID (k = 10), FD (k = 10), FID, PKID and WPKID. The intervals so formed
are separately applied to the test data. The experimental results are recorded
in Table 1 as: classification error is the percentage of incorrect predictions of
naive-Bayes classifiers in the test averaged across all folds in the cross valida-
tion; and classification bias and variance are defined and calculated using
the method of Webb [22].

6.2 Experimental Statistics

Three statistics are employed to evaluate the experimental results.
Mean error is the arithmetic mean of errors across all datasets, listed in

‘ME’ rows of Table 1. It provides a gross indication of relative performance. It
is debatable whether errors in different datasets are commensurable, and hence
whether averaging errors across datasets is very meaningful. Nonetheless, a low
average error is indicative of a tendency toward low errors for individual datasets.
4 They are Pittsburgh-Bridges-Material, Flag-Landmass, Haberman, Ecoli, Dermatol-

ogy and Vowel-Context.
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Geometric mean error ratio has been explained by Webb [22]. It allows
for the relative difficulty of error reduction in different datasets and can be more
reliable than the mean ratio of errors across datasets. The ‘GE’ rows of Table 1
lists the results of alternative methods against WPKID.

Win/lose/tie record comprises three values that are respectively the num-
ber of datasets for which WPKID obtains lower, higher or equal classification
error, compared with alternative algorithms. Table 2 shows the results of WP-
KID compared with alternatives on smaller datasets, larger datasets and all
datasets respectively. A one-tailed sign test can be applied to each record. If the
test result is significantly low (here we use the 0.05 critical level), it is reasonable
to conclude that the outcome is unlikely to be obtained by chance and hence the
record of wins to losses represents a systematic underlying advantage to WPKID
with respect to the type of datasets studied.

Table 2. Win/Lose/Tie Records of WPKID against Alternatives

Datasets Smaller Larger All
WPKID Win Lose Tie Sign Test Win Lose Tie Sign Test Win Lose Tie Sign Test
PKID 15 5 3 0.02 4 5 3 0.50 19 10 6 0.07
FID 15 6 2 0.04 11 1 0 < 0.01 26 7 2 < 0.01
FD 11 10 2 0.50 11 1 0 < 0.01 22 11 2 0.04
FKID 17 5 1 < 0.01 12 0 0 < 0.01 29 5 1 < 0.01

6.3 Experimental Results Analysis

WPKID is devised to overcome PKID’s disadvantage for small data while retain-
ing PKID’s advantage for large data. It is expected that naive-Bayes classifiers
trained on data preprocessed by WPKID are able to achieve lower classification
error, compared with those trained on data preprocessed by FKID, FD, FID or
PKID. The experimental results support this expectation.

1. For Smaller Datasets
– WPKID achieves the lowest mean error among all the methods.
– The geometric mean error ratios of the alternatives against WPKID are

all larger than 1. This suggests that WPKID enjoys an advantage in
terms of error reduction on smaller datasets.

– With respect to the win/lose/tie records, WPKID achieves lower classi-
fication error than FKID, FID and PKID with frequency significant at
0.05 level. WPKID and FD have competitive performance.

2. For Larger Datasets
– WPKID achieves mean error the same as PKID and lower than FKID,

FD and FID.
– The geometric mean error ratio of PKID against WPKID is close to 1,

while those of other methods are all larger than 1. This suggests that
WPKID retains PKID’s desirable performance on larger datasets.



– With respect to the win/lose/tie records, WPKID achieves lower classi-
fication error than FKID, FD and FID with frequency significant at 0.05
level.

– WPKID achieves higher classification error than PKID for only one
dataset more than the reverse.

3. For All Datasets
– The win/lose/tie records across all datasets favor WPKID over FKID,

FD and FID with frequency significant at 0.05 level. WPKID also achieves
lower error more often than not compared with PKID.

– It seems possible to attribute WPKID’s improvement upon PKID pri-
marily to variance reduction. WPKID has lower variance than PKID for
19 datasets but higher variance for only 8. This win/lose record is sig-
nificant at 0.05 level (sign test = 0.03). In contrast, WPKID has lower
bias than PKID for 13 datasets while higher bias for 15.

7 Conclusion

We have previously argued that discretization for naive-Bayes classifiers can tune
classification bias and variance by adjusting the interval size and number pro-
portional to the number of training instances, an approach called proportional
k-interval discretization (PKID). However, PKID allocates equal weight to bias
reduction and variance reduction. We argue that this is inappropriate for learn-
ing from small data and propose weighted proportional k-interval discretization
(WPKID), which more elegantly manages discretization bias and variance by as-
signing a minimum interval size and then adjusting the interval size and number
as more training data allow. This strategy is expected to improve on PKID by
preventing high discretization variance. Our experiments demonstrate that com-
pared to previous discretization techniques FKID, FD and FID, WPKID reduces
the naive-Bayes classification error with significant frequency. Our experiments
also demonstrate that when learning from small data, WPKID significantly im-
proves on PKID by achieving lower variance, as predicted.
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