
On the application of ROC analysis to predict classification

performance under varying class distributions

Geoffrey I. Webb
Kai Ming Ting
School of Computer Science and Software Engineering and
Gippsland School of Computing and Information Technology,
Building 75, Monash University
Victoria, 3800, Australia
tel: +61 3 99053296, fax: +61 3 99055146
webb@infotech.monash.edu.au

Abstract. We counsel caution in the application of ROC analysis for prediction
of classifier performance under varying class distributions. We argue that it is not
reasonable to expect ROC analysis to provide accurate prediction of model perfor-
mance under varying distributions if the classes contain causally relevant subclasses
whose frequencies may vary at different rates or if there are attributes upon which
the classes are causally dependent.
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1. Introduction

ROC analysis has appeared to offer more robust evaluation of the
relative prediction performance of alternative models than traditional
comparison of relative error (Weinstein and Fineberg, 1980; Bradley,
1997; Provost, Fawcett and Kohavi, 1998; Adams and Hand, 1999;
Duda, Hart and Stork, 2001). Rather than considering raw error, ROC
analysis decomposes performance into true and false positive rates. Dif-
ferent ROC profiles will be more or less desirable under different class
distributions and different error cost functions. This analysis is held to
provide more robust comparative evaluation of expected performance
on target data than simple comparison of error, which assumes the
observed class distribution and does not reflect any differences in the
cost of different types of error. While we do not question the use of ROC
analysis for comparative evaluation across the space of all possible cost
functions, we are concerned that the literature has failed to counsel
sufficient caution about its use in the context of changing class distri-
butions. The literature contains a number of statements, such as the
following, suggesting that ROC analysis might be of value for evaluating
expected classifier performance under varying class distributions, but
other than the implicit qualification of the third quote, none to our
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knowledge are accompanied by warnings that in some contexts this
might be inappropriate.

[ROC] is the only measure available that is uninfluenced by deci-
sion biases and prior probabilities ... (Swets, 1988)

ROC curves describe the predictive behavior of a classifier in-
dependent of class distributions or error costs, so they decouple
classification performance from these factors. (Provost, Fawcett
and Kohavi, 1998)

... the key assumption of ROC analysis is that true and false posi-
tive rates describe the performance of the model independently of
the class distribution ... (Flach, 2003)

Note that the application of ROC analysis to evaluate classifier perfor-
mance under varying cost functions does not require the assumption
stated in the third quote. This assumption is only required if ROC
analysis is to be employed to predict performance under varying class
distributions. We argue that it is not always reasonable to make such
an assumption. Specifically, this assumption only appears reasonable
if it is expected that the true and false positive rates will remain
invariant while the class distribution changes, an assumption that does
not appear sensible to make without justification.

In the remainder of this paper we describe ROC analysis, provide a
trivial example of how changes to data distributions that cause the class
distribution to change may also change the true and false positive rates,
discuss circumstances under which the class distribution may change
while the true and false positive rates do not, and then conclude with
a brief discussion.

2. ROC analysis

We assume that ROC analysis is used to assess the expected perfor-
mance of a model λ(X ) → Y, a function from a description space X
to a description space Y = {p, n}, where p is the positive class and
n is the negative class. Each x ∈ X is a vector of attribute values
x = 〈x1, . . . xk〉. We use uppercase letters A . . . Z to represent random
variables and lowercase letters a . . . z to represent values. X is reserved
for a random variable over the values of a description space X and
Y for a random variable over the values of a description space Y.
Much of the discussion relates to probability distributions. For ease
of exposition we restrict consideration to probability distributions over
discrete valued variables, although the principles extend directly to
the case of probability density functions over continuous variables. For
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notational convenience, the variable is omitted in a probability term in
which it is clearly implied by the context, for example P (a | b) stands
for P (A=a | B=b). We use the notational shorthand of a probability
term with values omitted to represent the distribution of the term over
all values of the variable(s). For example, P (X | Y ) represents the
distribution of P (X=x | Y =y) over all x ∈ X, y ∈ Y .

We address the situation where ROC analysis is used to predict
the performance of λ when it is applied to previously unseen data
that we call target data. This evaluation is achieved by analysis of the
performance of λ when applied to another set of data that we call the
base data.

The analysis is based on observation of four types of outcome:

− true positives, where λ(X)=p ∧ Y =p,

− false positives, where λ(X)=p ∧ Y =n,

− true negatives, where λ(X)=n ∧ Y =n,

− false negatives, where λ(X)=n ∧ Y =p,

The true positive and false positive rates are defined as follows.

TP (·) =
true positives in context ·
total positives in context ·

= P (λ(X)=p | Y =p ∧ ·).

FP (·) =
false positives in context ·
total negatives in context ·

= P (λ(X)=p | Y =n ∧ ·).

We make explicit mention of a context (·) for these probability assess-
ments to remind the reader that these quantities can only be measured
given a reference distribution. We will use TP (target), FP (target) and
P (A | target) to denote each of the relevant functions evaluated on the
distribution with respect to which we are interested in predicting clas-
sification performance. We use TP (base), FP (base) and P (A | base) to
denote each of the relevant functions evaluated on base data by means
of which it is intended to predict TP (target) and FP (target).

ROC space is defined as a coordinate system. The y-axis represents
TP (base) and the x-axis represents FP (base). The performance of a
classifier is represented as a point in this space, denoted as a (FP ,TP )-
pair. For a model that produces a continuous output, such as a posterior
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probability, a series of (FP ,TP )-pairs can be obtained by varying the
decision threshold at which a positive class prediction is made. The
resulting curve of (FP ,TP )-pairs is called the ROC curve, originating
from (0,0) and ending at (1,1).

We address here the adequacy of any of these points as a measure
of expected performance under varying class distributions, that is, the
ROC curve assessment for any given decision threshold. Our model λ
can be considered the model formed by a classifier under any one of
its decision thresholds or as a classifier that does not admit to multiple
decision thresholds.

ROC assessment of classification performance under varying class
distributions relies on the assumption that a model’s TP (·) and FP (·)
rates will remain invariant as the class distribution changes. Under
this assumption, each (FP ,TP )-pair defines expected performance ir-
respective of class distribution. However, this assumption only holds
under specific conditions, conditions that we believe are often violated
in real-world scenarios.

For TP (·) to remain invariant while P (Y =p | ·) varies requires that
P (λ(X)=p | Y =p ∧ ·) remain invariant. Likewise, for FP (·) to remain
invariant while P (Y =n | ·) varies requires that P (λ(X)=p | Y =n ∧ ·)
remain invariant. We can expect these invariances if the process that
generates the base and target distributions results from a systematic
manipulation of the class. We cannot, in general, expect it if the dif-
ference in distributions results from a systematic manipulation of the
attribute values without reference to the class.

3. An example

We provide a simple example to illustrate how alterations to the
distribution of the attributes without regard to the distribution of
the class may both alter the distribution of the class and alter true
and false positive rates. Consider a learning task inspired by Quin-
lan’s (1987) classic example of deciding whether to play golf. We seek
to predict the behavior of a golf enthusiast called John. John’s be-
havior can be accurately predicted with reference to two attributes,
Playing Conditions, with the two values Pleasant and Unpleasant,
and Other Commitments with the two values Busy and Free. The
classes are Play and Don′t P lay, representing respectively whether
John plays golf or does not, with the former considered the positive
class. The underlying concept is Play if and only if Pleasant and Free.
That is, John plays golf whenever the weather is pleasant and he has
no other commitments. As we do not consider concept drift, we do not
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Table I. Example data distributions

Object Initial Retire
Inter-

mediate Propitious Paradise

Pleasant, Free, Play 0.25 0.50 0.50 0.50 0.50

Pleasant, Busy, Don’t Play 0.25 0.00 0.21 0.17 0.50

Unpleasant, Free, Don’t Play 0.25 0.50 0.21 0.25 0.00

Unpleasant, Busy, Don’t Play 0.25 0.00 0.08 0.08 0.00

allow this concept to alter. To make the example as simple as possible,
we assume that the attributes are independent of each other. That is,
John’s commitments do not affect the weather and the weather does
not affect John’s commitments. Our ability to construct an example
in no way depends upon this simplifying assumption, however. The
base data are taken from observations drawn over a year for which
the frequencies of each of the four combinations of attribute values are
equal. Table I displays the four combinations of X values together with
the associated class. The column titled Initial shows the frequency with
which each combination appears in the base data. To remove sampling
error as an issue, we assume that the sample frequencies exactly match
the true probabilities.

In order to cast light on ROC analysis we require a model to an-
alyze. In order to demonstrate our point, in the case where the class
is uniquely determined by the attribute values, we require only that
at least one class is sometimes, but not always, misclassified. If these
minimal conditions are not satisfied, TP (·) and FP (·) must be invariant
no matter what the data distribution. Assume we apply decision stump
learning (Holte, 1993). We might form a model that classifies an occas-
sion as Play if and only if Pleasant. For this model, TP (base) = 1.0
(all Play objects are correctly labelled) and FP (base) = 1/3 (pleasant
but busy days are misclassified).

Suppose now we move to target data for which there is a different
class distribution from that of the base data. ROC analysis is supposed
to apply irrespective of the class distribution. For the sake of illustration
we will increase the frequency of Play in the target data to 0.5. Note,
however, that this particular frequency is not important to our example.
The same effect will be apparent for any change in the class distribution.
All that alters with different distributions is the magnitude of the effect.
Note also that we are addressing here the situation where the change
from the base to the target data represents a change in the underlying
distributions from which the data are drawn, rather than a change in
the way in which the data are sampled.
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As we are increasing the frequency of Play to 0.5 we require that
P (Pleasant ∧ Free | target) = 0.5. As Pleasant and Free are inde-
pendent, it follows that we require that P (Pleasant | target)×P (Free |
target) = 0.5. That is, because the weather and John’s commitments
determine the value of the class variable, it is only by varying both
the weather and John’s commitments precisely in conjunction that it
is possible to obtain a particular class distribution. Four of the infinite
number of combinations of P (Pleasant | target) and P (Free | target)
for which the desired class distribution are obtained are:

1. P (Pleasant | target) remains 0.5 while P (Free | target) rises to
1.0 (John retires!), illustrated in the Retire column of Table I;

2. P (Pleasant | target) and P (Free | target) both rise to 0.71,
illustrated in the Intermediate column of Table I;

3. P (Pleasant | target) rises to 0.67 and P (Free | target) rises to
0.75, illustrated in the Propitious column of Table I; and

4. P (Pleasant | target) rises to 1.0 while P (Free | target) remains
0.5 (John moves to paradise!), illustrated in the Paradise column
of Table I.

For all alternatives the true positive rate will remain 1.0. This is because
our model happens to be an overgeneralization of the true concept.
However, of all the infinite number of combinations of P (Pleasant |
target) and P (Free | target) for which the new class distribution
are obtained, only for exactly those propitious values P (Pleasant |
target) = 2/3 and P (Free | target) = 0.75 does the false positive
rate remain at 1/3. For this example, for ROC analysis to successfully
predict classification performance under a change of class distribution
requires that the world is organized so that a golfer’s commitments can
only (or are most likely) to change only in conjunction with specific
changes in the weather.

If John ceases having other commitments but the weather does not
change (the retirement scenario), the false positive rate becomes 0.0 and
the ROC analysis will overestimate it. For the intermediate scenario
in which there are equal increases in the frequencies both of pleasant
weather and of John having no commitments, the false positive rate
rises to 0.411 and the ROC analysis will underestimate it. If the weather
improves so as to be invariably pleasant but John’s commitments do

1 This is calculated using intermediate values of greater precision than those dis-
played in Table I. The true value of P (Pleasant) such the P (Pleasant) = P (Free)
and P (Pleasant)× P (Free) = 0.5 is P (Pleasant) =

√
0.5.
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not change (the paradise scenario), the false positive rate becomes 1.0
and the ROC analysis will again underestimate it.

4. Discussion

For ROC analysis to provide information about the performance that
may be expected under varying class distributions, the true and false
positive rates must remain invariant across changes in class distribu-
tion. As our simple example has shown, even for a trivial concept, it
takes precise manipulation of the frequency of the X values to change
the class distribution without also changing the true and false positive
rates of a simple model in which the class is causally dependent upon
X. Rather, it is only reasonable to expect true and false positive rates
to remain invariant when P (πλ(X) | Y ∧ ·) remains invariant across
varying class distributions. We use πλ(X) to denote the projection of
the value of X onto the attributes to which the model λ(X) refers.
This is required in order to allow for the possibility that a given model
may ignore some attributes and hence that changes in the conditional
probabilities relating to those attributes will not affect directly the
performance of the model.

This will be the case when base data are sampled using random
sampling for which the probability of an object’s selection depends
solely upon its class. Such stratified sampling may well occur during
data mining projects and indeed over-sampling of infrequent classes can
be a valuable learning technique. In such a context, ROC analysis may
be used to recover, from the performance of a model on the stratified
sample, the performance that may reasonably be expected on another
stratified or unstratified sample drawn from the same distribution as the
base data. However, such alternative sampling from a single distribu-
tion is very different from the situation in which the class distribution
changes between the distribution from which the base data are drawn
to the distribution from which the target data are drawn.

The only other reason that we might expect P (πλ(X) | Y ∧ ·) to
remain invariant across changing data distributions is if the values of
πλ(X) are determined by the values of Y or the values of both πλ(X)
and Y are determined by those of a third factor Z in such a manner
that ensures the invariance. This is credible in some circumstances.
For example, for medical diagnosis it is credible that X will consist of
signs and symptoms caused by the disease represented by Y =p. During
fraud detection, it is credible that πλ(X) will be causally affected by
the presence or absence of fraud.
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However, there are many other circumstances where it is not cred-
ible. For example, if X represents the operating characteristics of a
production line and Y =p represents a fault in a product manufactured
under conditions X, it is not credible that the production of a faulty
product caused the production line to be in a specific configuration.
Rather, the configuration causes the fault. A change in the frequency
of faults will result from a change in the frequency of specific configu-
rations, and ROC analysis will fail to predict the rate of faults under
the new class distribution.

But even for the circumstance where there is a causal relationship
from Y to X, P (πλ(X) | Y ∧ ·) may still vary from base to target data.
If Y =p represents a superclass of related subclasses, such as any of a
number of types of hypothyroid disease or any of a number of types of
fraud, a change in the frequency of Y =p is likely to represent differing
degrees of change in the frequency of each of the subclasses. Suppose
we have just two subclasses, a and b, and each has a signature set of
X values, sa(X) and sb(X). The true model is thus Y =p if and only if
sa(X) or sb(X). If the frequency of Y =p increases due to an increase
in the frequency of a but the frequency of b remains unchanged then
P (πλ(X) | Y ∧ ·) will change and ROC analysis can be expected to
fail to accurately predict model performance.

As a final scenario, consider the circumstance where X contains both
attributes A whose values are affected by those of Y , and attributes
B whose values affect those of Y . For example, the disease, or fraud,
might be more prevalent among a specific age group [P (Y ) is influenced
by age] as well as causing specific symptoms or behaviors. In this case
a good learning system should incorporate both attributes A and B in
its model. Between the formation of the model and its application the
frequency of B alters (the population ages or a company sets out to
acquire customers in a particular age group). Again, P (πλ(X) | Y ∧ ·)
will change from the base to the target data and ROC analysis can be
expected to fail to accurately predict model performance.

It might be argued that any change in P (X | Y ∧ ·) constitutes
concept drift and that it is not reasonable to expect any technique to
accurately predict classification performance under concept drift. How-
ever, concept drift is defined conventionally as variation in a function
from X to Y (for example, Bartlett, Ben-David, & Kulkarni, 2000).
It follows that concept drift occurs when P (Y | X ∧ ·) varies. Our
example in Section 3 illustrates a concept that is defined as a function
from X to Y . As we show, when P (Y | ·) changes and the concept, Play
if and only if Pleasant and Free, does not change, for P (X | Y ∧ ·)
to remain invariant requires a precise change in P (X | ·). As we point
out, for ROC analysis to provide accurate predictions of classification
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performance under varying class distributions in this case requires
that the world be organized such that the weather will only change
in precise relationship to an individual’s non-golfing commitments. As
this illustrates, to maintain that ROC analysis should be expected by
default to provide accurate predictions of classification performance
under varying class distributions in the absence of concept drift (as
conventionally defined) requires one to maintain that any change in
P (Y | ·) will be matched by a precise corresponding change in P (X | ·)
such that neither P (X | Y ∧ ·) nor P (Y | X ∧ ·) varies.

5. Conclusions

We have argued that there are conditions under which ROC analysis
will not accurately predict model performance under varying class dis-
tributions. We have provided a detailed example that illustrates such
conditions. If P (X | Y ∧ ·) is invariant, any change in the class distri-
bution P (Y | ·) requires a change in at least one of P (Y | X ∧ ·)
or P (X | ·). ROC analysis assumes that the likelihood function
P (πλ(X) | Y ∧ ·) remains invariant. We have argued that unless the
model has been formed from a stratified sample drawn from the same
XY distribution as the target data it is not realistic to expect ROC
analysis to accurately predict model performance under varying class
distributions when either:

− there are causally relevant sub-categories of the Y values whose
distributions vary at different rates between the base and target
data, or

− attributes of X that are used by the model are causally related to
Y such that the Y values depend on the X values.

A further constraint on the likely accuracy of ROC analysis under
varying class distributions is the possibility that the variation might
result from concept drift.

ROC techniques provide valuable means of assessing the potential
trade-offs between true and false positive rates under varying model
thresholds, and hence of a model’s performance under varying mis-
classification cost functions. However, before practitioners use ROC
techniques to compare the expected performance of alternative learn-
ing algorithms in the face of potential changes in class distribution,
we believe that it is incumbent upon them to assure themselves that
P (πλ(X) | Y ∧ target) ≈ P (πλ(X) | Y ∧ base).
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