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Abstract 
Machine learning and knowledge acquisition from experts have distinct and apparently 
complementary knowledge acquisition capabilities. This study demonstrates that the integration of 
these approaches can both improve the accuracy of the knowledge base that is developed and 
reduce the time taken to develop it. The system studied, called The Knowledge Factory is 
distinguished by the manner in which it supports direct interaction with domain experts with little 
or no knowledge engineering expertise. The benefits reported relate to use by such users. In 
addition to the improved quality of the knowledge base, in questionnaire responses the users 
provided favourable evaluations of the integration of machine learning with knowledge acquisition 
within the system. 

1 Introduction 
On the face of it, machine learning and knowledge acquisition from experts provide differing and 
complementary means of developing knowledge-based systems. The apparent manner in which the 
strengths of one match the weaknesses of the  other led to the development of a number of systems 
that integrate the two approaches (Attar Software, 1989: Davis & Lenat, 1982; De Raedt. 1992; Le 
Grand & Sallantin 1994; Monk et al., 1993; Nedellec & Causse, 1992: O’Neil & Pearson, 1987; 
Schmalhofer & Tschaitschian, 1995; Smith et al 1985; Tecuci & Kodratoff, 1990; Tecuci, 1995; 
Webb, 1996; Wilkins , 1988). This integration is expected to have a synergistic effect with the 
power of the resulting combined approach being greater than the power of either of its 
components. However, while there have been numerous reports of successful applications of these 
tools (Monk et al., 1993; Tecuci & Kodratoff, Webb, 1996), previous research has not 
demonstrated that the results in any way exceeded those that could have been obtained by one of 
the component approaches alone. This paper presents a formal evaluation of the benefits obtained 
through integrating machine learning into a knowledge acquisition environment in a system called 
The Knowledge Factory (Webb, 1996). 

2 The Knowledge Factory 
The Knowledge Factory (Webb. 1996) is an interactive knowledge acquisition environment that 
was developed with the intention of enabling a domain expert to collaborate with a machine 
learning system throughout the knowledge acquisition and maintenance process. Like the approach 
of Tecuci, 1995, it is distinguished from learning apprentices (Attar Software. 1989: Davis & 
Lenat, 1982; De Raedt, 1992: Monk et al, 1993; Nedellec & Causse, 1992; O’Neil & Pearson, 
1987; Schmalhofer & Tschaitschian, 1995; Smith et al, 1985; Tecuci & Kodratoff, 1990; Wilkins , 
1988) by the manner in which it is designed to be used directly by experts with minimal 
knowledge engineering training or experience. By contrast, learning apprentices are designed to 
provide machine learning facilities for use by knowledge engineers. It is distinguished from a 
number of knowledge elicitation systems designed for direct use by experts (Boose, Compton et al, 
1992) not only by its provision of machine learning facilities, but also by not relying upon the 
expert to always be able to provide suitable task  solutions. 

Pre-publication draft of a paper which appeared in the Proceedings of PKAW’96: The Pacific 
Knowledge Acquisition Workshop, pp170-188, UNSW 
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It is distinguished from the approach of Tecuci. 1995 by its use of less complex forms of 
interaction with the user. Restriction to simple user interactions is believed to be appropriate for 
the target user population: domain experts with little or no knowledge engineering experience or 
training. In particular, the interface and knowledge representation scheme has been kept simple. 
The knowledge representation scheme is restricted to flat attribute-value classification rules. That 
is, the knowledge base consists of a set of production rules. The antecedent of a rule is a set of tests 
on attribute values. The consequent is a simple classification statement. All rules directly relate 
input attributes to an output class. 

Experience with the use of The Knowledge Factory in complex financial and medical knowledge 
acquisition tasks indicated that both experienced knowledge engineers and users with minimal 
knowledge engineering or computing skills believed that the software was a valuable knowledge 
acquisition aid (Webb, 1996). A formal study in which university students in a third year artificial 
intelligence and expert systems unit were given an artificial knowledge acquisition task, found that 
the subjects believed that the integration of machine learning into the system was valuable and 
found the software easy to use (Webb, 1996). None of this evaluation, however, establishes any 
comparative advantage for the integration of machine learning with knowledge elicitation, as done 
by The Knowledge Factory, over any alternative. The current study was performed in order to seek 
support for the proposition that there exist knowledge acquisition tasks for which knowledge 
acquisition is assisted by the integration of machine learning as supported within The Knowledge 
Factory. 

To this end, two versions of the software were developed, one containing the machine learning 
facilities and one from which these facilities were removed. This enabled a direct evaluation of the 
effect of those facilities upon the knowledge acquisition process. 

It should be noted that, even with the machine learning facilities removed, The Knowledge Factory 
is still a fully functional knowledge acquisition environment. It contains both extensive facilities 
for specifying and editing rules and for evaluating the performance of those rules on example data. 

The two versions of the system were compared through use in an assignment for a third year 
undergraduate university computer science unit. The use of undergraduate computer science 
students with minimum knowledge acquisition training and no knowledge acquisition experience 
was believed to be appropriate as the tool is intended for users with little or no training in 
knowledge engineering. 

As the system is intended for users with relevant domain knowledge such knowledge was 
simulated in the experiments by providing the subjects with tuition in the subject matter before 
knowledge acquisition began. 

3 Experimental Method 
All twenty-nine students in the third year unit Artificial Intelligence and Expert Systems at Deakin 
University were given an assignment that involved two knowledge acquisition tasks. All students 
involved were asked whether they would consent to have their performance utilised in a research 
study and were told that they could withdraw their consent at any stage during the experiment. 

Only one subject had any knowledge engineering experience prior to commencing the unit. This 
student was repeating the unit having attempted but failed it in the preceding year. The study 
commenced in the third week of the unit. Up to that point the students had been exposed to 
overview level discussions of knowledge acquisition and to programming in the CLIPS expert 
system language. During the study, the students received further lectures and laboratory sessions 
on CLIPS programming and two discursive lectures on knowledge acquisition principles and 
techniques. The student body comprised both Information Systems and Software Development 
students. Thus, the subjects, while having good computer skills, were, at best, novice knowledge 
engineers. 
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Both knowledge acquisition tasks were artificial. First a set of defining rules for a domain were 
created. These were intended to have a level of complexity sufficient to provide a spread of quality 
in the rules developed by different means. That is, they were not to be so simple as to enable any 
knowledge acquisition approach to develop perfect rules. Nor were they to be so complex as to 
ensure that all approaches developed rules of extremely low quality. These rules are presented in 
Figure 1. 

The domains are defined by a dependent variable with four values (the classes) and 15 independent 
variables of which ten are ordinal ( 9...0 AA aa )with integral values between 0 and 1000 inclusive, 
and five are categorical ( 4...0 AA cc ) with values of true or false. Of these 15 independent 
variables, eight were generated by independent random number generation processes while the 
remaining seven were each derived by random transformation of other variables. This inter-
relationship between variables was used in an attempt to make the artificial task as realistic as 
possible. The data  generation functions are presented in Table 1. 

Two data sets were generated using the data generation functions presented in Table 1 and 
augmented by the dependent variable generated as per Figure 1. The first of these, called the 
training set, contained two hundred items while the second, called the evaluation set contained one 
thousand items. In addition, a body of background knowledge was defined. This was designed to 
provide the subject with a set of beliefs about the domain in order to simulate a real domain expert 
with extensive, but neither completely accurate nor exhaustive knowledge about the domain. 

The two data sets and the background knowledge defined the base knowledge acquisition task. 

 

IF a A 0≥  450 

 c A 0 is true 

 c A l is true 
THEN Class = 0 

IF a A 0≥  450 

 c A l ≤ 200 

 c A 0 is false 

 c A l is true 
THEN Class = 1 

IF a A 0 ≤ 449 

 c A 0 is true 

 c A l is true 
THEN Class = 1 

IF a A 0≥  400 

 c A 0 is true 

 c A l is false 

 a A 2 ≤ 700 
THEN Class = 2 

IF a A 0≥  450 

 a A 1 ≤ 400 

 c A 0 is true 

 c A l is false 
THEN Class = 2 

OTHERWISE Class = 3 

Figure 1: Defining rules for the knowledge acquisition tasks 
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On the one hand it was desirable to give all subjects the same task and for each subject to use each 
version of the software on the one task. This would prevent experimental confounds being 
introduced by irrelevant differences between tasks. However, the straightforward use of a single 
task would introduce the risk of collaboration between subjects, especially collaboration between 
subjects in different treatments (those with access to machine learning could report the rules 
developed through machine learning to colleagues without access to those facilities). Further, if 
each subject used two different systems on the one task, rules developed using one system could 
be entered into the knowledge base for the other system. 

To limit the potential for either of these occurrences, the base knowledge acquisition task was 
transformed for each subject. First, two scenarios were defined: the Gruwald’s disease diagnosis 
scenario and the geochemical analysis scenario. Each scenario was defined by: 

• a textual briefing: 
• a set of names for the ordinal variables: 
• a set of names for the categorical variables; 
• a set of class names; and 
• a set of transformation functions. 

The latter were employed to transform the values of the ordinal variables from the base task. These 
scenario definitions are shown in Figures 2 and 3. 

 

a A 0 = rand(0..499) + rand(0..499) 

a A 1 = rand(0..499) + rand(0..499)
3

0Aa
−   

a A 2 = a + rand(0..499) — rand(0..499) 

  rand(0..199) + rand(0..199)    if c A 0 
a A 3 =   
  rand(0..299) + rand(0..299) + rand(0..299)  otherwise 
 
  rand(0..299) + rand(0..299) + rand(0..299)  if c A 0 ¬∧  c A 1 
a A 4  =  
  rand(0..199) + rand(0..199)    otherwise 

a A 5  =  rand(0..999) 

a A 6  =  rand(0..999) 

a A 7  =  rand(0..999) 

a A 8  =  rand(0..999) 

a A 9  =  rand(0..999) 

c A 0  =  rand (true, false) 

c A 1  = rand( true, true, false) 

c A 2  =  c A 0 ∧  rand (true, true, false) 

c A 3  =  a A l + rand(0..99) ≤ 170 

c A 4  =  rand (true, false) 
 

Table  1: Data generation functions  

The definition of different scenarios reduced the risk of subjects realising that at an underlying 
level, the two tasks were identical. To further reduce this risk and to reduce the risk of subjects 
realising that they shared common tasks with other subjects (with whom they could freely 
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communicate) within each scenario, each subject was provided with an individual surface task by 
the addition of a random offset to the values for each variable. 

As an additional measure to reduce the risk of different subjects realising that they shared tasks 
that were identical at an underlying level, the subjects were told that each had tasks defined by 
different sets of defining rules. 

To minimise any effect whereby the subject’s performance on one task might affect performance 
on the other, in particular due to time being apportioned unduly to one task at the expense of the 
other, the tasks were performed in sequence. The Gruwald disease diagnosis task was performed 
first. Subjects had to collect disks containing the software, data, briefing and manuals on one 
Tuesday and return it, with the completed project on the following Tuesday. When a subject 
submitted the first project he or she was provided with the disks for the second project. This, in 
turn, was submitted on the third Tuesday in sequence. 

 

Briefing: Gruwalds Disease Background Briefing 

The following is a summary of your knowledge of Gruwald’s Disease accumulated from 
years of clinical experience. 

1. Gruwald’s Disease is highly dangerous. The mortality rate for patients with the acute 
form of the disease is very high. 

2. Patients with Gruwald’s Disease usually have raised Erythrocyte_Count and raised 
Liptuary. 

3. Accurate diagnosis is currently only possible posthumously. 

4. In your experience, patients with acute Gruwald’s Disease usually have 
Erythrocyte_Count ≥  450, Dyspnoea and Generalised_Oedema are present. 

5. You believe that when Ervthrocyte_Count ≥  450 and Generalised_Oedema is present 
but Dyspnoea is absent, patients have Advanced Gruwald’s Disease when 
Haemoglobin ≤  250. While this rule-of-thumb is indicative, you know that it is not 
definitive. 

6. Finally, you believe that when Erythrocyte_Count ≥  400, Generalised_Oedema is 
present but Dyspnoea is absent and when Liptuary ≤  600 patients have Secondary 
Gruwald’s Disease. 

Ordinal variable names 

Ervthrocvte_Count, Haemoglobin, Liptuary, Pheneral_Rate, Platelet_Count, 
Creatine_Clearance, Granular_Cell_Count. Urinary_Ervth_Count, Proteinuria_Value, 
White_Cell_Count. 

Categorical variable names 

Dyspnoea. Generalised_Oedema. Haemoptysis. Headache, Peripheral_Oedema. 

Class names 

Acute, Advanced, Secondary, Negative. 

Transformation functions 

For each subject a conversion factor was generated for each continuous attribute. Each 
factor was a random number between -100 and 100, inclusive. All attribute values, 
including those in the briefing above, were modified by addition of the conversion factor. 

The order within the briefing of the two categorical attributes Generalised_Oedema and 
Dyspnoea was determined randomly for each subject. If Dyspnoea was selected first, the 
order in which these two attributes are mentioned in each of the clauses of the briefing 
would be reversed to that presented above. 

 

Figure 2: Definition of the Gruwald’s disease diagnosis scenario 
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Each subject performed one task with the machine learning enabled version of the software and the 
other task with the machine learning disabled version. To minimise order effects and confounds 
introduced by differing perceptions of the two scenarios, half of the subjects were assigned the 
machine learning enabled version for the first task while half were assigned it for the second task. 
This assignment was randomised through use of a random number generator. 

The software, manuals and data were given to the subjects on a computer disk. The performance of 
the task was unsupervised. Subjects could use appropriate computers in the University’s 
laboratories, at home, or elsewhere. 

 

Briefing 

The information that follows represents your background knowledge on mineral 
prospecting using Geochemical Analysis. This knowledge is the product of your 
undergraduate training. 

Various metals can be detected using geochemistry. Many ore samples are taken over a 
specified area. The samples are tested for their chemical composition. Combinations of 
chemicals with certain compositions indicate the possibility of a particular mineral deposit, 
providing evidence to support further exploration. 

Based on the knowledge you obtained from university studying Geology you believe the 
following information on geochemical analysis is valuable and could be used as the basis 
of the expert system you are required to develop. The expert system could feasibly save 
millions of dollars in exploration costs depending on how well it is constructed. 

From your geochemical analysis class you know gold deposits are usually present when 
samples indicate that Chromium ≤  450, Fluorite is present and Barite is present. 
Generally gold deposits are present when Chromium levels are low. 

You believe that when Chromium ≤  450 and Barite is present but Fluorite is absent and 
Cobalt ≥  250 the sample indicates the presence of silver deposits. 

Although of less importance, you believe that when Chromium ≤  400 value, Barite is 
present but Fluorite is absent and when Copper ≥  600 the sample indicates the presence 
of Zinc deposits. 

Ordinal variable names 

Chromium, Cobalt, Copper, Tin, Iron, Lead, Manganese, Molybdenum, Nickel, Vanadium. 

Categorical variable names 

Fluorite, Barite, Gypsum, Azurite, Malachite. 

Class names 

Gold, Silver, Zinc, Other. 

Transformation functions 

The continuous values for the geochemical analysis scenario were transformed in 3 ways. 

1. A conversion factor was determined by adding a random number between 1201 and 
1401. 

2. Each value was subtracted from 1000, which reversed the order of the values. 

3. Each data set was assigned a divisor of either 10, 100 or 1000. This enabled the data 
to range from 3 decimal places to 1 decimal place. 

For each subject, the order in which the categorical attributes Barite and Fluorite were 
mentioned within the briefing was determined randomly. If Fluorite was selected first, the 
order of these two attributes would be reversed in each paragraph of the briefing. 

 

Figure 3: Definition of the geochemical analysis scenario 
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The subjects received only minimal training in the use of the software. This training took the form 
of a half hour demonstration of the use of the software in class. They were able to ask questions of 
the experimenters at any stage during the experiment but responses were restricted to details 
directly relating to how to operate the software. Other than this, the only assistance that the 
subjects obtained was in the form of access to the system’s help facilities and to the user manual. 

3.1 Software employed 
The Knowledge Factory is a Macintosh based software system. Previous experience had shown 
that there was a tendency for students to explore the full range of features provided by the 
software. As the software can support multiple modes of machine learning and multiple modes of 
rule interpretation (Webb, 1996), and as these issues did not bear directly upon the issues to be 
explored by this study, these facilities were disabled. The default machine learning and rule 
interpretation settings were employed with one exception. 

By default, The Knowledge Factory applies rules in a mode that allows the system to make no 
decisions. This outcome occurs when no rule covers a case or when multiple rules for different 
classes cover a case. Such results make it extremely difficult to compare the performance of 
alternative expert systems as there is no definitive manner in which to compare a system that 
achieves an accuracy of x A 1% on y A 1% of cases for which it reaches a conclusion with a system 
that achieves x A 2% accuracy on y A 2% of cases. 

To obviate this problem The Knowledge Factory was set to a mode whereby when no rule applied 
to a case, the most common class from the training set (in this experiment. Class D) was assigned, 
and when multiple rules covered a case the highest quality rule (in terms of performance on the 
training set) was assigned. For this experiment the quality of a rule was judged by the function 

 

   -1 if n > 0 
 quality = 
   p otherwise 
 

where p is the number of cases correctly classified by the rule and n is the number of cases 
incorrectly classified. With this evaluation function the specific to general search used in this 
learning algorithm avoids rules that cover any negative cases. In consequence, there is no need to 
distinguish between the quality of alternative rules that cover negative cases. 

Further features of the system that did not directly bear upon the experimental question but which 
had potential to seriously degrade performance if misused were also disabled. These were –  

editing of the model: All facilities for adding, deleting or otherwise transforming attributes were 
disabled as subjects had access to no source of knowledge that could warrant such actions. 

adding example cases: Subjects had no knowledge by which to generate new reliable example 
cases and hence the ability to generate new cases was disabled. 

importing example cases and rules from external files: The ability to load from external files 
either additional example cases or sets of rules could not be used in a sensible manner within the 
scope of the defined scenarios and hence was also disabled. 

deleting example cases: Subjects were informed that all example cases were accurate and hence 
had no basis on which to sensibly delete existing cases. Hence this facility was also disabled. 

evaluation set: The Knowledge Factory supports the division of the available example cases into a 
training and an evaluation set. The latter is kept separate from the training data, is not accessed by 
the machine learning component and is not available to the user when developing rules. The 
number of example cases made available to the students was too small to enable this facility to be 
used in a useful manner. Hence, it was also disabled. 



Webb & Wells (1996) “Experimental evaluation of integrating machine learning with knowledge 
acquisition through direct interaction with domain experts” Page 8 of 18 

In addition, to prevent subjects from exchanging data between versions of the system or using 
other data analysis tools, the students were prevented from outputting the data in any form other 
than as a project file, the system’s internal data representation format. Further, for ease of analysis , 
the ‘Save As’ facility was disabled ensuring that the one project name was used throughout the 
project. 

To simplify the task of tracking progress, subjects were presented with a computer disk containing 
the appropriate version of the system along with a project file  pre-loaded with the training data. 
The software was modified so as to require the system to be run from that disk and only on the 
original project file (although that file could be updated by the system under the user’s direction). 

The software was also modified to ensure that projects saved by one version of the system could 
not be input into another. 

3.2 Experimental manipulation 

Two versions of the software were created. The machine learning enabled version had the full 
functionality of The Knowledge Factory software other than the disabled features noted above. 
The machine learning disabled version was identical to the machine learning enabled version 
except that the following commands were disabled - 

Develop New Rules: This command deletes any existing rules and then applies the DLG machine 
learning algorithm (Webb & Agar, 1992) (a variant of AQ (Michalski, 1984)) to the training 
examples to form a new set of rules. 

Revise Current Ruleset: This command applies the DLGref2 inductive refinement algorithm 
(Webb, 1993) to refine the current set of rules. DLGref2 seeks to modify each of the existing rules 
the least amount necessary in order to optimise the preference criterion. The preference criterion 
defined by equation 1 was used in this study. The user is able to specify that selected rules are not 
to be modified in this process. After all existing rules have been processed new rules are added to 
the ruleset to cover any example cases not covered by the modified ruleset. 

Revise Rules for Current Decision: This command is identical to Revise Current Ruleset except 
that only rules for the class of the currently selected rule are modified or added to the ruleset. 

Form Alternative Rules: This command takes an existing rule and presents a set of alternative 
rules that correctly classify all example cases correctly classified by the original rules and 
incorrectly classify no example cases not incorrectly classified by the original rule. 

It should be emphasised that while the machine learning disabled version of the soft ware did not 
contain the machine learning facilities described above, it still retained a comprehensive set of rule 
specification, editing and evaluation facilities. 

3.3 Performance measures 
The primary criterion that was used to measure performance was accuracy, when applied to the 
1000 with-held cases, of the rule set submitted by the subject. One secondary measure was the 
complexity of the knowledge base developed. This was measured by the number of rules 
developed. Another secondary measure was the total time taken to complete the assignment. This 
was measured in terms of total running time of the software. 

3.4 Tracking performance 
Evaluation of the primary measure, predictive accuracy, was straight-forward. The example cases 
set aside for evaluation from the base task were transformed as appropriate into the subject’s 
surface task. The submitted rule set was then applied to the transformed evaluation set and a 
simple score of the number of evaluation cases correctly classified was obtained. 
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To enable tracking of subject performance, a record was maintained of their actions during each 
task. Keeping track of performance during the task was not straight forward, however. Subjects 
were given disks containing the software and data. They were required to run the system from that 
disk only. A single project file had to be used throughout the task. As a result, some tracking could 
be performed by maintaining records within the project file. 

However, it was possible for the subjects to either 

• quit from the system after working with the project but without saving to the project file, 
or 

• duplicate the project file and then at a later date substitute the saved copy for the modified 
original, hence effectively undoing all intervening work and deleting any records 
maintained in the modified original project file. 

Both of these actions would prevent the recording of the subject’s interactions with the system 
during the time in question. While these interactions could not directly impact upon the expert 
system that was developed (because any changes made would not be retained in the final project 
file), the subject’s interactions could affect their understanding of the knowledge acquisition task 
and hence the actions could indirectly impact upon the final result. Due to these considerations, in 
addition to maintaining records in the project file, a log file was also kept. This was an 
independent file that was opened each time that the system was run and to which a record of each 
action was added immediately that the action was performed. Each action, including system 
activation was time stamped. 

The records added to the project files took the form of a simple tally of the number of times that 
the action was performed. 

3.5 Experimental design 
The experimental design was matched pairs. The experimental units were subject-scenario tuples. 
Each subject participated in two such tuples, one in each treatment. Thus, each tuple could be 
matched to another by subject. Order effects and confounds due to effects of differing scenarios 
were minimised by having half of the subjects receive each treatment for each scenario. 

This matched pairs experiment was followed by the administration of a questionnaire designed to 
elicit user’s subjective evaluation of the alternative approaches. This questionnaire is described 
below. 

4 Results 
Twenty-eight students consented to participate at the commencement of the study and none 
withdrew thereafter. 

Initial analysis (detailed below) showed that the machine learning enabled treatment resulted in 
higher average accuracy than the machine learning disabled treatment. However, this difference 
was not statistically significant. 

Further analysis showed that a large number of the machine learning enabled predictive accuracies 
were identical to those obtained by rulesets created by application of machine learning alone to the 
training data. Inspection of the log files revealed that a large number of subjects had either: 

• Started their assignment by applying the Develop New Rules command to learn a set of 
rules from the train ing data and then having discovered that these rules correctly handled 
all the training cases and, not attending to the briefing with which they were provided, had 
proceeded to ignore their simulated expertise. 

• Having applied their simulated background knowledge, then applied the Develop New 
Rules command, thereby removing all influence of rules already defined. As a result, the 
subjects either ignored their simulated expertise or incorrectly believed it to have been 
taken into account by the induction process. 
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It was clear that for both of these sets of subjects; the experimental manipulations had failed to 
establish the desired experimental treatments. These machine learning enabled subjects had access 
to facilities that enabled the integration of machine learning with knowledge acquisition from 
experts but were developing rules through machine learning alone. 

To enable analysis of only experimental units for which the experimental treatments were 
successfully established, subjects that employed the Develop New Rules command in the machine 
learning enabled treatment were discarded (from both treatments). However, there was some 
difficulty adequately identifying such subjects. When the Develop New Rules command is 
selected The Knowledge Factory presents a dia log in which it briefly explains that executing the 
command will delete all existing rules and asks the user whether they wish to continue or cancel. 
Unfortunately, the count maintained in the project file of the number of times that the command 
was executed was incremented even if the command was cancelled as a result of this dialog. Thus, 
if the count was zero then it could be concluded with certainty that the command had not been 
used (at least not in a sequence of interactions that had led directly to the formation of the set of 
rules in the submitted project file). However, if the count was not zero, it was still possible that the 
command had been cancelled and hence not executed. For such subjects it was possible to inspect 
the log files, in which cancellations were recorded. Unfortunately, it was not possible to determine 
from the log files whether a particular session had contributed directly to the submitted project file 
or not, as subjects could have replaced the project file created by that session with a copy saved 
previously. It was possible , nonetheless to ignore Develop New Rules commands for which the 
results were not saved. This was the case if there was no save in the session after the command 
was executed. To do this, the subject would have to explicitly tell the system not to save the 
changes to the project file when they quit. One other subject was also retained who had used 
Develop New Rules once only and who had deleted all the rules immediately after they were 
generated by the command, effectively restarting their project from the beginning. 

Due to this process, 15 subjects were excluded leaving 13 subjects in the analysis. Detailed results 
both with and without this exclusion are reported below. 

 

 
 

Figure 4: Predictive Accuracy 
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4.1 Predictive accuracy 
Figure 4 summarizes the mean predictive accuracy obtained by each of various sub groups of the 
subjects. Accuracy is measured by the percentage of cases correctly classified. Error bars indicate 
one standard error. These outcomes are discussed in detail below. 

Including all subjects, the predictive accuracy obtained for the machine learning enabled treatment 
was x = 83.9, s = 6.5. The predictive accuracy for the machine learning disabled treatment was x  
= 81.8, s = 11.6. A one-tailed matched-pairs t-test revealed that this difference was not significant 
at the 0.05 level. t = -0.80. p = 0.200. 

For those 13 subjects remaining after excluding those identified above, the predictive accuracy 
obtained for the machine learning enabled treatment was x  = 88.2, s = 2.8 and for the machine 
learning disabled treatment, x  = 78.9, s = 11.9. A one-tailed matched pairs t-test revealed that this 
difference was significant at the 0.05 level (t = 2.69, p = 0.010). 

More of the subjects that had machine learning enabled for the first scenario were excluded (9) 
than of those for the second scenario (6). It is conceivable that this is because subjects were less 
experienced with the software during the first scenario and hence more likely to use the system 
less effectively. To eliminate the possibility that this uneven exclusion might have confounded the 
results, within each condition mean predictive accuracies were determined for those receiving the 
treatment in each scenario. For the machine learning enabled condition, those 5 subjects receiving 
the condition for the first scenario obtained predictive accuracies x  = 88.3, s = 1.4 and those 8 
subjects that received the condition for the second scenario obtained x  = 88.1, s = 3.5. A two-
tailed pooled variance t-test revealed no significant difference between these results. t = 0.48, p = 
0.363. For the machine learning disabled condition, those 8 subjects receiving the condition for the 
first scenario obtained predictive accuracies x  = 80.0, s = 8.9 and those 5 subjects that received 
the condition for the second scenario obtained x  = 77.2, s = 16.6. A two-tailed pooled variance t-
test revealed no significant difference between these results, t = 2.03. p = 0.335. The small 
magnitude and lack of significance of the differences within each treatment between those subjects 
who received the treatment in each scenario suggests that this factor has not a significant 
confound, although the failure to find a significant difference must be treated with caution as the 
power of the pooled variance t-test for such small numbers is low. 

An evaluation of the differences between treatments within each scenario provides further support 
for the proposition that the exclusion of more subjects with machine learning enabled for the first 
scenario than for the second has not confounded the results. For the first scenario, a one-tailed 
pooled variance t-test reveals that the machine learning enabled x  = 88.3, s = 1.4 is significantly 
greater than the machine learning disabled x  = 80.0, s = 8.9 (t = 9.35, p 0.006). For the second 
scenario, a one-tailed pooled variance t-test likewise reveals that the machine learning enabled x  
= 88.0, s = 3.4 is significantly greater than the machine learning disabled x  = 77.2, s = 16.6 (t = 
8.77, p = 0.042). 

Rules developed by application of the machine learning system alone to the training data obtained 
a predictive accuracy of 73.8 when applied to the evaluation set. A one- tailed t-test revealed that 
the mean predictive accuracy obtained under the machine learning enabled condition ( x  = 83.9, s 
= 6.5) was significantly greater (t = 8.24, p < 0.005) than this value as was that for the machine 
learning disabled condition ( x  = 81.8, s = 11.6, t = 3.64, p < 0.005). Similar results were obtained 
when only those subjects remaining after the exclusions described above were considered 
(machine learning enabled: x  = 88.2, s = 2.8, t = 27.06, p < 0.005; machine learning disabled: x = 
78.9, s = 11.9, t = 2.24, p < 0.025). These results show the integration of machine learning with 
knowledge elicitation is providing an advantage that is not due solely to either the machine 
learning or the knowledge elicitation. 
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Another comparison of interest is the accuracies obtained for each scenario. For all subjects these 
accuracies were –  

Gruwalds disease scenario: x  = 82.6, s = 8.8; 
Geochemical analysis scenario: x  = 82.8, s = 10.0. 

A two-tailed matched pairs t test comparison of these outcomes reveals no significant difference (t 
= -0.24, p = 0.468). 

For those subjects remaining after exclusion of those for whom it could not be established that the 
background knowledge was employed, the accuracies were –  

Gruwald’s disease scenario: = 83.9, s = 11.4; 
Geochemical analysis scenario: x  = 83.2, s = 8.1. 

A two-tailed matched pairs t-test comparison of these outcomes reveals no significant difference (t 
0.43, p = 0.761). These results suggest that the surface knowledge acquisition tasks defined by the 
scenarios do not differ significantly in difficulty. 

4.2 Complexity 

The second major variable analysed was knowledge base complexity. For each expert system 
developed, the number of rules was recorded. For all subjects these numbers were –  

Machine learning enabled: x  = 15.7, s = 3.5; 
Machine learning disabled: x  = 7.4, s = 2.7. 

A two-tailed matched pairs t-test comparison of these outcomes reveals that the group with access 
to machine learning developed significantly more rules (t = l3.3, p = 0.000). For those subjects 
remaining after exclusion of those for whom it could not be established that the background 
knowledge was employed, the complexities were –  

Machine learning enabled: x  = 14.6, s = 3.0; 
Machine learning disabled: x  = 7.3, s = 2.6. 

A two-tailed matched pairs t-test comparison of these outcomes reveals that the use of machine 
learning resulted in knowledge bases containing significantly more rules than obtained when 
machine learning was not employed (t = 9 69, p= 0.000). 

4.3 Knowledge acquisition time  

The other major variable analysed was knowledge acquisition time. It was predicted that the 
subjects in the machine learning enabled condition would take less time to complete their projects 
than those in the machine learning disabled condition. A one-tailed matched pairs t-test was used 
to evaluate whether there was significant support for this prediction. The log files were analysed to 
determine the total time spent using each version of the software by each subject. The difference 
(machine learning enabled: x  = 99 minutes, s = 115 minutes; machine learning disabled: x  = 257 
minutes, s = 179) was significant at the 0.05 level (t = -4.0l, p = 0.000). After exclusion of the 15 
subjects for which it could not be determined that the background knowledge was employed, as 
detailed above, the difference (machine learning enabled: x  = 51 minutes, s = 48; machine 
learning disabled: x  = 237 minutes, s = 175) was still significant at the 0.05 level (t = -3.49, p = 
0.006). 

5 Questionnaire 
In addition to measuring the three main variables, predictive accuracy, number of rules and 
knowledge acquisition time, the subjects were presented with a questionnaire. This is reproduced 
in Figure 5. 

This questionnaire was distributed to the subjects when they collected the disks for the first 
scenario and was collected when they handed in the completed disks for the second scenario. 
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It was designed to evaluate a number of issues. The first four questions were designed t evaluate 
the subject’s perception of the ease of use of the respective versions of The Knowledge Factory 
and to enable evaluation of how the version of the system employed for each task affected the 
perceived difficulty of the tasks and the perceived ease of use of the system. Questions 1 and 2 
could be reinterpreted as la , “How easy was it to use the system for the Gruwald’s disease task?”. 
and 2a, “How easy was it to use the system for the geochemical analysis task?”.  Likewise, 
questions 3 and 4 could be reinterpreted as 3a. “How difficult was it to create an expert system for 
the task for which you used TKF_induction_on? and 4a “How difficult was it to create an expert 
system for the task for which you used TKF_induction_off?” These reinterpretations are achieved 
as follows. For subjects given machine learning enabled for the Gruwald’s disease task, the results 
for la, 2a, 3a and 4a are respectively the responses for questions 1. 2. 3 and 4. For the remaining 
subjects, the results for la, 2a, 3a and 4a are respectively the responses for 2. 1. 4 and 3. 

Questions five and six were designed to evaluate the effect of the system employed on the 
subject’s perception of the quality of the knowledge base developed. To reduce the influence on 
these results of the subject’s attributions with respect to the two versions of the software, the 
systems were referred to by task rather than by system. However, the subject’s perceptions with 
respect to 5a, “How accurate do you think the expert system you created using TKF_induction_on 
will be when applied to the additional 1000 unseen evaluation cases?” and 6a, “How accurate do 
you think the expert system you created using TKF_induction_on will be when applied to the 
additional 1000 unseen evaluation cases?”, could be evaluated as follows. For a subject given 
machine learning enabled for the Gruwald’s disease task, the result for 5a was the response to 
question 5 and the result for 6a was the response to question 6. For any other subject, these 
pairings were reversed. 

Questions seven and eight were designed to evaluate the subject’s perception of the relative 
usefulness of the two versions of the system. Question nine was designed to elicit the subject’s 
perception, after using each version of the software, of the value of the main distinguishing feature 
between the two versions. 

It was predicted that the responses would be higher for question 1 than 2 (subjects would find it 
easier to develop an expert system with the aid of machine learning). One tailed matched pairs t-
tests support this prediction (all: t = 7.15. p = 0.000; retained: t = 4.17, p = 0.001). For the same 
reasons, it was predicted that the result for 3a would be lower than the result for 4a. However, one 
tailed matched pairs t tests failed to confirm this prediction (all: t = 0.00, p = 0.500, retained: t = -
0.26, p = 0.399). 

No predictions were made with respect to differences between questions 3 and 4 and la and 2a 
because it was not known whether, despite being based on the same underlying task, the subjects 
would perceive the scenarios to have different levels of difficulty. 

Two tailed matched pairs t-tests show no significant differences. (Questions 3 and 4 - all: t = 0.54, 
p = 0.558; retained: t = 1.76, p 0.104. Questions la and 2a - all: t = 0.44, p = 0.583; retained: t = -
1.44, p = 0.175). 

Subjects were expected to anticipate higher predictive accuracy when using machine learning (5a) 
than when not (6a). This was confirmed by one tailed matched pairs t tests (all: t = 3.17, p = 0.000: 
retained: t = 3.39, p = 0.003). No prediction was made with respect to whether the subjects would 
expect a difference in predictive accuracy between scenarios (questions 5 and 6). Two tailed 
matched pairs t-tests show no significant differences. (all: t = 0.09, p = 0.887; retained: t = -1.72, p 
= 0.110). 

Subjects were expected to find the version of the software that provided machine learning facilities 
more useful than the version that did not (questions 7 and 8). This was confirmed by one tailed 
matched pairs t-tests (all: t = 3.47,  p = 0.000; retained: t = 4.37, p = 0.004). 

Subjects were expected to provide high ratings for the value of machine learning for knowledge 
acquisition. One-tailed t-tests show that the mean responses were significantly higher than the 
middle value, 3 (all: t = 9.36, p =< 0.005; retained: t = 6.50, p =< 0.005). 

 



Webb & Wells (1996) “Experimental evaluation of integrating machine learning with knowledge 
acquisition through direct interaction with domain experts” Page 14 of 18 

 

 

 

 

SCC376 Assignment 1 - Questionnaire. 

Rate each of the following from 1 - not at all to 5 - very. Circle the appropriate value for each 
question. If you are not certain of an answer do not circle any value. 

1. How easy was it to use “TKF_Induction_On”? 

not at all       very 
1  2  3  4  5 

2. How easy was it to use “TKF_Induction_Off”? 

not at all       very 
1  2  3  4  5 

3. How difficult was it to create an expert system for Gruwald’s disease? 

not at all       very 
1  2  3  4  5 

4. How difficult was it to create an expert system for geochemical analysi s? 

not at all       very 
1  2  3  4  5 

5. How accurate do you think the expert system you created for Gruwald’s disease will be 
when applied to the additional 1000 unseen evaluation cases? 

not at all       very 
1  2  3  4  5 

6. How accurate do you think the expert system you created for geophysical analysis will 
be when applied to the additional 1000 unseen evaluation cases? 

not at all       very 
1  2  3  4  5 

7. Do you think that “TKF_Induction_On” is a useful tool for building expert systems? 

not at all       very 
1  2  3  4  5 

8. Do you think that “TKF.Induction_Off” is a useful tool for building expert systems? 

not at all       very 
1  2  3  4  5 

9. How valuable do you think machine learning is for knowledge acquisition? 

not at all       very 
1  2  3  4  5 

Notes 

a) The question numbers were not included in the original questionnaire. They have been added above for 
ease of reference. 

b) The names “TKF_Induction_On” and “TKF_Induction_Off” referred to the machine learning enabled and 
machine learning disabled versions of The Knowledge Factory software respectively. 

 

Figure 5: Questionnaire  

 



Webb & Wells (1996) “Experimental evaluation of integrating machine learning with knowledge 
acquisition through direct interaction with domain experts” Page 15 of 18 

Table 2 lists the mean responses to these questions for all subjects and for those retained after 
exclusion for failure to employ background knowledge in the machine learning enabled treatment. 

 

 

Question All subjects  Retained 
subjects  

1 4.50 4.54 

2 2.86 3.00 

3 3.18 3.31 

4 2.96 2.38 

5 3.39 3.15 

6 3.36 3.69 

7 4.32 4.46 

8 3.29 3.08 

9 4.21 4.38 

la 3.57 3.38 

2a 3.79 4.15 

3a 3.07 2.77 

4a 3.07 2.92 

5a 3.79 3.85 

6a 2.96 3.00 

 

Table 2: Questionnaire results  

 

5.1 Summary of questionnaire results 
The questionnaire results show that the subjects 

• believed the machine learning facilities to be useful. 

• found knowledge acquisition easier when the machine learning facilities were avail able. 
and 

• had greater confidence in the expert systems developed with the aid of machine learning. 

While questions 3 and 4 were intended to provide cross-validation for questions 1 and 2, when 
reinterpreted as 3a and 4a. the responses to the two pairs of questions appeared to be at odds. 
While the machine learning enabled software was considered easier to use than the machine 
learning disabled software, the task performed using the machine learning enabled software was 
not considered less difficult than the task performed using the machine learning disabled software. 
However, it is possible that the subjects interpreted questions 3 and 4 as relating directly to the 
knowledge acquisition task and were able to disassociate the difficulty of performing the task with 
the tools at hand from the underlying difficulty of the task. 
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6 Discussion 
In an effort to demonstrate that The Knowledge Factory can be used effectively by those with 
extremely minimal knowledge engineering skills, the subjects in this project had almost no 
knowledge of knowledge engineering and were given very little training in the use of the software. 
In view of this extremely limited expertise, it is, in retrospect not very surprising that a large 
number of subjects failed to appreciate the implications of the Develop New Rules command. This 
has resulted in a failure to find a statistically significant difference in the accuracies obtained by 
those treatments in which subjects had access to both machine learning and knowledge acquisition 
from experts and those in which only the latter was available (although. even so. the mean 
accuracy in the former group was higher). 

It is tempting to interpret the decrease in the number of subjects using the Develop New Rules 
command in the second scenario as evidence that even the small amount of experience involved in 
the first scenario was sufficient to improve their use of the software. However, the numbers 
involved are too small to judge with any confidence whether this decrease in the use of the 
command was significant or not (a binomial rest fails to reveal a significant difference, but with 
only 13 observations, its power is very limited). 

The subjects were deliberately provided minimal training in the use of the software before the 
experiment commenced. This was intended to prevent the experimenters from unduly guiding the 
subjects and hence confounding the results. As a result of this paucity of training, in many cases 
the software was not used in the manner that the experiment was designed to investigate: 
integrating machine learning with knowledge acquisition. Where it was used in this manner, 
however, significantly more accurate rules were obtained in significantly less time. 

Another aspect of the study that can be seen to have influenced the outcome was the limited 
number of variables and limited number of training examples in the base task. It was apparent that 
a number of subjects in the machine learning disabled treatment were able to use the extensive data 
analysis facilities in The Knowledge Factory to provide the same effect as the use of machine 
learning. One of the perceived benefits offered by the machine learning component of the system 
is its ability to perform exhaustive data analysis (Webb, 1996). Due to the small numbers of 
variables and training examples, such analysis was also feasible without the use of machine 
learning. The use of machine learning could thus be expected to be more advantageous for more 
complex knowledge acquisition tasks. 

It should also be acknowledged that the study is constrained by its use of artificial scenarios. It is 
impossible to accurately evaluate how closely these artificial scenarios mirror real knowledge 
acquisition tasks. 

6.1 Future Research 
In view of the issues identified above it is intended that a further study be conducted. This new 
study will retain most of the design of the current study. However if possible the following 
differences will be included 

• Subjects will be provided with more training in the use of the software. 

• More complex data will be employed so as to capture types of task for which the 
integration of machine learning with knowledge acquisition was expected to deliver 
maximal benefit. 

• Natural tasks will be used. 

In the longer term, it would be desirable to map out in detail the types of knowledge acquisition 
task for which the integration of machine learning with knowledge acquisition from experts is 
beneficial. While the current study has demonstrated benefit in one context, this provides little 
evidence about the range of contexts for which it will be beneficial. 

There is also much scope for similar evaluation of alternative approaches to the integration of 
machine learning with knowledge acquisition from experts. 
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7 Conclusions 
Integration of machine learning with knowledge acquisition from experts has considerable 
intuitive appeal. These two approaches to knowledge acquisition have different and apparently 
complementary features. However, despite the development of many techniques for integrating the 
two, there has been little formal evaluation of their effectiveness. 

The current study has demonstrated that the integration of machine learning with knowledge 
acquisition from experts can increase the accuracy of the knowledge bases developed and reduce 
the knowledge base deve1opment time. The knowledge bases developed through the integrated use 
of both machine learning and knowledge acquisition from experts were both more accurate than 
those developed by the isolated use of either machine learning or knowledge acquisition from 
experts. Questionnaire results indicated a very positive response to the manner in which machine 
learning was integrated into the software in question. 

A number of different techniques for integrating machine learning with knowledge acquisition 
from experts have been developed. Those examined in this study are distinguished by being 
oriented for direct use by domain experts with little knowledge engineering expertise. As the 
experiments employed subjects of this type considerable support has been obtained for the efficacy 
of these techniques in this context. 
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