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Abstract. Discretization is a popular approach to handling numeric
attributes in machine learning. We argue that the requirements for effec-
tive discretization differ between naive-Bayes learning and many other
learning algorithms. We evaluate the effectiveness with naive-Bayes clas-
sifiers of nine discretization methods, equal width discretization (EWD),
equal frequency discretization (EFD), fuzzy discretization (FD), entropy
minimization discretization (EMD), iterative discretization (ID), propor-
tional k-interval discretization (PKID), lazy discretization (LD), non-
disjoint discretization (NDD) and weighted proportional k-interval dis-
cretization (WPKID). It is found that in general naive-Bayes classifiers
trained on data preprocessed by LD, NDD or WPKID achieve lower
classification error than those trained on data preprocessed by the other
discretization methods. But LD can not scale to large data. This study
leads to a new discretization method, weighted non-disjoint discretiza-
tion (WNDD) that combines WPKID and NDD’s advantages. Our ex-
periments show that among all the rival discretization methods, WNDD
best helps naive-Bayes classifiers reduce average classification error.

1 Introduction

Classification tasks often involve numeric attributes. For naive-Bayes classifiers,
numeric attributes are often preprocessed by discretization as the classification
performance tends to be better when numeric attributes are discretized than
when they are assumed to follow a normal distribution [9]. For each numeric
attribute X, a categorical attribute X∗ is created. Each value of X∗ corresponds
to an interval of values of X. X∗ is used instead of X for training a classifier.
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While many discretization methods have been employed for naive-Bayes clas-
sifiers, thorough comparisons of these methods are rarely carried out. Further-
more, many methods have only been tested on small datasets with hundreds of
instances. Since large datasets with high dimensional attribute spaces and huge
numbers of instances are increasingly used in real-world applications, a study of
these methods’ performance on large datasets is necessary and desirable [11, 27].

Nine discretization methods are included in this comparative study, each of
which is either designed especially for naive-Bayes classifiers or is in practice
often used for naive-Bayes classifiers. We seek answers to the following questions
with experimental evidence:

– What are the strengths and weaknesses of the existing discretization methods
applied to naive-Bayes classifiers?

– To what extent can each discretization method help reduce naive-Bayes clas-
sifiers’ classification error?

Improving the performance of naive-Bayes classifiers is of particular signifi-
cance as their efficiency and accuracy have led to widespread deployment.

As follows, Section 2 gives an overview of naive-Bayes classifiers. Section 3
introduces discretization for naive-Bayes classifiers. Section 4 describes each dis-
cretization method and discusses its suitability for naive-Bayes classifiers. Sec-
tion 5 compares the complexities of these methods. Section 6 presents experi-
mental results. Section 7 proposes weighted non-disjoint discretization (WNDD)
inspired by this comparative study. Section 8 provides a conclusion.

2 Naive-Bayes Classifiers

In classification learning, each instance is described by a vector of attribute values
and its class can take any value from some predefined set of values. Training data,
a set of instances with known classes, are provided. A test instance is presented.
The learner is asked to predict the class of the test instance according to the
evidence provided by the training data. We define:

– C as a random variable denoting the class of an instance,
– X < X1, X2, · · · , Xk > as a vector of random variables denoting observed

attribute values (an instance),
– c as a particular class,
– x < x1, x2, · · · , xk > as a particular observed attribute value vector (a par-

ticular instance),
– X = x as shorthand for X1 = x1 ∧X2 = x2 ∧ · · · ∧Xk = xk.

Expected classification error can be minimized by choosing argmaxc(p(C =
c |X = x)) for each x. Bayes’ theorem can be used to calculate the probability:

p(C = c |X = x) =
p(C = c) p(X = x |C = c)

p(X = x)
. (1)



Since the denominator in (1) is invariant across classes, it does not affect the
final choice and can be dropped, thus:

p(C = c |X = x) ∝ p(C = c) p(X = x |C = c). (2)

p(C = c) and p(X = x |C = c) need to be estimated from the training data.
Unfortunately, since x is usually an unseen instance which does not appear in the
training data, it may not be possible to directly estimate p(X = x |C = c). So a
simplification is made: if attributes X1, X2, · · · , Xk are conditionally independent
of each other given the class, then

p(X = x |C = c) = p(∧Xi = xi |C = c)

=
∏

p(Xi = xi |C = c). (3)

Combining (2) and (3), one can further estimate the probability by:

p(C = c |X = x) ∝ p(C = c)
∏

p(Xi = xi |C = c). (4)

Classifiers using (4) are called naive-Bayes classifiers.
Naive-Bayes classifiers are simple, efficient and robust to noisy data. One

limitation is that the attribute independence assumption in (3) is often violated
in the real world. However, Domingos and Pazzani [8] suggest that this limitation
has less impact than might be expected because classification under zero-one
loss is only a function of the sign of the probability estimation; the classification
accuracy can remain high even while the probability estimation is poor.

3 Discretization for Naive-Bayes Classifiers

An attribute is either categorical or numeric. Values of a categorical attribute
are discrete. Values of a numeric attribute are either discrete or continuous [18].

p(Xi = xi |C = c) in (4) is modelled by a real number between 0 and 1,
denoting the probability that the attribute Xi will take the particular value xi

when the class is c. This assumes that attribute values are discrete with a finite
number, as it may not be possible to assign a probability to any single value of an
attribute with an infinite number of values. Even for attributes that have a finite
but large number of values, as there will be very few training instances for any
one value, it is often advisable to aggregate a range of values into a single value
for the purpose of estimating the probabilities in (4). In keeping with normal
terminology of this research area, we call the conversion of a numeric attribute to
a categorical one, discretization, irrespective of whether that numeric attribute
is discrete or continuous.

A categorical attribute often takes a small number of values. So does the class
label. Accordingly p(C = c) and p(Xi = xi |C = c) can be estimated with rea-
sonable accuracy from the frequency of instances with C = c and the frequency
of instances with Xi = xi ∧ C = c in the training data. In our experiment:



– The Laplace-estimate [6] was used to estimate p(C = c): nc+k
N+n×k , where nc

is the number of instances satisfying C = c, N is the number of training
instances, n is the number of classes and k = 1.

– The M-estimate [6] was used to estimate p(Xi = xi |C = c): nci+m×p
nc+m , where

nci is the number of instances satisfying Xi = xi∧C = c, nc is the number of
instances satisfying C = c, p is the prior probability p(Xi = xi) (estimated
by the Laplace-estimate), and m = 2.

When a continuous numeric attribute Xi has a large or even an infinite
number of values, as do many discrete numeric attributes, suppose Si is the
value space of Xi, for any particular xi ∈ Si, the probability p(Xi = xi) will be
arbitrarily close to 0. The probability distribution of Xi is completely determined
by a density function f which satisfies [30]:

1. f(xi) ≥ 0,∀xi ∈ Si;
2.

∫
Si

f(Xi)dXi = 1;

3.
∫ bi

ai
f(Xi)dXi = p(ai < Xi ≤ bi),∀(ai, bi] ∈ Si.

p(Xi = xi |C = c) can be estimated from f [17]. But for real-world data, f is
usually unknown. Under discretization, a categorical attribute X∗

i is formed for
Xi. Each value x∗i of X∗

i corresponds to an interval (ai, bi] of Xi. If xi ∈ (ai, bi],
p(Xi = xi|C = c) in (4) is estimated by

p(Xi = xi|C = c) ≈ p(a < Xi ≤ b |C = c)
≈ p(X∗

i = x∗i |C = c). (5)

Since X∗
i instead of Xi is used for training classifiers and p(X∗

i = x∗i |C = c)
is estimated as for categorical attributes, probability estimation for Xi is not
bounded by some specific distribution assumption. But the difference between
p(Xi = xi|C = c) and p(X∗

i = x∗i |C = c) may cause information loss.
Although many discretization methods have been developed for learning

other forms of classifiers, the requirements for effective discretization differ be-
tween naive-Bayes learning and those of most other learning contexts. Naive-
Bayes classifiers are probabilistic, selecting the class with the highest probability
given an instance. It is plausible that it is less important to form intervals dom-
inated by a single class for naive-Bayes classifiers than for decision trees or de-
cision rules. Thus discretization methods that pursue pure intervals (containing
instances with the same class) [1, 5, 10, 11, 14, 15, 19, 29] might not suit naive-
Bayes classifiers. Besides, naive-Bayes classifiers deem attributes conditionally
independent of each other and do not use attribute combinations as predictors.
There is no need to calculate the joint probabilities of multiple attribute-values.
Thus discretization methods that seek to capture inter-dependencies among at-
tributes [3, 7, 13, 22–24, 26, 31] might be less applicable to naive-Bayes classifiers.

Instead, for naive-Bayes classifiers it is required that discretization should
result in accurate estimation of p(C = c|X = x) by substituting the categorical
X∗

i for the numeric Xi. It is also required that discretization should be efficient
in order to maintain naive-Bayes classifiers’ desirable computational efficiency.



4 Discretization Methods

When discretizing a numeric attribute Xi, suppose there are n training instances
for which the value of Xi is known, the minimum and maximum value are vmin

and vmax respectively, each discretization method first sorts the values into as-
cending order. The methods then differ as follows.

4.1 Equal Width Discretization (EWD)

EWD [5, 9, 19] divides the number line between vmin and vmax into k intervals
of equal width. Thus the intervals have width w = (vmax − vmin)/k and the cut
points are at vmin + w, vmin + 2w, · · · , vmin + (k − 1)w. k is a user predefined
parameter and is set as 10 in our experiments.

4.2 Equal Frequency Discretization (EFD)

EFD [5, 9, 19] divides the sorted values into k intervals so that each interval
contains approximately the same number of training instances. Thus each in-
terval contains n/k (possibly duplicated) adjacent values. k is a user predefined
parameter and is set as 10 in our experiments.

Both EWD and EFD potentially suffer much attribute information loss since
k is determined without reference to the properties of the training data. But
although they may be deemed simplistic, both methods are often used and work
surprisingly well for naive-Bayes classifiers. One reason suggested is that dis-
cretization usually assumes that discretized attributes have Dirichlet priors, and
‘Perfect Aggregation’ of Dirichlets can ensure that naive-Bayes with discretiza-
tion appropriately approximates the distribution of a numeric attribute [16].

4.3 Fuzzy Discretization (FD)

There are three versions of fuzzy discretization proposed by Kononenko for naive-
Bayes classifiers [20, 21]. They differ in how the estimation of p(ai < Xi ≤
bi |C = c) in (5) is obtained. Because space limits, we present here only the
version that, according to our experiments, best reduces the classification error.

FD initially forms k equal-width intervals (ai, bi] (1 ≤ i ≤ k) using EWD.
Then FD estimates p(ai < Xi ≤ bi |C = c) from all training instances rather
than from instances that have value of Xi in (ai, bi]. The influence of a training
instance with value v of Xi on (ai, bi] is assumed to be normally distributed with
the mean value equal to v and is proportional to P (v, σ, i) =

∫ bi

ai

1
σ
√

2π
e−

1
2 ( x−v

σ )2dx.
σ is a parameter to the algorithm and is used to control the ‘fuzziness’ of the
interval bounds. σ is set equal to 0.7× vmax−vmin

k
3. Suppose there are nc training

3 This setting of σ is chosen because it has been shown to achieve the best results in
Kononenko’s experiments [20].



instances with known value for Xi and with class c, each with influence P (vj , σ, i)
on (ai, bi] (j = 1, · · · , nc):

p(ai < Xi ≤ bi |C = c) =
p(ai < Xi ≤ bi ∧ C = c)

p(C = c)
≈

∑nc

j=1
P (vj ,σ,i)

n

p(C = c)
. (6)

The idea behind fuzzy discretization is that small variation of the value of
a numeric attribute should have small effects on the attribute’s probabilities,
whereas under non-fuzzy discretization, a slight difference between two values,
one above and one below the cut point can have drastic effects on the estimated
probabilities. But when the training instances’ influence on each interval does
not follow the normal distribution, FD’s performance can degrade. The number
of initial intervals k is a predefined parameter and is set as 10 in our experiments.

4.4 Entropy Minimization Discretization (EMD)

EMD [10] evaluates as a candidate cut point the midpoint between each succes-
sive pair of the sorted values. For evaluating each candidate cut point, the data
are discretized into two intervals and the resulting class information entropy is
calculated. A binary discretization is determined by selecting the cut point for
which the entropy is minimal amongst all candidates. The binary discretization
is applied recursively, always selecting the best cut point. A minimum description
length criterion (MDL) is applied to decide when to stop discretization.

Although it is often used with naive-Bayes classifiers, EMD was developed in
the context of top-down induction of decision trees. It uses MDL as the termina-
tion condition to form categorical attributes with few values. For decision tree
learning, it is important to minimize the number of values of an attribute, so as
to avoid the fragmentation problem [28]. If an attribute has many values, a split
on this attribute will result in many branches, each of which receives relatively
few training instances, making it difficult to select appropriate subsequent tests.
Naive-Bayes learning considers attributes independent of one another given the
class, and hence is not subject to the same fragmentation problem if there are
many values for an attribute. So EMD’s bias towards forming a small number
of intervals may not be so well justified for naive-Bayes classifiers as for decision
trees.

Another unsuitability of EMD for naive-Bayes classifiers is that EMD dis-
cretizes a numeric attribute by calculating the class information entropy as if the
naive-Bayes classifiers only use that single attribute after discretization. Thus,
EMD makes a form of attribute independence assumption when discretizing.
There is a risk that this might reinforce the attribute independence assumption
inherent in naive-Bayes classifiers, further reducing their capability to accurately
classify in the context of violation of the attribute independence assumption.

4.5 Iterative Discretization (ID)

ID [25] initially forms a set of intervals using EWD or MED, and then iteratively
adjusts the intervals to minimize naive-Bayes classifiers’ classification error on



the training data. It defines two operators: merge two contiguous intervals and
split an interval into two intervals by introducing a new cut point that is midway
between each pair of contiguous values in that interval. In each loop of the
iteration, for each numeric attribute, ID applies all operators in all possible
ways to the current set of intervals and estimates the classification error of each
adjustment using leave-one-out cross-validation. The adjustment with the lowest
error is retained. The loop stops when no adjustment further reduces the error.

A disadvantage of ID results from its iterative nature. ID discretizes a numeric
attribute with respect to error on the training data. When the training data
are large, the possible adjustments by applying the two operators will tend to
be immense. Consequently the repetitions of the leave-one-out cross validation
will be prohibitive so that ID is infeasible in terms of time consumption. Since
our experiments include large datasets, we hereby only introduce ID for the
integrality of our study, without implementing it.

4.6 Proportional k-Interval Discretization (PKID)

PKID [33] adjusts discretization bias and variance by tuning the interval size
and number, and further adjusts the naive-Bayes’ probability estimation bias
and variance to achieve lower classification error. The idea behind PKID is that
discretization bias and variance relate to interval size and interval number. The
larger the interval size (the smaller the interval number), the lower the variance
but the higher the bias. In the converse, the smaller the interval size (the larger
the interval number), the lower the bias but the higher the variance. Lower
learning error can be achieved by tuning the interval size and number to find a
good trade-off between the bias and variance. Suppose the desired interval size
is s and the desired interval number is t, PKID employs (7) to calculate s and t:

s× t = n

s = t. (7)

PKID discretizes the sorted values into intervals with size s. Thus PKID gives
equal weight to discretization bias reduction and variance reduction by setting
the interval size equal to the interval number (s = t ≈ √

n). Furthermore, PKID
sets both interval size and number proportional to the training data size. As the
quantity of the training data increases, both discretization bias and variance can
decrease. This means that PKID has greater capacity to take advantage of the
additional information inherent in large volumes of training data.

Previous experiments [33] showed that PKID significantly reduced classifica-
tion error for larger datasets. But PKID was sub-optimal for smaller datasets4.
This might be because when n is small, PKID tends to produce a number of
intervals with small size which might not offer enough data for reliable prob-
ability estimation, thus resulting in high variance and inferior performance of
naive-Bayes classifiers.
4 There is no strict definition of ‘smaller’ and ‘larger’ datasets. The research on PKID

deems datasets with size no larger than 1000 as ‘smaller’ datasets, otherwise as
‘larger’ datasets.



4.7 Lazy Discretization (LD)

LD [16] defers discretization until classification time estimating p(Xi = xi |C =
c) in (4) for each attribute of each test instance. It waits until a test instance is
presented to determine the cut points for Xi. For the value of Xi from the test
instance, it selects a pair of cut points such that the value is in the middle of its
corresponding interval whose size is the same as created by EFD with k = 10.
However 10 is an arbitrary number which has never been justified as superior to
any other value.

LD tends to have high memory and computational requirements because
of its lazy methodology. Eager approaches carry out discretization prior to the
naive-Bayes learning. They only keep training instances to estimate the proba-
bilities in (4) during training time and discard them during classification time. In
contrast, LD needs to keep training instances for use during classification time.
This demands high memory when the training data are large. Besides, where a
large number of instances need to be classified, LD will incur large computational
overheads since it does not estimate probabilities until classification time.

Although LD achieves comparable performance to EFD and EMD [16], the
high memory and computational overheads might impede it from feasible imple-
mentation for classification tasks with large training or test data. In our experi-
ments, we implement LD with the interval size equal to that created by PKID,
as this has been shown to outperform the original implementation [16, 34].

4.8 Non-Disjoint Discretization (NDD)

NDD [34] forms overlapping intervals for Xi, always locating a value xi toward
the middle of its corresponding interval (ai, bi]. The idea behind NDD is that
when substituting (ai, bi] for xi, there is more distinguishing information about
xi and thus the probability estimation in (5) is more reliable if xi is in the
middle of (ai, bi] than if xi is close to either boundary of (ai, bi]. LD embodies
this idea in the context of lazy discretization. NDD employs an eager approach,
performing discretization prior to the naive-Bayes learning.

NDD bases its interval size strategy on PKID. Figure 1 illustrates the pro-
cedure. Given s and t calculated as in (7), NDD identifies among the sorted
values t′ atomic intervals, (a′1, b

′
1], (a

′
2, b

′
2], ..., (a

′
t′ , b

′
t′ ], each with size equal to s′,

so that5

s′ =
s

3
s′ × t′ = n. (8)

One interval is formed for each set of three consecutive atomic intervals, such
that the kth (1 ≤ k ≤ t′ − 2) interval (ak, bk] satisfies ak = a′k and bk = b′k+2.

5 Theoretically any odd number k besides 3 is acceptable in (8) as long as the same
number k of atomic intervals are grouped together later for the probability estima-
tion. For simplicity, we take k = 3 for demonstration.



Each value v is assigned to interval (a′i−1, b
′
i+1] where i is the index of the atomic

interval (a′i, b
′
i] such that a′i < v ≤ b′i, except when i = 1 in which case v

is assigned to interval (a′1, b
′
3] and when i = t′ in which case v is assigned to

interval (a′t′−2, b
′
t′ ]. As a result, except in the case of falling into the first or the

last atomic interval, xi is always toward the middle of (ai, bi].

Atomic Interval

Interval

Fig. 1. Atomic Intervals Compose Actual Intervals

4.9 Weighted Proportional k-Interval Discretization (WPKID)

WPKID [35] is an improved version of PKID. It is credible that for smaller
datasets, variance reduction can contribute more to lower naive-Bayes learning
error than bias reduction [12]. Thus fewer intervals each containing more in-
stances would be of greater utility. Accordingly WPKID weighs discretization
variance reduction more than bias reduction by setting a minimum interval size
to make more reliable the probability estimation. As the training data increase,
both the interval size above the minimum and the interval number increase.

Given the same definitions s and t as in (7), suppose the minimum interval
size is m, WPKID employs 9 to calculate s and t:

s× t = n

s−m = t

m = 30. (9)

m is set to 30 as it is commonly held as the minimum sample from which
one should draw statistical inferences. This strategy should mitigate PKID’s
disadvantage on smaller datasets by establishing a suitable bias and variance
trade-off, while it retains PKID’s advantage on larger datasets by allowing ad-
ditional training data to be used to reduce both bias and variance.

5 Algorithm Complexity Comparison

Suppose the number of training instances6 and classes are n and m respectively.
6 Consider only instances with known value of the numeric attribute to be discretized.



– EWD, EFD, FD, PKID, WPKID and NDD are dominated by sorting. Their
complexities are of order O(n log n).

– EMD does sorting first, an operation of complexity O(n log n). It then goes
through all the training instances a maximum of log n times, recursively ap-
plying ‘binary division’ to find out at most n − 1 cut points. Each time, it
will estimate n − 1 candidate cut points. For each candidate point, proba-
bilities of each of m classes are estimated. The complexity of that operation
is O(mn log n), which dominates the complexity of the sorting, resulting in
complexity of order O(mn log n).

– ID’s operators have O(n) possible ways to adjust in each iteration. For
each adjustment, the leave-one-out cross validation has complexity of or-
der O(nmv) where v is the number of the attributes. If the iteration re-
peats u times until there is no further error reduction of leave-one-out cross-
validation, the complexity of ID is of order O(n2mvu).

– LD performs discretization separately for each test instance and hence its
complexity is O(nl), where l is the number of test instances.

Thus EWD, EFD, FD, PKID, WPKID and NDD have low complexity. EMD’s
complexity is higher. LD tends to have high complexity when the testing data
are large. ID’s complexity is prohibitively high when the training data are large.

6 Experimental Validation

6.1 Experimental Setting

We run experiments on 35 natural datasets from UCI machine learning repos-
itory [4] and KDD archive [2]. These datasets vary extensively in the number
of instances and the dimension of the attribute space. Table 1 describes each
dataset, including the number of instances (Size), numeric attributes (Num.),
categorical attributes (Cat.) and classes (Class).

For each dataset, we implement naive-Bayes learning by conducting a 10-trial,
3-fold cross validation. For each fold, the training data are separately discretized
by EWD, EFD, FD, MED, PKID, LD, NDD and WPKID. The intervals so
formed are separately applied to the test data. The experimental results are
recorded as average classification error that, listed in Table 1, is the percentage
of incorrect predictions of naive-Bayes classifiers in the test across trials.

6.2 Experimental Statistics

Three statistics are employed to evaluate the experimental results.
Mean error. This is the mean of errors across all datasets. It provides a gross

indication of relative performance. It is debatable whether errors in different
datasets are commensurable, and hence whether averaging errors across datasets
is very meaningful. Nonetheless, a low average error is indicative of a tendency
toward low errors for individual datasets.



Table 1. Experimental Datasets and Classification Error

Classification Error(%)
Dataset Size Num. Cat. Class

EWD EFD FD EMD PKID LD NDD WPKID WNDD
Labor-Negotiations 57 8 8 2 12.3 8.9 12.8 9.5 7.2 7.7 7.0 8.6 5.3
Echocardiogram 74 5 1 2 29.6 29.2 27.7 23.8 25.3 26.2 26.6 25.7 24.2
Pittsburgh-Bridges-Material 106 3 8 3 12.9 12.1 10.5 12.6 13.0 12.3 13.1 11.9 10.8
Iris 150 4 0 3 5.7 7.5 5.3 6.8 7.5 6.7 7.2 6.9 7.3
Hepatitis 155 6 13 2 14.9 14.7 13.4 14.5 14.6 14.2 14.4 15.9 15.6
Wine-Recognition 178 13 0 3 3.3 2.1 3.3 2.6 2.2 3.8 3.3 2.0 1.9
Flag-Landmass 194 10 18 6 30.8 30.5 32.0 29.9 30.7 30.9 30.5 29.0 29.0
Sonar 208 60 0 2 26.9 25.2 26.8 26.3 25.7 27.3 26.9 23.7 22.8
Glass-Identification 214 9 0 3 41.9 39.4 44.5 36.8 40.4 22.2 38.8 38.9 35..3
Heart-Disease(Cleveland) 270 7 6 2 18.3 17.1 16.3 17.5 17.5 17.8 18.6 16.7 16.7
Haberman 306 3 0 2 26.5 27.1 25.1 26.5 27.7 27.5 27.8 25.8 26.1
Ecoli 336 5 2 8 18.5 19.0 16.0 17.9 19.0 20.2 20.2 17.6 17.4
Liver-Disorders 345 6 0 2 37.1 37.1 37.9 37.4 38.0 38.0 37.7 35.5 35.9
Ionosphere 351 34 0 2 9.4 10.2 8.5 11.1 10.6 11.3 10.2 10.3 10.6
Dermatology 366 1 33 6 2.3 2.2 1.9 2.0 2.2 2.3 2.4 1.9 1.9
Horse-Colic 368 8 13 2 20.5 20.9 20.7 20.7 20.9 19.7 20.0 20.7 20.6
Credit-Screening(Australia) 690 6 9 2 15.6 14.5 15.2 14.5 14.2 14.7 14.4 14.3 14.1
Breast-Cancer(Wisconsin) 699 9 0 2 2.5 2.6 2.8 2.7 2.7 2.7 2.6 2.7 2.7
Pima-Indians-Diabetes 768 8 0 2 24.9 25.9 24.8 26.0 26.3 26.4 25.8 25.5 25.4
Vehicle 846 18 0 4 38.7 40.5 42.4 38.9 38.2 38.7 38.5 38.2 38.8
Annealing 898 6 32 6 3.5 2.3 3.9 1.9 2.2 1.6 1.8 2.2 2.3
Vowel-Context 990 10 1 11 35.1 38.4 38.0 41.4 43.0 41.1 43.7 39.2 37.2
German 1000 7 13 2 25.4 25.4 25.2 25.1 25.5 25.0 25.4 25.4 25.1
Multiple-Features 2000 3 3 10 30.9 31.9 30.8 32.6 31.5 31.2 31.6 31.4 30.9
Hypothyroid 3163 7 18 2 3.5 2.8 2.6 1.7 1.8 1.7 1.7 2.1 1.7
Satimage 6435 36 0 6 18.8 18.9 20.1 18.1 17.8 17.5 17.5 17.7 17.6
Musk 6598 166 0 2 13.7 19.2 21.2 9.4 8.3 7.8 7.7 8.5 8.2
Pioneer-MobileRobot 9150 29 7 57 9.0 10.8 18.2 14.8 1.7 1.7 1.6 1.8 2.0
Handwritten-Digits 10992 16 0 10 12.5 13.2 13.2 13.5 12.0 12.1 12.1 12.2 12.0
Australian-Sign-Language 12546 8 0 3 38.3 38.2 38.7 36.5 35.8 35.8 35.8 36.0 35.8
Letter-Recognition 20000 16 0 26 29.5 30.7 34.7 30.4 25.8 25.5 25.6 25.7 25.6
Adult 48842 6 8 2 18.2 19.2 18.5 17.2 17.1 17.1 17.0 17.0 17.1
Ipums-la-99 88443 20 40 13 20.2 20.5 32.0 20.1 19.9 19.1 18.6 19.9 18.6
Census-Income 299285 8 33 2 24.5 24.5 24.7 23.6 23.3 23.6 23.3 23.3 23.3
Forest-Covertype 581012 10 44 7 32.4 32.9 32.2 32.1 31.7 - 31.4 31.7 31.4

ME - - - - 20.1 19.9 20.9 19.5 19.1 18.6 19.1 18.7 18.2
GM - - - - 1.15 1.14 1.19 1.09 1.02 1.00 1.02 1.00 0.97

Geometric mean error ratio. This method has been explained by Webb [32].
It allows for the relative difficulty of error reduction in different datasets and can
be more reliable than the mean ratio of errors across datasets.

Win/lose/tie record. The three values are respectively the number of
datasets for which a method obtains lower, higher or equal classification er-
ror, compared with an alternative method. A one-tailed sign test can be applied
to each record. If the test result is significantly low (here we use the 0.05 critical
level), it is reasonable to conclude that the outcome is unlikely to be obtained by
chance and hence the record of wins to losses represents a systematic underlying
advantage to the winning method with respect to the type of datasets studied.



6.3 Experimental Results Analysis

WPKID is the latest discretization technique proposed for naive-Bayes classi-
fiers. It was claimed to outperform previous techniques EFD, FD, EMD and
PKID [35]. No comparison has yet been done among EWD, LD, NDD and WP-
KID. In our analysis, we take WPKID as a benchmark, against which we study
the performance of the other methods. The dataset Forest-Covertype is excluded
from the calculations of the mean error, the geometric mean error ratio and the
win/lose/tie records involving LD because it could not be completed by LD
during a tolerable time.

– The ‘ME’ row of Table 1 presents the mean error of each method. LD achieves
the lowest mean error with WPKID achieving a very similar score.

– The ‘GE’ row of Table 1 presents the geometric mean ratio of each method
against WPKID. All results except for LD are larger than 1. This suggests
that WPKID and LD enjoy an advantage in terms of error reduction over
the type of datasets studied in this research.

– With respect to the win/lose/tie records of the other methods against WP-
KID, the results are listed in Table 2. The sign test shows that EWD, EFD,
FD, EMD and PKID are worse than WPKID at error reduction with fre-
quency significant at the 0.05 level. LD and NDD have competitive perfor-
mance compared with WPKID.

Table 2. Win/Lose/Tie Records of Alternative Methods against WPKID

- EWD EFD FD EMD PKID LD NDD WPKID

Win 8 4 11 7 9 16 16 -
Lose 26 30 22 26 20 17 16 -
Tie 1 1 2 2 6 1 3 -

Sign Test < 0.01 < 0.01 0.04 < 0.01 0.03 0.50 0.60 -

– NDD and LD have similar error performance since they are similar in terms
of locating an attribute value toward the middle of its discretized interval.
The win/lose/tie record of NDD against LD is 15/14/5, resulting in sign
test equal to 0.50. But from the view of computation time, NDD is over-
whelmingly superior to LD. Table 3 lists the computation time of training
and testing a naive-Bayes classifier on data preprocessed by NDD and LD
respectively in one fold out of a 3-fold cross validation for the four largest
datasets7. NDD is much faster than the LD.

7 For Forest-Covertype, LD was not able to obtain the classification result even after
running for 864000 seconds. Allowing for the feasibility for real-world classification
tasks, it was meaningless to keep LD running. So we stopped its process, resulting
in no precise record for the running time.



Table 3. Computation Time for One Fold (Seconds)

- Adult Ipums.la.99 Census-Income Forest-Covertype

NDD 0.7 13 10 60
LD 6025 691089 510859 > 864000

– Another interesting comparison is between EWD and EFD. It was said that
EWD is vulnerable to outliers that may drastically skew the value range [9].
But according to our experiments, the win/lose/tie record of EWD against
EFD is 18/14/3, which means that EWD performs at least as well as EFD if
not better. This might be because naive-Bayes classifiers take all attributes
into account simultaneously. Hence, the impact of a ‘wrong’ discretization of
one attribute can be absorbed by other attributes under ‘zero-one’ loss [16].
Another observation is that the advantage of EWD over EFD is more ap-
parent with training data increasing. The reason might be that the more
training data available, the less the impact of an outlier.

7 Further Discussion

Our experiments show that LD, NDD and WPKID are better than the alterna-
tives at reducing naive-Bayes classifiers’ classification error. But LD is infeasible
in the context of large datasets. NDD and WPKID’s good performance can be
attributed to the fact that they both focus on accurately estimating naive-Bayes’
probabilities. NDD can retain more distinguishing information for a value to be
discretized, while WPKID can properly adjust learning variance and bias.

A consequent interesting question is that what will happen if we combine
NDD and WPKID together? Is it possible to obtain a discretization method
even better reducing naive-Bayes classifiers’ classification error? We name this
new method weighted non-disjoint discretization (WNDD). WNDD follows NDD
in terms of combining three atomic intervals into one interval. But WNDD has
its interval size equal as produced by WPKID, while NDD has its interval size
equal as produced by PKID.

We implement WNDD the same way as for the other discretization meth-
ods and record the resulting classification error in column ‘WNDD’ in Ta-
ble 1. The experiments show that WNDD achieves the lowest ME and GM.
The win/lose/tie records of previous methods against WNDD are listed in Ta-
ble 4. WNDD achieves lower classification error than all other methods except
LD and NDD with frequency significant at the 0.05 level. Although not statisti-
cally significant, WNDD delivers lower classification error more often than not
in comparison with LD and NDD. WNDD also overcomes the computational
limitation of LD since it has complexity as low as NDD.



Table 4. Win/Lose/Tie Records of Alternative Methods against WNDD

- EWD EFD FD EMD PKID WPKID LD NDD WNDD

Win 8 3 9 4 4 8 11 11 -
Lose 26 31 25 28 25 22 19 18 -
Tie 1 1 1 3 6 5 4 6 -

Sign Test < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 0.10 0.13 -

8 Conclusion

This is an evaluation and comparison of discretization methods for naive-Bayes
classifiers. We have discovered that in terms of reducing classification error, LD,
NDD and WPKID perform best. But LD’s lazy methodology impedes it from
scaling to large data. This analysis leads to a new discretization method WNDD
which combines NDD and WPKID’s advantages. Our experiments demonstrate
that WNDD performs at least as well as the best existing techniques at min-
imizing classification error. This outstanding performance is achieved without
the computational overheads that hamper the application of lazy discretization.
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