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Abstract—Ensemble learning strategies, especially Boosting and Bagging decision trees, have demonstrated impressive capacities to

improve the prediction accuracy of base learning algorithms. Further gains have been demonstrated by strategies that combine simple

ensemble formation approaches. In this paper, we investigate the hypothesis that the improvement in accuracy of multistrategy

approaches to ensemble learning is due to an increase in the diversity of ensemble members that are formed. In addition, guided by

this hypothesis, we develop three new multistrategy ensemble learning techniques. Experimental results in a wide variety of natural

domains suggest that these multistrategy ensemble learning techniques are, on average, more accurate than their component

ensemble learning techniques.

Index Terms—Boosting, bagging, ensemble learning, committee learning, multiboosting, bias, variance, ensemble diversity.
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1 INTRODUCTION

CLASSIFICATION ensemble learning techniques have de-

monstrated powerful capacities to improve upon the

classification accuracy of a base learning algorithm.

Common to these approaches is the repeated application

of the base learning algorithm to a sample derived from the

available training data. Each application of the algorithm

results in the generation of a new classifier which is added

to the ensemble. To classify a new case, each member of the

ensemble classifies the case independently of the others and

then the resulting votes are aggregated to derive a single

final classification.

It has been observed that an important prerequisite for

classification ensemble learning to reduce test error is that it

generate a diversity of ensemble members [7], [8], [14], [15].

If all ensemble members agree in all of their classifications,

then the aggregated classification under any reasonable

aggregation scheme will be identical to that of any

individual ensemble member. Indeed, for ensembles of

numeric predictors for which aggregation of predictions is

by weighted numeric mean, it has been proven that

increasing diversity between ensemble members without

increasing their individual test error necessarily results in a

decrease in ensemble test error [13]. This result does not

extend directly to classification learning, however, as

aggregation of classification predictions is not usually

performed by weighted numeric mean. Nonetheless, using

majority voting between ensemble members in a two-class

domain, if diversity in predictions is maximized (as

measured by the variance of the predictions) while

maintaining a set test error rate for each individual

ensemble member, so long as e < 0:5 and t � 1
1�2e rounded

up to the next odd integer (where e is the test error for

individual ensemble members and t is the ensemble size),

the test error rate of the ensemble will be zero. This is

because variance will be maximized when the proportion e

of ensemble members make an error on each test case to be

classified. If e is less than 0.5, then this will ensure that the

majority vote favors the correct class for every case. The

constraint on t is required to ensure that the rounding up of

e required by the granularity of ensemble votes still results

in a value less than 0.5 for each case to be classified. Turning

from this theoretical result, in general, when the test error

rate of individual classifiers is less than 0.5, increasing

diversity in classifications between classifiers will tend to

decrease test error as it will tend to dilute concentrations of

errors to less than 0.5 of the votes for any given test case to

be classified, hence tending to result in correct classification.

However, this insight is of less practical value for the

generation of classification ensemble learning techniques

than might at first be thought. This is because methods for

increasing diversity within an ensemble usually come at a

cost of also increasing the expected test error of the

individual ensemble members. Without knowing the

magnitude of the increase in the test error of the individual

ensemble members, it is not possible to realistically assess

the likely outcome of a particular trade off between

diversity and individual error. Assessing the likely increase
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in individual error is not practical, however, as error

estimation on the training data is likely to produce highly

optimistic estimates. Nonetheless, the spectacular success of

ensemble techniques demonstrates that they manage this

trade off successfully in practice.

With these issues in mind, Webb [20] hypothesized

that it would be advantageous to combine ensemble

learning techniques that have the capacity to effectively

manage this trade off because doing so will lead to

further increases in internal diversity without undue

increases in individual error and this can be expected to

result in improved classification accuracy. These hypoth-

eses led to the development of MultiBoosting [20], a

technique that combines AdaBoost [10] and a variant of

Bagging [4] called Wagging [2].

MultiBoosting has been demonstrated to attain most of

Boosting’s superior bias reduction together with most of

Wagging’s superior variance reduction. However, which

mechanisms are responsible for this outcome remains an

open question. This paper investigates the link in multi-

strategy ensemble learning between test error reduction and

the generation of diversity in ensemble membership.

Further, Boosting and Bagging/Wagging are not the only

approaches to classification ensemble learning. This paper

also explores the effect of increasing the diversity in

ensemble membership by integrating the formation of

ensembles by stochastic perturbation [9], [1], [21] with

Boosting and Wagging.

2 EXPLANATIONS FOR THE EFFECTIVENESS OF

ENSEMBLING

The spectacular success of ensemble learning has led to a

number of investigations into the underlying mechanisms

that support their powerful error reduction capabilities.

Breiman [5] argues that bagging can be viewed as

classifying by application of an estimate of the central

tendency for the base learner. This may serve to explain

why bagging reduces variance. However, it is yet to be

explained why such a reduction in variance should not be

accompaniedbya corresponding increase in errordue tobias.

Nonetheless, several studies have shownbagging to decrease

variance without unduly affecting bias [7], [18], [2], [20].

A contrasting account of the performance of AdaBoost is

provided by Friedman et al. [11]. They provide an account of

AdaBoost in terms of additive logistic regression. They assert

that boosting by reweighting “appears to be a purely ‘bias’

reduction procedure, intended to increase the flexibility of

stable (highly biased) weak learners.” Despite this account, a

number of empirical studies have demonstratedAdaBoost to

reduce both bias and variance [7], [18], [2], [20].

Two sets of studies with artificial data have shown

AdaBoost to outperform bagging both in terms of bias and

variance reduction [7], [18]. However, experiments with

“natural” data sets seem to indicate that, in general, while

AdaBoost is more effective at reducing bias than is bagging,

bagging is the more effective at reducing variance [2], [20].

Freund and Schapire [10] prove that AdaBoost reduces

error on the training data. However, they also note that this

need not reduce error outside the training data. They

suggest that structural risk minimization [19] might explain

off-training set error reduction. However, subsequent

empirical evidence has not supported this supposition [18].

Schapire et al. [18] attribute AdaBoost’s ability to reduce

off-training set error to its boosting the margins of the

ensemble’s weighted classifications. However, as evidence

against this account, Breiman [6] has presented algorithms

that are more effective than AdaBoost at increasing

margins, but less effective at reducing test error.

Breiman [7] ascribes AdaBoost’s error reduction to

adaptive resampling. This is the construction of an ensemble

by repeated sampling from a training set where the

probability of a training case being included in a subse-

quent sample is increased if it has been misclassified by

ensemble members learned from previous samples. Some

support for this argument is provided by the success of an

alternative adaptive resampling algorithm, arc-x4. How-

ever, while AdaBoost has been demonstrated to be equally

effective at reducing error using either reweighting or

resampling, arc-x4 has been shown to be much less effective

using reweighting than using resampling [2]. This could be

taken to indicate that AdaBoost does more than just

adaptive resampling.

As can be seen, while investigation into the success of

ensemble learning techniques has been extensive, no single

account has received undisputed widespread support. In

this context, this paper investigates the role of diversity

between ensemble members in the effectiveness of ensem-

ble learning.

3 ENSEMBLE LEARNING TECHNIQUES

This section describes the ensemble learning techniques

utilized in this work. All of the techniques take a base

learning algorithm and a set of training data and then

repeatedly apply the algorithm or a variant thereof to a

sample from the data, producing a set of classifiers. These

classifiers then vote to reach an ensemble classification.

Bagging applies the base algorithm to bootstrap samples

from the training data. A bootstrap sample from n cases is

formed by randomly selecting n cases with replacement.

Wagging is similar to Bagging except that all training cases

are retained in each training set, but each case is

stochastically assigned a weight. In the current research,

we follow Webb [20] in assigning weights from the

exponential distribution. This is motivated by the observa-

tion that Bagging can be considered to be Wagging with

allocation of weights from the Poisson distribution, a
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discrete distribution that results in discrete valued weights

(each case is represented in the sample a discrete number of

times). The exponential distribution is the continuous

valued counterpart to the Poisson distribution and, hence,

the use of the exponential distribution provides a natural

extension of Bagging to utilization of fractional weights.

Individual random instance weights (approximately) con-

forming to the exponential distribution are calculated by the

following formula:

rand weightðÞ ¼ � log
randð1 . . . 999Þ

1000

� �
; ð1Þ

where randðx . . . yÞ returns a random integer value between

x and y inclusive.
The resulting algorithm is presented as Algorithm 1. In

general,Wagging is slightly less effective than Bagging at test

error reduction, perhaps because the inclusion of every case

in every training set tends to lead to lower variation between

the resulting ensemblemembers [20]. Nonetheless, we utilize

Wagging rather than Bagging in the current research as it

interacts better with other ensemble learning algorithms,

possibly because it includes all training cases, allowing the

other algorithm access to all cases on every run.

Boosting is another approach to ensemble learning. The

first ensemble member is formed by applying the base

learning algorithm to the entire training set. Subsequent

ensemble members are formed by applying the base

algorithm to the training set but with cases reweighted to

place higher weight on cases that are misclassified by

existing ensemble members. The votes of ensemble mem-

bers are weighted by a function that lowers the vote of a

classifier that has lower accuracy on the weighted training

set from which it was learned. We utilize a minor variant on

the Bauer and Kohavi [2] variant of Freund and Schapire’s

[10] AdaBoost algorithm. This is presented as Algorithm 2.

Bauer and Kohavi’s [2] variant

. Uses a one step weight update process that is less
subject to numeric underflow than the original two
step process (Step 17).

. Prevents numeric underflow (Step 18).

. Continues producing more ensemble members be-
yond the point where � � 0:5 (Step 5). This measure is
claimed to improve prediction accuracy [5], [2].

We further modify this approach by utilizing the exponen-

tial distribution for reweighting cases at Steps 6 and 12 and

continuing to produce more ensemble members beyond a

point where training error falls to zero (Step 10). These two

measures are included for the sake of consistency between

the various learning algorithms. All use the exponential

distribution for random reweighting and all always

produce an ensemble of size t. Note that this version of

the algorithm may fail to terminate, entering an infinite loop

through Steps 3 to 8. This did not occur in our experiments.

Stochastic Attribute Selection Committee Learning dif-

fers from the above techniques in that instead of perturbing

the training set, it performs stochastic perturbations to the

base learning algorithm on successive applications of the

learner to a training set. A number of variations on this

general approach have been explored [9], [1]. While our

specific technique (described in more detail by Zheng and

Webb [21]) differs in minor details from these previous
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approaches, we have no reason to believe that, in general,

its performance would differ substantially from the alter-

natives. Our implementation, that uses C4.5 [16] Release 8

as the base learning algorithm, operates as follows: When

learning a decision tree, C4.5 applies an information

measure to each potential test selecting the test with the

highest value of a criterion based on gain ratio [17]. C4.5SAS

modifies this behavior by introducing a stochastic element

to the selection process, allowing tests with lower values on

the selection criterion to occasionally be selected. This is

achieved by selecting a subset of the available attributes,

with each available attribute having probability of 0:33 of

inclusion. If there is an acceptable test on the attributes

included in the subset, then the one that rates highest on the

selection criterion is selected. If there is no such test among

the selected attributes, the best test among all attributes is

selected unless there is no acceptable test in which case a

leaf is formed.
Our implementation of Stochastic Attribute Selection

Committees, SASC, repeatedly applies C4.5SAS to the
training data to create an ensemble of classifiers. This
process is presented as Algorithm 3.

4 MULTISTRATEGY ENSEMBLE LEARNING
ALGORITHMS

We combine multiple approaches to ensemble learning
motivated by the hypothesis that doing so will increase
diversity between ensemble members, albeit at a cost of a
small increase in individual error. Webb [20] hypothesized
that this process would trade off diversity against indivi-
dual error so as to decrease the resulting ensemble’s test
error. In the current work, we seek to evaluate this
hypothesis and explore the role of ensemble member
diversity in ensemble learning.

MultiBoosting has established that the combination of
Boosting and Wagging can reduce test error. However, this
does not answer the questions of whether this reduction can
be attributed to an increase in the diversity of ensemble
members or whether combinations of other forms of
ensemble learners may also be productive. We address
the latter question by exploring the space of combinations of
Boosting, Wagging, and Stochastic Attribute Selection
Committees. For our experimental work, we utilize the

well-known C4.5 Release 8 [17] as the base learning

algorithm.
To combine SASC with another method, we replace C4.5

with C4.5SAS as the base learning algorithm within the

other method. To combine Wagging with Boosting we

follow Webb’s [20] MultiBoosting approach, Wagging sub-

ensembles formed by Boosting. The MB algorithm is

presented in Algorithm 4. Note that, for consistency with

the other approaches to combining base learning algo-

rithms, we have modified MB to utilize stochastic weights

for the first subensemble (Step 1) rather than initializing all

weights to 1 as done by Webb [20]. Note also that this

version of the algorithm, as is the case with our version of

AdaBoost, may fail to terminate, entering an infinite loop

through Steps 9 to 15. This did not occur in our

experiments.

Together with the two base learning algorithms, C4.5

and C4.5SAS, combining the algorithms in all possible ways

results in nine distinct algorithms, presented in Fig. 1.
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5 EXPERIMENTS

We use the following notation:

. Y is the set of classes.

. T is a training set of example description-classifica-
tion pairs.

. K is a classifier, a function from objects to classes.

. Ci is the ith classifier in ensemble C, a function from
objects to classes.

. Wi is the weight given to the vote of Ci.

. t is the number of classifiers in ensemble C.

. xi is the description of the ith case to be classified.

. yi is the correct classification for the ith case to be
classified.

. m is the number of cases to be classified.

. L is a learner, a function from training sets to
classifiers.

We wish to evaluate the hypothesis that combining

multiple distinct ensemble learning algorithms will tend to

increase diversity in the predictions of ensemble members

without unduly increasing the test error of the individual

predictions of the ensemble members, resulting in a

reduction in ensemble test error.
To evaluate this hypothesis, we need an operational

measure of diversity in the predictions of ensemble members. We

utilize the weighted statistical variance between the

weighted predictions of the members of a classifier

ensemble for this purpose:

diversity ¼

Xm
i¼1

1�
X
y2Y

Pt
j¼1 Wj1 CjðxiÞ ¼ y

� �
Pt

j¼1 Wj

 !2
0
@

1
A

m
: ð2Þ

We also require an operational measure of the test error of the

individual predictions of ensemble members. We utilize a

weighted mean of the test error of the predictions of an

ensemble’s constituent classifiers for this purpose:

individual error ¼
Pm

i¼1

Pt
j¼1 Wj1 CjðxiÞ ¼ yi

� �
m
Pt

j¼1 Wj

: ð3Þ

We wish to examine the relationship between these two

measures and error, which we define as

error ¼
Pm

i¼1 1 KðxiÞ 6¼ yið Þ
m

: ð4Þ

We further decompose error into bias and variance using

Kohavi and Wolpert’s [12] definitions thereof:

bias2x ¼ 1

2

X
y2Y

½PY ;XðY ¼ yjX ¼ xÞ � PT ðLðT ÞðxÞ ¼ yÞ�2; ð5Þ

variancex ¼ 1

2
1�

X
y2Y

PT ðLðT ÞðxÞ ¼ yÞ2
 !

; ð6Þ

�x ¼ 1

2
1�

X
y2Y

PY ;XðY ¼ yjX ¼ xÞ2
 !

: ð7Þ

The third term �x relates to irreducible error. We follow

Kohavi and Wolpert’s [12] practice of aggregating this value

with bias due to the difficulty of estimating it from

observations of classification performance.
We estimate all of the above terms using Webb’s [20]

procedure of performing 10 cycles of three-fold cross
validation. This process ensures that each case is used in
20 training sets and ten test sets.

Armed with these measures and procedures we system-

atically explored the space of combinations of the three base

ensemble learning algorithms by forming the following

systems that realize the hierarchy illustrated in Fig. 1:

. C4.5: C4.5 Release 8, the base system.

. C4.5SAS: C4.5 modified to perform stochastic attri-
bute selection as described in Section 3.

. WAG: Wagged ensembles of 100 decision trees using
C4.5 as the base algorithm.

. BOOST: AdaBoost ensembles of 100 decision trees
using C4.5 as the base algorithm.

. SASC: Stochastic attribute selection committees of
100 decision trees each formed by C4.5SAS.

. MB: MultiBoosted (Wagged subensembles formed
by boosting) ensembles of 100 (10 � subensembles of
size 10) decision trees using C4.5 as the base
algorithm.

. BOOSTSASC: Boosted ensembles of 100 decision trees
using C4.5SAS as the base algorithm.

. WAGSASC: Wagged ensembles of 100 decision trees
using C4.5SAS as the base algorithm.

. MBSASC: MultiBoosted ensembles of 100 (10 �
subensembles of size 10) decision trees using
C4.5SAS as the base algorithm.

These various algorithms were applied to the 41 data sets
from the UCI repository [3] described in the Appendix.
Ensembles of size 100 were used as a compromise between
greater compute times required by larger ensembles and the
ever-decreasing average-case marginal improvement in
error that can be expected from larger ensemble sizes.

Unfortunately, space constraints prevent the presenta-

tion of results at the individual data set level. Figs. 2, 3, 4, 5,

and 6 and Tables 1, 2, 3, 4, and 5 provide high-level

summaries of these results. The summary tables have the

following format, where row indicates the mean value on a

data set for the algorithm with which a row is labeled, while
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col indicates the mean value for the algorithm with which

the column is labeled. Rows labeled _rr present the geometric

mean of the value ratio col=row. Rows labeled s present the

win/draw/loss record, where the first value is the number

of data sets for which col < row, the second is the number

for which col ¼ row, and the last is the number for which

col > row. Rows labeled p present the result of a two-tailed

sign test on the win-loss record. This is the two-tailed

probability of obtaining the observed record of wins to

losses, or more extreme, if wins and losses were equi-

probable random events. Note, these values have not been

corrected to control experiment-wise type-1 error, but are in

most cases so low that standard statistical corrections

would not affect significance test outcomes. The figures
depict the hierarchy of Fig. 1, with mean value across all
data sets listed against each algorithm. The lines climbing
up the hierarchy are labeled with an indication of the
relative win/draw/loss record. An improvement in the
win/draw/loss record is labeled with a “+” and a decline
by a “-.” Where the difference is statistically significant at
the 0.05 level, the label is large; otherwise, it is small.

5.1 Error, Bias, and Variance

Fig. 2 shows that the mean error invariably drops as we
climb the hierarchy of ensemble technique combinations.
Table 1 shows that all ensemble techniques have signifi-
cantly better win/draw/loss records than C4.5. Moving
from a single strategy to a combination of two strategies, in
every case the error ratio and win/draw/loss record favors
the multistrategy approach over each of its constituent
strategies. The win/draw/loss record significantly favors
the multistrategy approach over the constituent strategy in
every case except for comparing BOOST against BOOST-

SASC. Moving from combinations of two strategies to the
combination of all three strategies, the error ratio and win/
draw/loss record in each case favors MBSASC, but the
advantage on the win/draw/loss record is only significant
against BoostSASC. While the failure to obtain significant
advantages at the top of the hierarchy leaves room for
interpretation about whether MBSASC holds a general
advantage over each of its two-strategy constituents, it at
the very least appears clear that it does not hold a
significant general disadvantage.

Turning to bias, all of the ensemble techniques have
lower bias, favorable bias ratios, and favorable win/draw/
loss records with respect to C4.5. However, the win/draw/
loss records only indicate significant benefits for the
ensemble techniques that incorporate boosting as a compo-
nent technique. Climbing the hierarchy, MB shows a
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marginally worse aggregate mean bias and bias ratio

relative to BOOST and the win/draw/loss record ap-

proaches significance at the 0.05 level. In contrast, BOOST-

SASC shows marginal improvements in mean bias and bias

ratio, but the very small advantage in win/draw/loss

record is definitely not significant. Relative to SASC,

BOOSTSASC demonstrates clear wins on all metrics, but

WAGSASC demonstrates only a minor win on mean bias, no

win on bias ratio, and an extremely slim, far from

significant win on win/draw/loss record. With respect to

WAG, MB demonstrates clear wins on all metrics, while

WAGSASC demonstrates marginal wins and the win on

win/draw/loss record is not significant. Proceeding to the

top of the hierarchy, MBSASC demonstrates a clear win over

WAGSASC on all metrics, but has at most marginal,

insignificant, wins against MB and actually has a worse

win/drawn/loss record, albeit not significantly, than

BOOSTSASC. In summary, combining Boosting with Wag-

ging or Stochastic Attribute Selection appears to have a

beneficial effect with respect to bias, but the combination of

Wagging with Stochastic Attribute Selection appears to

have little effect in this respect.

Turning our attention next to variance, a very different
pattern appears. Again, all of the ensemble techniques
outperform C4.5 on all metrics. Adding either WAG or SASC

to another technique, including each other, always pro-
duces a substantial benefit on all metrics, including a
significant improvement in win/draw/loss record relative
to the other technique on its own. In contrast, however,
adding BOOST to another technique always results in a
decrease in performance on all metrics (excepting small,
nonsignificant, improvements in win/draw/loss record for
MB against WAG and BOOSTSASC against SASC), some-
times a substantial decrease and, in one case (MBSASC

against WAGSASC), a significant worsening of the win/
draw/loss record.

In summary, these results suggest that BOOST is
primarily a bias reduction technique. Although it performs
significant variance reduction, it is not as effective at this as
WAG or SASC. Combining BOOST with WAG or SASC

produces significant benefits in bias reduction over each of
WAG and SASC in isolation, without a serious decline vis a
vis BOOST. In contrast, WAG and SASC are primarily
variance reduction techniques. Combining either with
another technique results in variance reduction vis a vis
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the other technique on its own without a serious increase in

variance in comparison to WAG or SASC in isolation.

Putting all of these factors together, combining techniques is

generally beneficial with respect to error reduction because

there is always a benefit either in terms of bias or variance

reduction against each constituent technique, which is

usually gained without a substantial or significant loss

with respect to the other constituent of error.

5.2 Diversity and Individual Error

Webb’s [20] original motivation for the development of

MultiBoosting and the subsequent multistrategy ensemble

learning techniques was that combining ensemble learning

strategies would increase diversity without unduly affecting

the error of individual members of the ensemble. Tables 4

and 5 show that this is indeed the case when one considers

every step from a constituent ensemble learning technique to

a multistrategy technique except for BOOST to MB and

BOOSTSASC to MBSASC. The steps fromWAG toMB, BOOST

to BOOSTSASC, SASC to BOOSTSASC, WAG to WAGSASC,

SASC to WAGSASC, MB to MBSASC, and WAGSASC to

MBSASC all result in increases in diversity accompanied by

small but significant increases in individual error but

decreases in ensemble error. However, adding WAG to
BOOST or MBSASC has the opposite effect on diversity and
individual error. In both cases, both diversity and individual
error significantly decrease. However, in both cases, this
nonetheless results in a decrease in ensemble error. We have
the unexpected outcome that the original motivation for
MultiBoosting appears to apply to other combinations of
standard classifier ensemble learning techniques, but not to
the MultiBoost combination of WAG and BOOST!

Having observed this phenomenon, it is straightforward

to explain. Compared with WAG and SASC, BOOST has very

high diversity. It is credible that the Boosting process will

tend to drive diversity up at ever-increasing rates as

ensemble size increases. This is due to the manner in which

Boosting attempts to focus the learner on areas of the

instance space that previous ensemble members fail to

handle adequately. By definition, this means that it is

attempting to make the latter ensemble members system-

atically differ in their classifications from prior members.

However, this process will also drive up the individual

error of each successive ensemble member when applied to

the domain as a whole because each successive member

concentrates primarily on ever-decreasing areas of the total
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instance space. Successive ensemble members have ever-

increasing individual error in order to gain the ever

increasing diversity, a trade off that, in practice, results in

ever-diminishing benefit in terms of reduction of overall

ensemble error. Credibility is lent to this argument when

one compares the diversity and individual error of

AdaBoost ensembles of size 10 and 100. To this end, the

AdaBoost experiments were rerun on the same data set

cross-validation partitions, but with an ensemble size of 10.

With respect to diversity, in contrast to the mean across all

data sets of 0.340 obtained for boosted ensembles of size

100, boosted ensembles of size 10 had a mean of 0.276. With

respect to individual error, the mean dropped from 0.291 to

0.260 for ensembles of size 10. With respect to both

measures, the mean on every data set was lower for

ensemble size 10 than for size 100.
MultiBoosting creates boosted subensembles of size 10.

Compared with the mean diversity and individual error
obtained for boosted ensembles of this size, MultiBoosting
does lead to increases. However, it is clear that Multi-
Boosting compared with Boosting ensembles of size 100
leads to decreases in diversity and individual error. By
creating boosted subensembles of size 10, MultiBoosting

delivers lower internal error than Boosting. However, this
improvement in internal error comes at a cost of a slight
decrease in diversity. Contrary to our expectations, rather
than increasing diversity vis a vis Boosting, MultiBoosting
decreases diversity, but, in practice does so in a manner that
forms a better diversity against individual error trade off
than that formed by Boosting alone.

Other than these two cases where Wagging is combined
with Boosting, the results are, however, consistent with our
expectations that combining ensemble techniques would
result in increased diversity and individual error resulting
in trade offs that reduce overall ensemble error.

6 CONCLUSIONS

This paper has examined techniques for combining simple
ensemble learning approaches with the aim of exploring the
relationship between ensemble member diversity and
ensemble error. The results strongly support the proposition
that combining effective ensemble learning strategies is
conducive to reducing test error. A specific hypothesis about
this effect was examined—that combining ensemble learn-
ing strategies would increase diversity at the cost of a small
increase in individual test error resulting in a trade off that
reduced overall ensemble test error. While this hypothesis
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TABLE 3
Variance Comparison Results



was consistent with the results obtained when stochastic

attribute selection was combined with another ensemble

learning strategy, it was not consistent with the results for

the MultiBoosting approach to combining Boosting and

Wagging, where, compared with the Boosting-based strat-

egy (AdaBoost alone or AdaBoost combinedwith SASC), the
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TABLE 4
Diversity Comparison Results

TABLE 5
Individual Error Rate Comparison Results



combination appears to have the effect of reducing indivi-
dual test error at the cost of a small reduction in diversity, a
different trade off which nonetheless results in reduced
ensemble test error.

The success of these ensemble learning techniques
mandates further investigation. We have examined only a
single base learner and only one ensemble size. Our
expectation is that the results will generalize to other base
learners and ensemble sizes, but this belief warrants
evaluation. This paper has highlighted the trade off
between diversity and individual test error in ensemble
learning strategies. Research into how this trade off should
be managed and how to identify when a particular trade off
is likely to be productive are likely prove fruitful areas for
future investigation.

The computational overheads of combining ensemble

learning strategies are negligible. The same number of

ensemble members are learned and, hence, the same

numbers of calls to the base learner are required. Indeed,

the strategy of wagging subcommittees formed by boosting

can support greater computational efficiency by allowing

parallelism of a form not readily possible with boosting

alone. However, despite negligible computational cost, our

experiments have shown that appreciable and reasonably

consistent reductions in test error can be obtained. There

appears to be no reason not to combine ensemble learning

strategies in a learning scenario for which ensemble

learning is appropriate.

APPENDIX

DATA SETS

Forty-one natural domains from the UCI machine learning
repository are used. Table 6 summarizes the characteristics

of these domains, including data set size, the number of

classes, the number of numeric attributes, and the number

of discrete attributes. This test suite covers a wide variety of

different domains with respect to data set size, the number

of classes, the number of attributes, and types of attributes.
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