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Abstract. Naive Bayesian classi�ers utilise a simple mathematical model
for induction. While it is known that the assumptions on which this
model is based are frequently violated, the predictive accuracy obtained
in discriminate classi�cation tasks is surprisingly competitive in compar-
ison to more complex induction techniques. Adjusted probability naive
Bayesian induction adds a simple extension to the naive Bayesian clas-
si�er. A numeric weight is inferred for each class. During discriminate
classi�cation, the naive Bayesian probability of a class is multiplied by
its weight to obtain an adjusted value. The use of this adjusted value in
place of the naive Bayesian probability is shown to signi�cantly improve
predictive accuracy.

1 Introduction

The naive Bayesian classi�er (Duda & Hart, 1973) provides a simple approach to
discriminate classi�cation learning that has demonstrated competitive predictive
accuracy on a range of learning tasks (Clark & Niblett, 1989; Langley, P., Iba,
W., & Thompson, 1992). The naive Bayesian classi�er is also attractive as it has
an explicit and sound theoretical basis which guarantees optimal induction given
a set of explicit assumptions. There is a drawback, however, in that it is known
that some of these assumptions will be violated in many induction scenarios. In
particular, one key assumption that is frequently violated is that the attributes
are independent with respect to the class variable. The naive Bayesian classi�er
has been shown to be remarkably robust in the face of many such violations of
its underlying assumptions (Domingos & Pazzani, 1996). However, further im-
provements in performance have been demonstrated by a number of approaches,
collectively called semi-naive Bayesian classi�ers, that seek to adjust the naive
Bayesian classi�er to remedy violations of its assumptions. Previous semi-naive
Bayesian techniques can be broadly classi�ed into two groups, those that ma-
nipulate the attributes to be employed prior to application of naive Bayesian
induction (Kononenko, 1991; Langley & Sage, 1994; Pazzani, 1996) and those
that select subsets of the training examples prior to the application of naive
Bayesian classi�cation of an individual case (Kohavi, 1996; Langley, 1993).
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This paper presents an alternative approach that seeks instead to adjust
the probabilities produced by a standard naive Bayesian classi�er in order to
accommodate violations of the assumptions on which it is founded.

2 Adjusted Probability Semi-Naive Bayesian Induction

The naive Bayesian classi�er is used to infer the probability that an object j,
described by attribute values A1=V1j ^ : : : ^ An=Vnj belongs to a class Ci. It
uses Bayes theorem

P (Ci jA1=V1j ^ : : : ^ An=Vnj )=
P (Ci)P (A1=V1j ^ : : : ^An=Vnj jCi)

P (A1=V1j ^ : : : ^ An=Vnj )
(1)

where P (Ci jA1=V1j ^: : :^An=Vnj ) is the conditional probability of the class Ci

given the object description; P (Ci) is the prior probability of classCi; P (A1=V1j^
: : : ^ An=Vnj jCi) is the conditional probability of the object description given
the class Ci; and P (A1=V1j ^ : : :^An=Vnj ) is the prior probability of the object
description.

Based on an assumption of attribute conditional independence, this is esti-
mated using

P (Ci)
Q

k P (Ak=Vkj jCi)

P (A1=V1j ^ : : : ^An=Vnj )
: (2)

Each of the probabilities within the denumerator of (2) are in turn inferred
from the relative frequencies of the corresponding elements in the training data.
Where discriminate prediction of a single class is required, rather than assigning
explicit probabilities to each class, the class is chosen with the highest probability
(or with the lowest misclassi�cation risk, if classes are further di�erentiated by
having associated misclassi�cation costs). In this context, the denominator can
be omitted from (2) as it does not a�ect the relative ordering of the classes.

Many violations of the assumptions that underlie naive Bayesian classi�ers
will result in systematic distortion of the probabilities that the classi�er outputs.
For example, take a simple two attribute learning task where the attributes A
and B and class C all have domains f0; 1g, for all objects A=B, the probability of
each value of each attribute is 0:5, P (C=0 jA=0) = 0:75, and P (C=0 jA=1) =
0:25. Given an object A=0; B=0, and perfect estimates of all values within (2),3

the inferred probability of class C = 0 will be 0:5625 and of class C=1 will
be 0:0625. The reason that the class probability estimates are incorrect is that
the two attributes violate the independence assumption. In this simple example,
the systematic distortion in estimated class probabilities could be corrected by
taking the square root of all naive Bayesian class probability estimates.

It is clear that in many cases there will exist functions from the naive Bayesian
estimates to the true conditional class probabilities. However, the nature of these

3 P (C = 0) = 0:5, P (A = 0 jC = 0) = 0:75, P (B = 0 jC = 0) = 0:75, P (C = 1) = 0:5,
P (A = 0 jC = 1) = 0:25, P (B = 0 jC = 1) = 0:25, and P (A = 0 ^B = 0) = 0:5.



functions will vary depending upon the type and complexity of the violations of
the assumptions of the naive Bayesian approach.

Where a single discrete class prediction is required rather than probabilis-
tic class prediction, it is not even necessary to derive correct class probabilities.
Rather, all that is required is to derive values for each class probability such that
the most probable class (or class with the lowest misclassi�cation risk) has the
highest value. In the two class case, if it is assumed that the inferred values are
monotonic with respect to the correct probabilities, all that is required is iden-
ti�cation of the inferred value at which the true probability (or misclassi�cation
risk) of one class exceeds that of the other.

For example, Domingos & Pazzani (1996) show that the naive Bayesian clas-
si�er makes systematic errors on some m-of-n concepts. To illustrate their anal-
ysis of this problem, assume that the naive Bayesian classi�er is trained with all
26 examples of an at-least-2-of-6 concept. This is a classi�cation task for which
the class C equals 1 when any two or more of the six binary attributes equal
1. In this case, P (C=1) = 57=64, P (C=0) = 7=64, P (Ak=1 jC=1) = 31=57,
P (Ak=0 jC=1) = 26=57, P (Ak=1 jC=0) = 1=7 and P (Ak=0 jC=0) = 6=7.
Therefore, the naive Bayesian classi�er will classify as positive an example for
which i attributes equal 1 if

�
57

64
�
31

57

i

�
26

57

6�i�
>

�
7

64
�
1

7

i

�
6

7

6�i�
: (3)

However, this condition is false only for i = 0 while the at-least-2-of-6 concept
is false for i < 2. Note however that both the terms in (3) are monotonic with
respect to i, the left-hand-side increasing while the right-hand-side decreases as
i increases. Therefore, by multiplying the left-hand-side of (3) by a constant
adjustment factor a : 0:106< a < 0:758 we have a function of i that perfectly
discriminates positive from negative examples4. Care must be taken to avoid
using this as probability estimate, but this additional degree of freedom will allow
the naive Bayesian classi�er to discriminate well on a broader class of problems.
For multi-class problems, and problems where the inferred probabilities are not
monotonic with respect to the true probabilities, more complex adjustments are
required.

This paper presents an approach that attempts to identify and apply linear
adjustments to the class probabilities. To this end, an adjustment factor is asso-
ciated with each class, and the inferred probability for a class is multiplied by the
corresponding factor. While it is acknowledged that such simple linear adjust-
ments will not capture the �ner detail of the distortions in inferred probabilities
in all domains, it is expected that they will frequently assist in assigning more
useful probabilities in contexts where discrete single class prediction is required
(as it will enable the probability for a class to be boosted above that of the
other classes, enabling correct class selection irrespective of accurate probability
assignment). The general approach of inferring a function to adjust the class

4 The lower limit on a is the lowest value at which (3) is true for i = 2. The upper
limit is the highest value at which (3) is false for i = 1.



probabilities obtained through naive Bayesian induction will be referred to as
adjusted probability naive Bayesian classi�cation (APNBC). This paper restricts
itself to considering simple linear adjustments to the inferred probabilities, al-
though it is noted that any other class of functions could be considered in place
of simple linear adjustments. We do not believe that linear adjustments are likely
to lead to more accurate classi�ers than alternative classes of adjustment func-
tion. However, linear adjustments do have one advantage over many alternatives,
that plausible adjustment factors are relatively inexpensive to compute.

3 The APNBC Technique

Due to the simplicity of naive Bayesian classi�cation and of APNBC, there is
relatively low risk of over�tting inferred models to a set of training data (vari-
ance is low). For this reason, appropriate adjustments will be directly inferred
from resubstitution performance (the performance of the modi�ed classi�er on
the training data), rather than using a variance management strategy such as
estimation by cross validation.

In the two class case, it is necessary only to �nd an adjustment value for
one of the classes. This is because for any combination of adjustments A1 and
A2 for the classes C1 and C2, the same e�ect will be obtained by setting the
adjustment for C1 to

A1

A2
and the adjustment for C2 to 1. For this reason, in the

two class case, the adjustment for one class is set to 1 and the APNBC technique
considers only adjustments to the other class, seeking an adjustment value that
maximizes resubstitution accuracy.

In the multiple class case, the search for suitable adjustments is more com-
plex, as the adjustment for one class will greatly a�ect the appropriate adjust-
ments for other classes. In this context a simple hill-climbing search is employed.
All adjustment values are initialized to 1, and a single adjustment that maximizes
resubstitution accuracy is found. If a suitable adjustment is found, it is incorpo-
rated into the classi�er and the process repeated until no suitable adjustments
are obtained.

Adjustments are continuous values, and hence the search space of possible
adjustments is in�nite. However, critical values, in terms of resubstitution per-
formance, are de�ned by the objects in the training set. If an object o of class i
is misclassi�ed as class j by APNBC with the current vector of adjustments A,

a tie between classi�cations for the object will result if Ai is assigned
AjP (o;j)
P (o;i) ,

where P (o; x) is the probability inferred by the naive Bayesian classi�er that o

belongs to class x. A tie may also result if Aj is assigned
AiP (o;i)
P (o;j) , but this will

also depend upon the adjusted probability for i being greater than the adjusted
probability for any other class. To resolve such ties during the search for a set
of values for A, the APNBC induction algorithm employs the critical value for
Ai or Aj plus or minus a small value (10

�5), as appropriate.
When the search for a set of adjustment values is complete, each selected ad-

justment is replaced by the midpoint between the two critical values that bound
it. This latter step is delayed in this manner solely for reasons of computational



e�ciency. It is possible that the hill-climbing search algorithm will select at dif-
ferent stages a number of di�erent adjustment values for any one class, in which
case it is desirable to delay the computationally expensive task of identifying the
second critical bound on the adjustment until the �nal adjustment region has
been selected.

When two possible adjustments tie for �rst place with respect to reduction in
resubstitution error, the smaller adjustment is selected. This represents a slight
inductive bias toward minimizing the degree to which the adjusted probabilities
di�er from those inferred by the naive Bayesian classi�er.

While it is argued that the APNBC approach has low risk of over�tting due
to the simplicity of the models that it employs, there is nonetheless some risk
of over�tting that might pro�tably be managed. To this end, before accepting
an adjustment, a binomial sign test is performed to determine the probability
that the observed improvement in resubstitution accuracy could be obtained
by chance. If this probability is greater than a prede�ned critical value, �, the
adjustment is not adopted.

An algorithm for multiclass induction is presented in Appendix A. For two
class induction, it is necessary only to pass once through the main loop, and
necessary only to examine either upward or downward adjustments, as in the
two class case for every upward adjustment for one class there is an equivalent
downward adjustment for the other, and vice versa.

The worst case computational complexity of the induction of each adjust-
ment is of order O(CN2), where C is the number of classes and N is the number
of cases. The process is repeated once for each class. For each misclassi�ed case
belonging to the class (which in the worst case is proportional to the number of
cases), possible adjustments are evaluated. Each such evaluation requires exam-
ining each case to consider its reclassi�cation. This does not require recalculation
of the raw naive Bayesian probabilities, however, as these can be calculated once
only in advance.

In our observation, never has a second adjustment been inferred for a single
class, although we do not see an obstacle to this happening in theory (that is,
an adjustment is made for class a which then enables an adjustment to be made
for class b which in turn allows a di�erent adjustment to be made for class a).

Given that the number of adjustments inferred is usually lower than the
number of classes, O(C2N2) appears a plausible upper bound on the average
case complexity of the algorithm.

4 Experimental Evaluation

The APNBC induction algorithm was implemented in C. This implementation
estimates the prior probability of class i (P (Ci)) by

ni+1
m+c where ni is the number

of training objects belonging to i, m is the total number of training objects, and
c is the number of classes. P (Ak=v jCi) is estimated by

#(Ak=v ^ Ci) + 2#(Ak=v)
#(Ak 6=?)

#(Ak 6=? ^ Ci) + 2
(4)



where #(Ak=v ^ Ci) denotes the number of training examples belonging to
class Ci with value v for attribute Ak; #(Ak=v) denotes the number of training
examples with value v for attribute Ak; #(Ak 6=?) denotes the number of training
examples for which the value is known for attribute Ak; and #(Ak 6=? ^ Ci)
denotes the number of training examples belonging to class Ci for which the
value is known for attribute Ak .

Three variants of APNBC were evaluated, each employing di�erent values
of �, the critical value for the binomial test. One used � = 0:05, another used
� = 0:1, and the last used � = 1 (the binomial test is ignored). The value 0:05
was chosen because this is a classic critical value employed in statistics. A less
stringent value, 0.1, was also considered, as the binomial test controls only the
risk of accepting an inappropriate adjustment by chance and it was thought that
a less stringent critical value might reduce the risk of type 2 error rejecting an
appropriate adjustment by chance, more than it increased the risk of the type 1
error that it explicitly controlled. The third option, ignoring the binomial test,
was included in order to assess the e�cacy of the test. (These are the only �
values with which the software has been evaluated, as it is deemed important
not to perform parameter tuning to the available data sets.)

These three variants of APNBC were also compared with a standard naive
Bayesian classi�er (the same computer program with the adjustment induction
phase disabled).

Thirty representative data sets from the UCI repository (Merz & Murphy,
1998) were employed. These are presented in Table 1. Continuous attributes
were discretized at induction time by �nding cut points in the training data that
resulted in the formation of ten groups containing as near as possible to equal
numbers of training examples.

For each data set, ten-fold cross validation experiments were run ten times.
That is, each data set was divided into ten random partitions of as near as possi-
ble to equal size. For each of these partitions in turn, every variant of the system
was trained on the remaining nine partitions and predictive accuracy evaluated
on the with-held partition. This was repeated with ten di�erent random parti-
tionings for each data set.

Table 2 presents a summary of the results of this experiment. For each data
set, the mean percentage predictive error is presented for each variant of the
system. For each of the treatments using probability adjustments, a summary is
provided of the number of wins, losses and draws, when the mean error is com-
pared to that of the naive Bayesian classi�er. The p value from a one-tailed bino-
mial sign test is also provided to evaluate the signi�cance of these win/loss/draw
results.

It can be seen that with � = 0:05, APNBC is selective about inferring ad-
justments that have measurable e�ect. For only eight out of thirty data sets are
di�erences in predictive error evident. In seven of these the adjustments lead to
a decline in error while for only one does error increase. The one data set on
which error does increase, monk1, is an arti�cial data set. A binomial sign test
reveals that the probability of such an outcome occurring by chance is just 0:035,



Table 1. UCI data sets used in experimentation

Domain Cases Attributes

adult 48843 18
audio 226 69
balance-scale 625 25
breast cancer Slov. 286 9
breast cancer Wisc. 699 9
cleveland 303 13
crx (Aust. credit) 690 15
echocardiogram 74 6
glass 214 9
horse-colic 368 21
house-votes-84 435 16
hungarian 294 13
hypo 3772 29
iris 150 4
kr-vs-kp 3196 36
lenses 24 4
lymphography 148 18
monk1 556 6
monk2 601 6
monk3 554 6
mp11 500 11
mush 8124 22
phoneme 5438 7
Pima diabetes 768 8
promoters 106 57
primary tumor 339 17
soybean large 683 35
splice-c4.5 3177 60
tic-tac-toe 958 10
waveform 300 21

and hence is the advantage is signi�cant at the 0.05 level. It can be seen that
most of the di�erences are of large e�ect when the ratio of the new error over
the old error is considered. Of the data sets for which a di�erence is obtained,
the average ratio is 0:84, indicating that an average improvement of 16% is ob-
tained. Even once all the data sets for which there is no di�erence are included,
the average ratio is 0:96 indicating an average reduction in error by 4%.

As the value of � is relaxed, however, there is an increase in the number of
di�erences in performance. At � = 0:1, there are di�erences for fourteen out
of the thirty data sets. However the ratio of positive to negative e�ects is nine
to �ve, which a one tailed sign test reveals as not statistically signi�cant. The
error ratio at this level indicates that error is reduced by 3% on average over



Table 2. Summary of results (mean percentage error)

� = 0:05 � = 0:1 � = 1
Domain naive mean ratio mean ratio mean ratio

adult 18.2 16.1 0.88 16.1 0.88 16.1 0.88
audio 27.5 27.5 1.00 27.5 1.00 25.7 0.93
balance-scale 9.0 8.8 0.98 9.9 1.10 10.7 1.19
breast cancer Slov. 28.7 28.7 1.00 28.7 1.00 29.4 1.02
breast cancer Wisc. 2.4 2.4 1.00 2.4 1.00 2.6 1.08
cleveland 16.5 16.5 1.00 17.5 1.06 17.5 1.06
crx (Aust. credit) 14.3 14.3 1.00 14.3 1.00 14.5 1.01
echocardiogram 29.8 29.8 1.00 29.8 1.00 31.1 1.04
glass 31.9 31.9 1.00 31.9 1.00 33.6 1.05
horse-colic 18.7 18.7 1.00 20.6 1.10 20.6 1.10
house-votes-84 9.7 9.7 1.00 9.7 1.00 12.9 1.33
hungarian 15.6 15.6 1.00 15.6 1.00 16.6 1.06
hypo 3.5 3.5 1.00 3.3 0.94 3.3 0.94
iris 7.3 7.3 1.00 7.3 1.00 6.7 0.92
kr-vs-kp 12.6 12.6 1.00 12.7 1.01 12.6 1.00
lenses 28.3 28.3 1.00 28.3 1.00 21.7 0.77
lymphography 16.9 16.9 1.00 16.9 1.00 15.5 0.92
monk1 25.4 27.4 1.08 27.9 1.10 30.4 1.20
monk2 39.1 37.1 0.95 35.1 0.90 34.3 0.88
monk3 3.6 2.2 0.61 2.2 0.61 2.2 0.61
mp11 41.2 41.2 1.00 41.2 1.00 42.6 1.03
mush 1.8 1.2 0.67 1.2 0.67 1.2 0.67
phoneme 27.4 27.4 1.00 27.3 1.00 26.4 0.96
Pima diabetes 24.4 24.4 1.00 24.2 0.99 24.9 1.02
promoters 11.3 11.3 1.00 11.3 1.00 14 1.24
primary tumor 52.2 52.2 1.00 52.2 1.00 54.9 1.05
soybean large 6.6 6.6 1.00 6.6 1.00 8.1 1.23
splice-c4.5 4.5 4.5 1.00 4.5 1.00 4.7 1.04
tic-tac-toe 33.1 26.2 0.79 26.7 0.81 26.7 0.81
waveform 23.7 18.7 0.79 18.7 0.79 18.7 0.79

Mean ratio 0.96 0.97 1.00

Win/loss/draw 7/1/22 9/5/16 12/17/1

Win/loss/draw p 0.035 0.212 0.229

these data sets at this � level. At � = 1, there are di�erences for twenty-nine
out of thirty data sets, of which twelve are decreases in error and seventeen are
increases in error. A one-tailed t-test also reveals this ratio as not statistically
signi�cant at the 0.05 level.

While APNBC with � = 1 (which, it should be recalled, has the e�ect of dis-
abling the binomial test) results in more increases in error than decreases, when
compared with the naive Bayesian classi�er, the mean ratio of error rates is 1.00,



indicating that the individual positive e�ects tend to be greater than individ-
ual negative e�ects, although this is counter-balanced by a greater frequency of
negative e�ects.

5 Conclusion

We have proposed that the probabilities produced by a naive Bayesian classi�er
could be systematically adjusted to accommodate violations of the assumptions
on which it is based. We have investigated induction of simple linear adjustments
in the form of a numeric weights by which the inferred probabilities for a class are
multiplied. This was performed in a context where discrete class prediction was
performed, rather than probabilistic prediction, so our concern has not been to
obtain accurate probabilities from the classi�er, but rather to obtain probabilities
weighted in favor of the correct class.

For many data sets, accepting any adjustment that improves resubstitution
accuracy results in adjustments that produce small increases in predictive error.
The use of a binomial test, to limit adjustments to those that result in alter-
ations in resubstitution error that are unlikely to occur by chance, blocks most
adjustments with negative e�ect. The resulting system infers adjustments for
approximately one quarter of data sets, but almost all adjustments inferred re-
sult in reductions in predictive error. Further, many of those reductions are of
substantial magnitude.
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A The APNBC Induction Algorithm

n is the number of training objects.

Ai is the APNBC adjustment factor for class i.

C(o) returns the true class of object o.

P (o; i) returns the probability inferred by the naive Bayesian classi�er that
object o belongs to class i.



APNBC(o) returns the class assigned to object o given the current adjust-
ment values. This equals argmaxiAiP (o; i).

error() returns the number of training objects misclassi�ed by APNBC given
the current adjustment values. This equals jfo : APNBC(o) 6= C(o)gj.

� is a very small value. The current implementation uses 10�5. This is used
to alter adjustments from a value at which there is a tie between two classes.

adjustup(a; c) returns a� a�b
2 , where b is the lowest value greater than a for

which Ac = b results in higher error than Ac = a. This is used to select the
midpoint in a range of adjustment values all of which have the same e�ect,
where a is the lower limit of the range.

adjustdown(a; c) returns a� a�b
2 , where b is the highest value less than a for

which Ac = b results in higher error than Ac = a. This is used to select the
midpoint in a range of adjustment values all of which have the same e�ect,
where a is the upper limit of the range.

binomial(n; t; p) returns the binomial probability that of obtaining n positive
results out of t trials if the true underlying proportion of positives is p.
This is compared against a prede�ned critical value, �, which in the current
implementation defaults to 0.05.

For each class i, Ai  1.
best error().
Repeat

For each training object o such that C(o) 6= APNBC(o)
e APNBC(o).
saveA A.
adj  AeP (o;e)

P (o;C(o)) .

AC(o)  adj + �.
If error() < best or (error() = best and adj � saveAC(o) < bestd)

best error().
bestc C(o).
besta adj.
bests +.
bestd adj � saveAC(o).

A saveA.
adj  

AC(o)P (o;C(o))

P (o;APNBC(o)) .

Ae  adj � �.
If error() < best or (error() = best and saveAe � adj < bestd)

best error().
bestc e.
besta adj.
bests �.
bestd saveAe � adj.

A saveA.



If binomial(best; n; error()
n

) < �
If bests = +

Abestc  adjustup(besta; bestc).
else

Abestc  adjustdown(besta; bestc).
continue true.

else
continue false.

until continue = false.
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