
Proportional k-Interval Discretization for
Naive-Bayes Classifiers

Ying Yang and Geoffrey I. Webb

School of Computing and Mathematics, Deakin University, Vic3217, Australia

Abstract. This paper argues that two commonly-used discretization
approaches, fixed k-interval discretization and entropy-based discretiza-
tion have sub-optimal characteristics for naive-Bayes classification. This
analysis leads to a new discretization method, Proportional k-Interval
Discretization (PKID), which adjusts the number and size of discretized
intervals to the number of training instances, thus seeks an appropriate
trade-off between the bias and variance of the probability estimation for
naive-Bayes classifiers. We justify PKID in theory, as well as test it on
a wide cross-section of datasets. Our experimental results suggest that
in comparison to its alternatives, PKID provides naive-Bayes classifiers
competitive classification performance for smaller datasets and better
classification performance for larger datasets.

1 Introduction

Many real-world classification tasks involve numeric attributes. Consequently,
appropriate handling of numeric attributes is an important issue in machine
learning. For naive-Bayes classifiers, numeric attributes are often processed by
discretization. For each numeric attribute A, a new nominal attribute A∗ is
created. Each value of A∗ corresponds to an interval of the numeric values of A.
When training a classifier, the learning process uses the nominal A∗ instead of
the original numeric A.

A number of discretization methods have been developed. One common ap-
proach is fixed k-interval discretization [1, 2, 3, 4, 5]. It directly discretizes values
of a numeric attribute into k equal-width intervals. Another approach uses infor-
mation measures to discretize a numeric attribute into intervals. For example,
Fayyad & Irani’s entropy minimization heuristic [6] is extensively employed.
Each of these strategies has advantages and disadvantages. Fixed k-interval dis-
cretization is easy to implement. But it does not adjust its behavior to the
specific characteristics of the training data. Fayyad & Irani’s heuristic approach
was developed in the context of decision tree learning. It seeks to identify a small
number of intervals, each dominated by a single class. However, for naive-Bayes
classification, in contrast to decision tree learning, it is plausible that it is less
important to minimize the number of intervals or to form intervals dominated
by a single class.

In this paper, we introduce a new approach for discretizing numeric at-
tributes. We focus our attention on classification tasks using naive-Bayes clas-
sifiers. We seek to balance two conflicting objectives. On one hand, we prefer

michelle
Pre-publication draft of the paper which appeared in the Proceedings off the 12th European Conference on Machine Learning (ECML01) pp 564-575

forming as many intervals as possible. This increases the representation power
of the new nominal attribute. That is, the more intervals formed, the more dis-
tinct values the classifier can distinguish between. On the other hand, we should
ensure that there are enough training instances in each interval, so that we have
enough information to accurately estimate the probabilities required by Bayes’
theorem. But when we are training a classifier, we usually have a fixed num-
ber of training instances. The number of intervals will decrease when the size
of intervals (the number of instances in each interval) increases and vice versa.
This can be viewed as a bias-variance [7] trade-off. Increasing the number of
intervals will decrease bias and increase variance and vice versa. Allowing for
this, we propose Proportional k-Interval Discretization (PKID). This strategy
adjusts the number and size of discretized intervals proportional to the number
of training instances, seeking an appropriate trade-off between the granularity
of the intervals and the expected accuracy of probability estimation. Currently
we adopt a compromise: given a numeric attribute A for which the number of
instances that have a known value is N , we take the proportional coefficient as√

N . We discretize A into
√

N intervals, with
√

N instances in each interval.
Thus, both objectives receive the same weight. As N increases, both the number
and size of discretized intervals increase. These are very desirable characteristics
that we will discuss in more detail later.

To evaluate this new technique, we separately implement PKID, Fayyad
& Irani’s discretization (FID), and fixed k-interval discretization (FKID) with
k=5,10 to train naive-Bayes classifiers. We compare the classification errors of
the resulting classifiers. Our hypothesis is that naive-Bayes classifiers trained on
data formed by PKID will have competitive classification error to those trained
on data formed by alternative discretization approaches for smaller datasets, and
that PKID will be able to utilize the incremental information in larger datasets
to achieve lower classification error.

The rest of this paper is organized as follows. We give an overview of naive-
Bayes classifiers and discretization in Section 2 and 3 respectively. In Section 4,
we discuss Proportional k-Interval Discretization in detail. We compare the algo-
rithm complexities in Section 5. Experimental results are presented in Section 6.
Section 7 provides a conclusion and suggests research directions that are worth
further exploration.

2 Naive-Bayes Classifiers

Naive-Bayes classifiers are simple, efficient and robust to noise and irrelevant at-
tributes. One defect, however, is that naive-Bayes classifiers utilize an assumption
that the attributes are conditionally independent of each other given the class.
Although this assumption is often violated in the real world, the classification
performance of naive-Bayes classifiers is still surprisingly good for many classi-
fication tasks, compared with other more complex classifiers. According to [8],
this is explained by the fact that classification estimation is only a function of

the sign (in binary cases) of the function estimation; the classification accuracy
can remain high even while function approximation is poor.

We briefly introduce the main idea of naive-Bayes classifiers as follows. In
classification learning, each instance is described by a vector of attribute values
and its class can take any value from some predefined set of values. A set of
training instances with their class labels, the training dataset, is provided, and a
new instance is presented. The learner is asked to predict the class for this new
instance according to the evidence provided by the training dataset. We define:

– C as the random variable denoting the class of an instance,
– X < X1, X2, · · · , Xk > as a vector of random variables denoting the observed

attribute values (an instance),
– c as a particular class label,
– x < x1, x2, · · · , xk > as a particular observed attribute value vector (a par-

ticular instance),
– X = x as shorthand for X1 = x1 ∧X2 = x2 ∧ · · · ∧Xk = xk.

Bayes’ theorem can be used to calculate the probability of each class given
the instance x:

p (C = c |X = x) =
p (C = c) p (X = x |C = c)

p (X = x)
. (1)

Expected error can be minimized by choosing the class with the highest
probability as the class of the instance x. Because the probabilities needed by
the calculation are not known, it is necessary to estimate them from the train-
ing dataset. Unfortunately, since x is usually an unseen instance which does
not appear in the training dataset, it may not be possible to directly estimate
p (X = x |C = c). So a simplification is made: if each attribute X1, X2, · · · , Xk

is conditionally independent of each other given the class, then:

p (X = x |C = c) = p (∧Xi = xi |C = c)

=
∏

p (Xi = xi |C = c) . (2)

Since the denominator in formula 1, p (X = x), is invariant across classes,
it does not affect the final choice and can be dropped. Thus one can further
estimate the most probable class using:

p (C = c |X = x) ∝ p (C = c)
∏

p (Xi = xi |C = c) . (3)

Classifiers using the independence assumption embodied in formula 2 are
called naive-Bayes classifiers. The independence assumption makes the compu-
tation of naive-Bayes classifiers more efficient than the exponential complexity
of non-naive Bayes approaches because it does not use attribute combinations
as predictors [9].

3 Discretize Numeric Attributes

An attribute is either nominal or numeric. Values of a nominal attribute are
discrete. Values of a numeric attribute are either discrete or continuous [10].

For each attribute Xi with value xi, p (Xi = xi |C = c) in formula 2 is often
modeled by a single real number between 0 and 1, denoting the probability that
the attribute Xi will take the particular value xi when the class is c. This assumes
that attribute values are discrete with a finite number, as it may not be possible
to assign a probability to any single value of an attribute with an infinite number
of values. Even for discrete valued attributes that have a finite but large number
of values, as there will be very few training instances for any one value, it is
often advisable to aggregate a range of values into a single value for the purpose
of estimating the probabilities in formula 3. In keeping with normal terminology
for this research area, we call the conversion of a numeric attribute to a nominal
attribute, discretization, irrespective of whether this numeric attribute is discrete
or continuous.

A nominal attribute usually takes only a small number of values. The prob-
abilities p (Xi = xi |C = c) and p (C = c) can be estimated from the frequencies
of Xi = xi ∧ C = c and C = c in the training dataset. In our experiment, when
p (Xi = xi |C = c) was estimated, the M-estimate [11] with m=2 was used.
When p (C = c) was estimated, the Laplace-estimate [11] was used.

– M-estimate: nci+mp
nc+m , where nci is the number of instances that satisfy Xi =

xi ∧ C = c, nc is the number of instances that satisfy C = c, p is the prior
estimate of Xi = xi, p (Xi = xi) (estimated by Laplace-estimate), and m is
a constant (2 in our research).

– Laplace-estimate: nc+k
N+n∗k , where nc is the number of instances that satisfy

C = c, n is the number of classes, N is the number of training instances,
and k is normally 1.

A continuous numeric attribute has an infinite number of values, as do many
discrete numeric attributes. The values are generated according to some probabil-
ity distribution. Since classification tasks are normally carried out for real-world
data, whose real probability distribution is unknown, a difficulty in naive-Bayes
classification is how to estimate p (Xi = xi |C = c) when Xi is numeric. A com-
mon solution is discretization [12]. Discretization transforms numeric attributes
into nominal attributes before they are used to train classifiers. In consequence,
they are not bound by some specific distribution assumption. But since we do
not know the real relationship underlying different values of a numeric attribute,
discretization may suffer from loss of information.

One common discretization approach is fixed k-interval discretization (FKID).
It divides a numeric attribute into k intervals, where (given n observed instances)
each interval contains n/k (possibly duplicated) adjacent values. Here k is de-
termined without reference to the properties of the training data1. A problem of

1 In practice, k is often set as 5 or 10.

this method is that it ignores relationships among different values, thus poten-
tially suffering much attribute information loss. But although it may be deemed
inelegant, this simple discretization technique works surprisingly well for naive-
Bayes classifiers. Hsu, Huang and Wong [13] provided an interesting analysis of
the reason why fixed k-interval discretization works for naive-Bayes classifiers.
They suggested that discretization approaches usually assume that discretized
attributes have Dirichlet priors. “Perfect Aggregation” of Dirichlets can ensure
that naive-Bayes with discretization appropriately approximates the distribution
of a numeric attribute.

Another popular discretization approach is Fayyad & Irani’s entropy min-
imization heuristic discretization (FID) [6]. They first suggested binary dis-
cretization, which discretizes values of a numeric attribute into two intervals.
The training instances are first sorted by increasing values of the numeric at-
tribute, and the midpoint between each successive pair of attribute values in the
sorted sequence is evaluated as a potential cut point. FID selects the “best” cut
point from the range of values by evaluating every candidate cut point. For each
evaluation of a candidate cut point, the data are discretized into two intervals
and the class information entropy of the resulting discretization is computed.
A binary discretization is determined by selecting the cut point for which the
entropy is minimal amongst all candidate cut points. Later, they generalized
the algorithm to multi-interval discretization. The training instances are sorted
once, then the binary discretization is applied recursively, always selecting the
best cut point. A minimum description length criterion is applied to decide when
to refrain from applying further binary discretization to a given interval.

FID was presented in the particular context of top-down induction of deci-
sion trees. It tends to form nominal attributes with few values. For decision tree
learning, it is important to minimize the number of values of an attribute, so
as to avoid the fragmentation problem [14]. If an attribute has many values, a
split on this attribute will result in many branches, each of which receives rela-
tively few training instances, making it difficult to select appropriate subsequent
tests. Naive Bayes considers attributes independent of one another given the
class, hence is not subject to the same fragmentation problem as experienced in
decision tree learning if there are many values for a single attribute. So aiming
at minimizing the number of discretized intervals for naive-Bayes classifiers may
not be as well justified as for decision trees.

4 Proportional k-Interval Discretization

The conditional probabilities in formula 3 of a numeric attribute x will be drawn
from an unknown probability density function f(x|y). If we form a discretized
value x∗i corresponding to the interval (a, b] of x, then

p(x∗i |y) =
∫ b

a

f(x|y) dx. (4)

We wish to estimate p(x∗i |y) from data. The larger the interval (a, b], the more
instances will be contained in it, and the lower the variance of the probability
estimation. Conversely, however, the larger the interval, the less distinguishing
information is obtained about each particular value of x, and hence the higher
the bias of the probability estimation. So, on one hand we wish to increase the
range of values in each interval in order to decrease variance, and on the other
hand we wish to decrease the range of values to decrease bias.

We suggest Proportional k-Interval Discretization (PKID). This strategy
seeks an appropriate trade-off between the bias and variance of the probabil-
ity estimation by adjusting the number and size of intervals to the number of
training instances. Currently we adopt a compromise: given a numeric attribute,
supposing we have N training instances with known values for the attribute,
we discretize it into

√
N intervals, with

√
N instances in each interval2. Thus

we give equal weight to both bias and variance management. Further, with N
increasing, both the number and size of intervals increase correspondingly, which
means discretization can decrease both the bias and variance of the probabil-
ity estimation. This is very desirable, because if a numeric attribute has more
instances available, there is more information about it. A good discretization
scheme should respond to this increase in information accordingly. But fixed
k-interval discretization is fixed in the number of intervals and does not react
to the above-mentioned information increase. Fayyad & Irani’s discretization
tends to minimize the number of resulting intervals, as is appropriate in order
to avoid the fragmentation problem in decision tree learning, and does not tend
to increase the number of intervals accordingly.

When implementing PKID, we follow rules listed below:

– Discretization is limited to known values of a numeric attribute. We ignore
any unknown values. When applying formula 3 for a testing instance, we drop
any attributes with an unknown value for this instance from the right-hand
side.

– For some attributes, different training instances may hold identical values.
We always keep the identical values in a single interval. Thus although ideally
each interval should include exactly

√
N instances, the actual size of each

interval may vary.
– Given N training instances with known values of a numeric attribute, we

hold b
√

Nc as the standard size of the discretized interval (the number of
instances in an interval should be an integer). We do not allow smaller size.
We allow larger size only when it is because of the presence of identical
values or to accommodate the last interval when its size is between b

√
Nc

and b
√

Nc × 2.

2 We do not form intervals based on the number of values, such as, creating inter-
vals with m values each. As Catlett [2] pointed out, this type of discretization is
vulnerable to outliers that may drastically skew the range.

5 Algorithm Complexity Comparison

Each of the discretization algorithms, PKID, FID, and FKID can be considered
to be composed of two stages. The first stage is to sort a numeric attribute
by increasing values. The second stage is to discretize the sorted values into
intervals. Suppose the number of training instances with known values of the
attribute is n, and the number of classes is m. The complexity of each algorithm
is as follows.

– PKID and FKID are dominated by sorting values of an attribute. So their
complexities are all O(n log n).

– FID also does sorting first, resulting in O(n log n). It then goes through
all the training instances a maximum of log n times, recursively applying
“binary division” to find out at most n − 1 cut points. Each time, it will
estimate n− 1 candidate cut points. For each candidate point, probabilities
of each of m classes are estimated. Thus finding the cut points is an operation
with maximum complexity O(mn log n). So FID’s maximum complexity is
O(mn log n).

This means that PKID has the same order of complexity as FKID, and lower
than FID.

6 Experiments

We want to evaluate whether or not PKID can better reduce the classification
error of naive-Bayes classifiers, compared with 5D, 10D (FKID with k=5, 10)
and FID.

6.1 Experimental Design

We ran our experiments on 31 natural datasets from the UCI machine learning
repository [15] and KDD archive [16], listed in Table 2. They exhibit a range
of different sizes. This experimental suite comprises 3 parts. The first part is
composed of all the UCI datasets used by [6] when publishing the entropy mini-
mization heuristic for discretization. The second part is composed of all the UCI
datasets with numeric attributes used by [17] for studying naive-Bayes classifi-
cation. In addition, as PKID responds to dataset size, and the first two parts
contain mainly datasets with relatively few instances, we further augmented this
collection with datasets that we could identify containing numeric attributes,
with emphasis on those having more than 5000 instances. The performance of
PKID will differ most substantially from those of the alternatives when there
are many instances in the training dataset and hence many intervals are formed.
Therefore, if the technique is successful, we can expect PKID to demonstrate
the greatest advantage for larger datasets.

Table 2 lists an index3, as well as the number of instances (Size), numeric at-
tributes (Num.), nominal attributes (Nom.) and classes (Class) for each dataset.
For each dataset, a 10-trial, 3-fold cross validation is used to train and test a
naive-Bayes classifier. In each fold, the dataset was discretized separately by the
above-mentioned four approaches. Thus we obtained four versions of the origi-
nal dataset. For each version, a naive-Bayes classifier was learned. We evaluated
its classification performance in terms of average error (the percentage of incor-
rect classifications) in the testing data across trials. The testing data was not
available to the discretization algorithm during discretization. Discretization was
performed only by reference to the training data for a given cross validation fold.

The classification errors of PKID, FID, 10D and 5D on each dataset are also
listed in Table 2. The records are sorted in ascending order of the datasets’ sizes,
so that we can track the effect of dataset size on PKID’s performance. In each
record, boldface font indicates the algorithm achieving the best classification
performance for this dataset.

6.2 Experimental Statistics

We employed three statistics to evaluate the experimental results in Table 2.
Mean error . This is the mean of errors across all datasets. It provides a gross

indication of relative performance. It is debatable whether errors in different
datasets are commensurable, and hence whether averaging errors across datasets
is very meaningful. Nonetheless, a low average error is indicative of a tendency
toward low errors for individual datasets. The mean error for each algorithm is
presented in the “Mean Error” row of Table 2.

Geometric mean error ratio. This method has been explained in detail
by [18]. It allows for the relative difficulty of error reduction in different datasets
and can be more reliable than the mean ratio of errors across datasets. The
geometric mean error ratio of algorithm X against algorithm Y , GM(X, Y), is
calculated as

GM(X, Y) = n

√√√√ n∏
i=1

xi

yi
,

where xi and yi are respectively the errors of algorithm X and algorithm Y for
the ith dataset, and n is the number of the employed datasets. The last row of
Table 2 lists out the geometric mean error ratios of PKID against FID, 10D and
5D.

Win/Lose/Tie record . The three values are, respectively, the number of
datasets for which PKID obtained better, worse or equal performance outcomes,
compared with the alternative algorithms on a given measure. A sign test can
be applied to these summaries. If the sign test result is significantly low (here
we use the 0.05 critical level), it is reasonable to conclude that it is unlikely
that the outcome is obtained by chance and hence that the record of wins to
losses represents a systematic underlying advantage to one of the algorithms
3 For reference from Fig. 1.

with respect to the type of datasets on which they have been tested. These
win/lose/tie records and the sign test results are summarized in Table 1.

- FID 10D 5D

PKID Win 21 21 23
PKID Lose 7 7 7
PKID Tie 3 3 1

Sign Test ≤ 0.0063 ≤ 0.0063 ≤ 0.0026

Table 1. Win/Lose/Tie

6.3 Experimental Evaluations

Utilizing the above statistics, we have the following evaluations:

– PKID achieves the lowest mean error among the four discretization ap-
proaches.

– The geometric mean error ratios of PKID against FID, 10D and 5D are all
less than 1. This suggests that PKID enjoys an advantage in terms of error
reduction over the type of datasets studied in this research.

– With respect to the win/lose/tie records, PKID is significantly better than
all of FID, 10D and 5D in terms of reducing classification errors.

– PKID demonstrates advantage more apparently as datasets become larger.
For datasets containing more than 1000 instances, it is only outperformed in
Hypothyroid. For datasets containing fewer than 1000 instances, the win/lose/tie
records of PKID against FID, 10D and 5D are respectively 10/6/2, 8/7/3,
and 10/7/1, suggesting that PKID has at worst comparable performance
to these alternatives. This tendency, which is also illustrated in Figure 1,
results from the ability of PKID to take advantage of training information
increase by adjusting the size and number of discretized intervals to the
number of training instances, thus achieves better classification performance
among larger datasets.

– We suggest that PKID can adjust the number of discretized intervals to the
number of training instances. To show a gross profile, the last two columns
of Table 2 list the mean number of intervals produced by PKID and FID for
each dataset, averaged on all the numeric attributes across 10 trials × 3 folds.
Apparently, PKID is more sensitive to the increase of training instances than
FID.

7 Conclusions and Further Research

In this paper, we reviewed two common-used discretization approaches for naive-
Bayes classifiers, FKID and FID. We then proposed a new discretization method,

Fig. 1. PKID Responds to Dataset Size

Proportional k-Interval Discretization (PKID). We argue PKID is more appro-
priate than FKID and FID for naive-Bayes classifiers. It attaches importance to
both the number and size of discretized intervals, and adjusts them in response
to the quantity of training data provided.

In our research, we have used
√

N as the size of intervals to be formed. This
was selected as a means to provide equal weight to both bias and variance man-
agements. A promising direction for further research is to investigate alternative
approaches to adjust interval size to training dataset size. It is plausible that
selection of interval size should be responsive to some other attributes of the
training dataset. For example, it might be that the more classes a dataset con-
tains, the larger the optimal interval size, as more data is required for accurate
conditional probability estimation. It may also be that as dataset size increases,
there is greater potential for gains through one rather than the other of the two
objectives, bias reduction and variance reduction, and hence the interval size
should be weighted to favor one over the other.

Our experiments with an extensive selection of UCI and KDD datasets sug-
gest that in comparison to its alternatives, PKID provides naive-Bayes classifiers
competitive classification performance for smaller datasets and better classifica-
tion performance for larger datasets.

References

[1] Wong, A. K. C., Chiu, D. K. Y.: Synthesizing Statistical Knowledge from In-
complete Mixedmode Data, IEEE Transaction on Pattern Analysis and Machine
Intelligence 9, 796-805, 1987

[2] Catlett, Jason: Megainduction: Machine Learning on Very Large Databases, Uni-
versity of Sydney, Australia, 1991

[3] Catlett, Jason: On Changing Continuous Attributes into Ordered Discrete At-
tributes, Proceedings of the European Working Session on Learning, 164-178,
1991

[4] Chmielewski, M. R., Grzymala-Busse, J. W.: Global Discretization of Continuous
Attributes as Preprocessing for Machine Learning, Third International Workshop
on Rough Sets and Soft Computing, 294-301, 1994

[5] Pfahringer, Bernhard: Compression-Based Discretization of Continuous At-
tributes, Proceedings of the Twelfth International Conference on Machine Learn-
ing, 1995

[6] Fayyad, Usama M., Irani, Keki B.: Multi-Interval Discretization of Continuous-
Valued Attributes for Classification Learning, Proceedings of the 13th Interna-
tional Joint Conference on Artificial Intelligence, 1022-1027, 1993

[7] Kohavi, R., Wolpert, D.: Bias Plus Variance Decomposition for Zero-One Loss
Functions, Proceedings of the 13th International Conference on Machine Learning,
275-283, 1996

[8] Domingos, Pedro, Pazzani, Michael: On the Optimality of the Simple Bayesian
Classifier under Zero-One Loss, Machine Learning 29, 103-130, 1997

[9] Yang, Yiming, Liu, Xin: A Re-examination of Text Categorization Methods, Pro-
ceedings of ACM SIGIR Conference on Research and Development in Information
Retrieval, 42-49, 1999

[10] Johnson, Richard, Bhattacharyya, Gouri: Statistics: Principles and Methods, 12-
13, 1985

[11] Cestnik, B.: Estimating Probabilities: A Crucial Task in Machine Learning, Pro-
ceedings of the European Conference on Artificial Intelligence, 147-149, 1990

[12] Dougherty, James, Kohavi, Ron, Sahami, Mehran: Supervised and Unsupervised
Discretization of Continuous Features, Proceedings of the Twelfth International
Conference on Machine Learning, 194-202, 1995

[13] Hsu, Chun-Nan, Huang, Hung-Ju, Wong, Tzu-Tsung: Why Discretization works
for Naive Bayesian Classifiers, Machine Learning, Proceedings of the Seventeenth
International Conference, 309-406, 2000

[14] Quinlan, J. Ross: C4.5: Programs for Machine Learning, 1993
[15] Blake, C. L., Merz, C. J.: UCI Repository of Machine Learning Databases

[http://www.ics.uci.edu/∼mlearn/MLRepository.html], Department of Informa-
tion and Computer Science, University of California, Irvine, 1998

[16] Bay, S. D.: The UCI KDD Archive [http://kdd.ics.uci.edu], Department of Infor-
mation and Computer Science, University of California, Irvine, 1999

[17] Domingos, Pedro, Pazzani, Michael: Beyond Independence: Conditions for the
Optimality of the Simple Bayesian Classifier, Proceedings of the Thirteenth In-
ternational Conference on Machine Learning, 105-112, 1996

[18] Webb, Geoffrey I.: MultiBoosting: A Technique for Combining Boosting and Wag-
ging, Machine Learning, 40-2, 159-196, 2000

Error (%) Inter. No.
Index Dataset Size Num. Nom. Class

PKID FID 10D 5D PKID FID

A Labor Negotiations 57 8 8 2 7.7 9.5 9.6 7.5 2 2
B Echocardiogram 74 5 1 2 26.5 23.8 29.2 25.4 5 2
C Postoperative Patient 90 1 7 3 36.1 36.3 36.1 36.3 2 2
D Iris 150 4 0 3 7.5 6.8 7.5 7.6 7 4
E Hepatitis 155 6 13 2 14.4 14.5 14.7 14.3 7 2
F Wine Recognition 178 13 0 3 2.1 2.6 2.1 2.2 9 4
G Sonar 208 60 0 2 25.4 26.3 25.2 24.0 10 2
H Glass Identification 214 9 0 3 24.1 24.9 24.8 27.9 8 3
I Heart Disease (Cleveland) 270 7 6 2 17.5 17.5 17.1 17.2 8 2
J Liver Disorders 345 6 0 2 38.0 37.4 37.1 34.5 10 2
K Ionosphere 351 34 0 2 10.6 11.1 10.1 11.9 12 4
L Horse Colic 368 8 13 2 20.9 20.6 20.8 20.9 7 2
M Synthetic Control Chart 600 60 0 6 2.4 2.8 3.4 5.3 19 5
N Credit Screening (Australia) 690 6 9 2 14.2 14.5 14.5 14.1 15 3
O Breast Cancer (Wisconsin) 699 9 0 2 2.7 2.7 2.6 3.2 6 4
P Pima Indians Diabetes 768 8 0 2 26.1 26.0 25.9 26.8 16 3
Q Vehicle 846 18 0 4 38.3 38.9 40.5 43.6 16 5
R Annealing 898 6 32 6 4.8 2.8 7.7 8.9 5 3
S German 1000 7 13 2 25.1 25.1 25.4 25.2 9 2
T Multiple Features 2000 3 3 10 31.5 32.6 31.9 33.4 35 6
U Hypothyroid 3163 7 18 2 1.8 1.7 2.8 4.3 27 4
V Satimage 6435 36 0 6 17.8 18.1 18.9 20.6 34 6
W Musk 6598 166 0 2 8.3 9.4 19.2 25.7 47 5
X Pioneer-1 Mobile Robot 9150 29 7 57 1.7 14.8 10.8 21.9 37 5
Y Handwritten Digits 10992 16 0 10 12.0 13.5 13.2 15.9 47 5
Z Australian Sign Language 12546 8 0 3 35.8 36.5 38.2 42.5 19 4
1 Letter Recognition 20000 16 0 26 25.8 30.4 30.7 38.2 11 5
2 Adult 48842 6 8 2 17.1 17.2 19.2 19.2 49 5
3 Ipums.la.99 88443 20 40 13 19.9 20.1 20.5 20.4 29 4
4 Census Income 299285 8 33 2 23.3 23.6 24.5 25.0 80 5
5 Forest Covertype 581012 10 44 7 31.7 32.1 32.9 32.6 264 6

- Mean Error - - - - 18.4 19.2 19.9 21.2 - -

- Geometric Mean Error Ratio - - - - 1.00 0.92 0.85 0.78 - -

Table 2. Experimental Datasets and Results

