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Abstract.  Feature Based Modelling uses attribute value machine learning techniques to 
model an agent’s competency.  This is achieved by creating a model describing the 
relationships between the features of the agent’s actions and of the contexts in which 
those actions are performed.  This paper describes techniques that have been developed 
for creating these models and for extracting key information therefrom.  An overview is 
provided of previous studies that have evaluated the application of Feature Based 
Modelling in a number of educational contexts including piano keyboard playing, the 
unification of Prolog terms and elementary subtraction.  These studies have demonstrated 
that the approach is applicable to a wide spectrum of domains.  Classroom use has 
demonstrated the low computational overheads of the technique.  A new study of the 
application of the approach to modelling elementary subtraction skills is presented.  The 
approach demonstrates accuracy in excess of 90% when predicting student solutions.  It 
also demonstrates the ability to identify and model student’s buggy arithmetic 
procedures. 
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1 INTRODUCTION 
Most previous approaches to modeling agent’s competencies have sought to develop 
process models - models of the internal processes that underlie those competencies (for 
example, Anderson, Boyle, Corbett and Lewis, 1990; Brown and Burton, 1978; Clancey, 
1987; Corbett and Anderson, 1992; Goldstein, 1979; Ikeda, Kono and Mizoguchi, 1993; 
Langley, Wogulis and Ohlsson, 1990; London, 1992; Martin and VanLehn, 1993; 
Sleeman, 1987; Stevens, Collins and Goldin, 1982; VanLehn, 1986; Young and O’Shea, 
1981).  In contrast, input-output agent modeling models an agent’s competencies without 
seeking to describe the internal processes that produce those competencies.   The models 
produced can be considered to directly map the relationships between the inputs and 
outputs to the agent. 

Feature Based Modeling (FBM), a fo rm of input-output agent modeling based on 
attribute-value machine learning, has demonstrated that it is possible within reasonable 
computational constraints to produce models of agents’ competencies with high 
predictive accuracy.  FBM models can be updated in computational time spans measured 
in CPU seconds.  It is thus feasible to use FBM in an interactive setting.  Evaluation of 
FBM in the domain of elementary subtraction has demonstrated high accuracy in the 
prediction of students’ precise answers.  No previous student modelling system has been 
tested in the context of making precise predictions of students’ answers, let alone 
demonstrated such levels of predictive accuracy. 

A number of previous short papers have examined aspects of FBM (Amato and Tsang, 
1990; Kuzmycz and Webb 1991; Webb, 1991; Webb. Cumming, Richards and Yum, 
1989).  This paper brings together the key findings of this previous work, provides 
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greater detail of the methodology and its implementation, examines the broader 
implications of the approach and presents the results of a new study evaluating the 
effectiveness of the approach for modelling competency in elementary subtraction. 

2 OVERVIEW 
Attempts to model the internal operation of the cognitive system are fraught with 
difficulties.  First, cognitive science is still in its infancy and the precise mechanisms by 
which the cognitive system operates are not well understood.  This alone makes it 
extremely difficult to produce models of the internal operation of the cognitive system. 
Additional difficulties are introduced by inability to observe internal cognitive 
operations.  In consequence, any hypothesis about a single internal event must be based 
on a chain of further hypotheses about other unobserved internal events which eventually 
leads back to an observed external event.  The more detailed the model, the longer such 
hypothesis chains must stretch and the more tenuous they must become. 

Model tracing (Anderson, Boyle and Reiser, 1985) circumvents these problems by 
modelling the agent at the level of observable operations.  The model is a process model 
in that the elements of the model are intended to map directly onto internal cognitive 
processes.  However, the model is also an input-output agent model in that each element 
of the model directly relates a situation or input to an action or output. 

FBM also circumvents these difficulties by producing a model that is grounded in 
observable events and which does not attempt to create an explicit representation of 
unobservable events.  This should not be taken as embracing philosophical behaviorism.   
To use FBM is not to deny that cognitive events occur.  Rather, FBM can be viewed as 
embodying a form of weak methodological behaviorism in that it is based on the 
assumption that it is possible to obtain useful info rmation about the cognitive system 
without understanding its internal mechanisms. 

The key difference between model tracing and FBM is that the former relies upon a 
library of situation-action associations (the rules from which a model is constructed) 
whereas FBM generates these associations as required.  This makes FBM more flexible 
in that it does not require the system designer to anticipate all situation-action 
associations that may be relevant to modelling a student. 

An FBM model can be considered as a description of an agent’s competency.  It can be 
used to explain and to predict an agent’s capabilities.  However, it does not explain how 
that competency is achieved, nor why alternative competencies are not obtained. 

Such a model is a cognitive model in the sense that it is able to model the perfo rmance of 
the cognitive system, albeit, a ‘black box’ model.  However, it is not a cognitive model in 
the sense of a model of the operation of the cognitive system. 

It is undoubtedly true that an accurate model of the precise internal operation of the 
cognitive system will be more powerful and more useful for many purposes than a model 
that does not contain this information.  However, it is likely that, in at least some 
contexts, an accurate model of competency will have greater utility than a less accurate 
process model.  A further reason for wishing to develop the less complex fo rm of model 
is that the computational overheads involved in its construction are lower, increasing its 
utility,  particularly in an interactive environment.  While the computational overheads 
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involved in model tracing are lower than those of FBM, as model tracing considers a 
more circumscribed set of situation-action associations, FBM places lower demands on 
the system developer.  A further consideration is that there is evidence that human tutors 
only rarely attempt to construct process models (Putnam, 1987; McArthur, Stasz and 
Zmuidzinas, 1990). 

FBM has been developed for purposes of student modelling.  However, the technique is 
applicable to the much broader contexts of user modelling and the modelling of agents in 
general.  This paper concentrates on issues relating to the application of FBM to student 
modelling.  This should be taken as a reflection of the environment in which the 
methodology has been developed rather than a reflection of the potential scope of its 
application. 

3 CONSTRUCTING THE MODEL 
For the purpose of illustration, examples will be drawn from the domain of elementary 
subtraction skills.  This domain will be used for this purpose throughout the rest of this 
paper.  The approach to modelling this domain that has been selected treats the 
examination of a single column as the elementary unit of analysis. 

3.1 The Form of the Model 

FBM produces a model of an individual agent on the basis of observations of that agent’s 
performance.  This model relates the contexts in which actions are perfo rmed to aspects 
of those actions.  Both contexts and actions are described in terms of their relevant 
features.  Context features describe properties of the context in which an action is 
performed.  For the example approach to modelling subtraction competency, the context 
features describe the column and the context in which that column appears.  Such 
features might include indications that the sub trahend of the current column is smaller 
than the minuend and that the subtrahend is zero. 

Action features describe properties of the agent’s actions.  Action features in our example 
approach to modelling elementary subtraction skills represent properties of the student’s 
answer for a single column.  These might include features indicating that the result equals 
the minuend and that the result represents a correct solution.  Appendix A presents the 
complete set of context and action features used in the Sub traction Modeller, an FBM 
system for modelling elementary subtraction skills that will be described in more detail 
below. 

Features are a very general formalism.  They may range from the very high level, such as 
The answer is correct, through intermediate levels, such as The answer is the minuend 
minus the subtrahend, to the very low level, such as The answer is zero.  Features are 
currently restricted to categorical values.  However, there is no reason in principle to 
prevent the extension of the approach to ordinal values. 

An association aX →  is a relationship between a set of context features, X, and a single 
action feature, a.  An association indicates that action feature a applies to the agent’s 
actions in context X.  For example, the association {the subtrahend is Zero} →  the result 
equals the minuend indicates that when the subtrahend is zero the agent provides the 
minuend as the result.  An FBM model consists of a set of associations. 
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For some purposes it is useful to divide associations into those that are appropriate and 
those that are not.  An association is appropriate if it is considered desirable for the agent 
to embody it.  For example, the association {the subtrahend is zero, the subtrahend to the 
immediate left is less than the minuend to the immediate left}→  the result equals the 
minuend is appropriate if correct arithmetic performance is desired.  Associations that are 
not appropriate are called erroneous associations.  Appropriate and inappropriate 
associations correspond respectively to rules and mal-rules (Sleeman, 1982).  However, 
unlike rules and mal-rules, there is no implication that associations correspond directly to 
discrete internal cognitive operations.  The methods for judging whether an association is 
appropriate or erroneous must be provided by the instructor creating a lesson, or, in more 
general terms, the person creating the modelling system. 

3.2 Features and the Feature Network 

The relationships between features are described by a feature network (Webb, 1988).  
The central type of element of a feature network is a feature choice.  This can be viewed, 
in machine learning parlance, as an attribute.  Features, in machine learning terminology, 
are categorical attribute values. Every feature must belong to exactly one feature choice. 
The other features that belong to the same feature choice as a feature f are called f’s 
siblings.  Siblings are mutually exclusive.  That is, no two siblings may apply to the same 
context or action. 

A feature network also specifies dependency relationships between features and feature 
choices.  From these it is possible to derive generalisation and specialisation relationships 
between features.  Feature a is a generalisation of feature b if and only if a must apply to 
a context or action if b applies to that context or action.  For example, the context feature 
the subtrahend is less than or equal to the minuend is a generalisation of the subtrahend 
equals the minuend. 

It is useful to augment the feature network with inter- feature-set generalisation 
relationships.  For example, {the result equals the minuend} is a generalisation of {the 
subtrahend is zero, the result equals the minuend minus the subtrahend}.  The former 
must apply to all contexts to which the latter applies.  The feature choices and 
generalisation relationships can be used to constrain the associations that need be 
considered by the modelling system. This affects implementation efficiency only. This is 
the only role of the feature network in FBM. 

3.3 Constraining the Associations That Need To Be Considered 

Two types of constraint are employed.  First, it is not possible to have a set of context 
features that contains a feature f and any feature x such that a generalisation of x is a 
sibling of f.  Thus, it is not possible to have a set of context features that contains the 
features the subtrahend is less than the minuend and the subtrahend is equal to the 
minuend, because the latter feature is a specialisation of the subtrahend is greater than or 
equal to the minuend, which is a sibling of the former feature.  All such combinations of 
features can be removed from consideration. 

Second, it is possible to further constrain the possible associations by deleting any set of 
context features that contain a set of features A and its generalisation B.  An example of 
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such a set of context features is {the subtrahend is less than the minuend, the subtrahend 
is less than or equal to the minuend} in which the second feature is a generalisation of the 
first.  Such a set of context features will always apply to exactly the same contexts as the 
same set with the more general feature deleted.  Thus, the descriptive power of the two 
expressions are identical.  The addition of the more general feature adds nothing but 
syntactic complexity to the model.  In consequence, the descriptive power of the 
modelling system is not affected by removing all such feature sets from consideration. 

3.4 Handling Noise 

Any practical cognitive modelling system must allow for the existence of noise.  Noise 
may result from inaccuracies in data collection or from slips or lapses in concentration 
resulting in behavior that is not representative of the agent’s general performance. 

FBM allows for noise by accepting an association aC →  if and only if 

1. ;min_)(# evidenceaC ≥→  

 

2. 
)~(#)(#

)(#
aCaC

aC
→+→

→
;min_ accurancy≥ and 

 

3. there is no association between a specialisation of C and a sibling of a. 

 

where 

 

• #(C →a) is the number of observed cases in which all features in C and feature a have 
been present; 

• #(C ~→ a) is the number of observed cases in which all features in C and a sibling of a 
have been present; and 

• min_evidence and min_accuracy are implementation dependent parameters. 

Most implementations of FBM have used min_evidence set to 3 and min_accuracy set to 
0.8.  Although min_accuracy of 0.8 ostensibly allows for an association to be accepted 
when almost 20% of the evidence contradicts it, clause 3 limits the probability of this 
occurring by suppressing an association if there is a regularity detected in the contrary 
evidence. 

3.5 Handling Concept Change 

Another factor of which a practical modelling system must take account is that an agent’s 
approach to a domain may change over time.  Indeed, in an educational environment, the 
aim of the interaction is precisely to achieve such a transformation.  FBM can 
accommodate change by placing less weight on old evidence in contrast to new evidence. 
This process is called data aging. 
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When an agent is observed to act in manner a in context C this is initially considered as 
one unit of confirmation for the association aC → .  Similarly, when an agent is observed 
to act in manner ~ a (where ~ a is a sibling of a) in context C this is initially considered 
as one unit of disconfirmation for aC → .  The evidence for and against an association 
can be described by two numbers, a tally of confirmations and a tally of disconfirmations.  
When data aging is employed, every time that an action is observed in a context 
described by C, all tallies relating to C are discounted through multiplication by a set 
discounting rate.  Most implementations of FBM to date have used a discounting rate of 
0.9.  The tallies are then updated as appropriate in accord with the new evidence.  When 
determining whether an association should be accepted, the aged tallies can be employed 
in place of # aC →  and # aC ~→ .  As a result, the model will take greater account of 
recent actions than of earlier actions. 

3.6 Selecting Features 

It is up to the instructional designer (or other developer of the modelling system) to 
identify the relevant context and action features for a given modelling task.  While the 
theoretical foundations on which FBM are based suggest that context and action features 
should be observable properties of the agent’s environment and actions, respectively, the 
methodology is not able to enforce this.  The system developer is able to include any 
properties that he or she wishes.  These might include internal cognitive states that the 
developer believes should or could be generated in a particular context.  For example, in 
the subtraction domain, one context feature might be that the current problem requires 
carry (where carry is intended to be an internal cognitive operation performed to generate 
a solution).  As can be seen by examination of the features listed in Appendix A, the 
Subtraction Modeller does not use such features. 

In the systems developed to date, context features have exclusively described properties 
of the task on which a student is currently engaged.  It is intended, however, that any 
aspect of the environment in which an action occurs could be described by a context 
feature.  For example, relevant context features in the domain of elementary subtraction 
might include details of the answers provided by students seated close to the student 
whose subtraction competency is being modelled. 

It is of course, likely that some students will not attend to all context features that are 
made available to the modelling system.  In this case, those features should not be 
observed to influence the student’s actions and should not appear in the associations that 
are identified.  It is also likely that some students will attend to factors that are not 
described by the context features available to the modelling system.  For example, a 
student solving subtraction problems might take account of the answers being written by 
another student when those details are not available to the modelling system.  In this case, 
the system should not be able to detect associations between the available context and 
action features, or the associations detected will describe a complex system of which the 
agent is but one part.  In the example of the student attending to another student’s work, 
the complex system will be the pair of students. 
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3.7 Constructing the Model 

To reduce computational overheads, before use, all possible sets of context features for a 
domain can be computed.  From these, all invalid and redundant sets of features can be 
removed.  A set of features is invalid if it contains a feature f and either a sibling of f or a 
specialisation of a sibling of f.  A set of features is redundant if it contains a set of 
features F and a set of features that is a specialisation of F.  Each remaining set of 
features can be provided a unique numeric identifier that is used as an index into an array 
that records the entire model.  This array is indexed in one dimension by a set of context 
features and in the other dimension by an action feature.  Each element of the array 
contains the data required to determine whether there is an association between that set of 
context features and action feature.  Thus, the model can be represented by a single large 
static direct access data structure. 

For every most specific set of context features, a list of all generalisations is generated.  
This enables rapid update of statistics within the model by removing the need to compute 
and locate valid generalisations during operation. 

Current implementations of FBM employ exhaustive analysis when creating and updating 
a model.  It is feasible to construct a model containing all supported associations in a 
moderately complex domain by constructing a two dimensional array indexed in one 
dimension by the valid sets of context features and in the other dimension by the action 
features.  Each cell contains both the aged tallies corresponding to # ( aC → ) and # 
( aC ~→ ) along with a flag indicating whether the association is accepted.  When a new 
action is processed by the modelling system it is only necessary to update each cell 
indexed by a subset of the set of context features that describe the context of the action.  
Thus the computational complexity of updating the model is of the order 2 n , where n is 
the number of context features describing the current action.  While this complexity is 
exponential, the magnitude of n is often sufficiently constrained for this not to be a 
significant problem.  Indeed, for the Unification Tutor, an interactive system employing 
this approach to updating an FBM model that is described in more detail below, the time 
taken to update the agent model is generally not noticeable. 

The model created by FBM is similar to a version space (Mitchell, 1977) in that it 
contains all associations that are consistent with the evidence (after allowance for the 
constraints specified above).  However, FBM differs substantially from the version space 
machine learning algorithm in that it supports disjunction (a model is composed of 
multiple disjoint rules), allows hypotheses that are inconsistent with the training data 
(through the allowance for noise) and explicitly considers all hypotheses within the 
version space.  It is further distinguished by the selection of different subsets of the 
version space for use in different contexts.  This selection process is described below. 

FBM is distinguished from most previous machine learning techniques by the manner in 
which it develops all rules that describe the training data from which different subsets are 
selected for different purposes, as described below.  By way of contrast, most machine 
learning systems select a single highly restricted subset of the rules that describe the 
training data.  In most cases, this restricted subset includes the minimum number of rules 
necessary to describe all examples. 
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FBM does not require a sophisticated learning algorithm.  All that is required is a straight 
forward sequential update of a table of tallies of supporting and counter evidence for the 
associations. 

A separate model is maintained of each agent.  Every time that an action by that agent is 
observed the model is updated accordingly.  The model may be consulted at any time.  
The model can be expected to grow in accuracy as the number of observed actions 
increases. 

3.8 The Meaning of an Association 

The associations within an FBM model can be considered to be production rules.  They 
differ, however, from the form of production rule commonly formed by modelling 
systems such as ACM, BUGGY or model tracing, in that the consequents are features of 
actions (or partial specifications of actions) rather than complete actions.  To predict 
precise actions it is necessary to consult all active associations which will lead to the 
specification of a set of action features.  This set of features may allow the precise 
identification of a specific action.  Alternatively, it might be able to constrain the set of 
possible actions without identifying one specific action.  This latter situation is likely if 
the student model is not well developed, perhaps because of lack of information, or if the 
student is not acting in a consistent manner, perhaps due to a change of problem solving 
strategy or the failure to adopt a consistent approach to the problems being examined. 

Associations are flat rules.  There is no form of chaining from the consequent of one rule 
to the antecedents of another.  However, it is possible to construct complex models 
containing considerable relevant internal structure.  First, many associations may relate to 
a single action feature.  Thus, it is possible to form disjunctive descriptions of a student’s 
competency.  Second, it is possible to have both action and context features of differing 
levels of generality.  This enables the formation and application of the model at differing 
levels of granularity. 

4 USING THE MODEL 
Depending upon the intended use for the model, it may be desirable to extract a more 
concise set of associations than those included in the complete model.  That is, when 
using the model, rather than manipulating every association that is supported by the 
evidence, it may be useful to consider only a select subset of those associations that 
capture key aspects of the system’s understanding of the agent.  For example, if 
association aC → is in the full model then every association aX → , such that X is a 
specialisation of C is likely to be in the model, unless there is insufficient or inconsistent 
evidence with regard to that specialisation.  If the modelling system is not prepared to 
accept some specialisations, aX → , then it should not be prepared to accept aC → , as 
the latter implies the former.  If it does accept the more general form then the more 
specific form is implied and need not be considered when applying or describing the 
model. 

Appropriate strategies for simplifying the model will vary depending upon the intended 
use.  For example, if the modelling system is being used to control interactions with the 
agent, it may be desirable to consider only the most specific associations that the system 
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can form.  These will correspond to the finest grained discrimination between tasks that 
the system is capable of supporting. However, they will capture very little generalisation 
beyond the situations that have been observed and will be unnecessarily complex. 

4.1 Simplifying the Model for Communication to a User 

If aspects of the model are to be communicated to a human, it is desirable to select 
strategic associations that best summarise the model.  The best associations to select will 
depend upon the particular application.  However, if very general associations are 
presented the system will often appear to be jumping to conclusions far beyond those 
supported by the available evidence. For example, it would not generally be appropriate 
for the system, after seeing an agent perfo rm only three simple tasks, all of which are 
performed appropriately, to announce that it appeared that the agent always performed 
any task for the domain appropriately. 

A useful type of association to work with is the most specific highest supported 
association.  An association aC →  is a most specific equivalent supported association if 
and only if 

• it is accepted; 

• there is no other accepted association bX → such that C is a generalisation of X, a is a 
generalisation of b and #( bX → ) = #( aC → ); and 

An association aC →  is a most specific highest supported association if and only if 

• it is a most specific equivalent supported association; and 

• there is no other most specific equivalent supported association bG →  such that G is a 
generalisation of C and b = a or b is a generalisation of a. 

Such an association generalises as far as the current evidence warrants but no further.  
Most specific highest supported associations are particularly relevant when 
communicating with a human user (in an educational context, either the student or the 
teacher) as they generalise from the available evidence without overgeneralising to 
unsustainable conclusions. 

Figure 1 shows the most specific highest supported associations that might be obtained 
from an FBM model of subtraction competency for a student with the 
SMALLER/FROM/LARGER bug (VanLehn, 1986).  As this demonstrates, such a 
simplified model is able to provide a clear and relatively concise description of the 
student’s approach to the domain. (While the last three associations are all logically 
equivalent, the current implementation of the system is unable to detect this, resulting in 
the addition of a small amount of unnecessary syntactic complexity to the model.) 
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FIG. I. MOST SPECIFIC HIGHEST SUPPORTED ASSOCIATIONS FOR THE SMALLER/FROM/LARGER BUG. 

4.2 Using the Model to Select Tasks for a User 

It is sometimes desirable to use the model to select tasks for an agent to perform that will 
provide evidence that will help further refine the model.  In this context, it is useful to 
consider potential associations rather than accepted associations.  The investigation of 
two types of potential association will maximise refinement of the model - most general 
insufficient evidence and most specific inconsistent evidence associations. 

An association aC →  is a most general insufficient evidence association if and only if 

• #( aC → ) < min_evidence; and 

• there is no other association bX →  such that X is a generalisation of C, b, is a 
generalisation of a and #( bX → ) < min_evidence. 

If the educational system selects tasks for the student to consider, selecting tasks that will 
provide further evidence relating to most general insufficient evidence associations will 
serve to most rapidly expand the set of associations that are accepted into the model 
(Kuzmycz and Webb, 1991). 

An association aC → is a most specific inconsistent evidence association if and only if 

• #( aC → ) ≥  min_evidence; and 

• 1-min_accuracy<
)~(#)(#

)(#
aCaC

aC
→+→

→
< min_accuracy; and 

• there is no other set of features X such that C is a generalisation of X. 

The existence of a most specific inconsistent evidence association indicates one of three 
things.  One possibility is that the available evidence contains noise, in which case more 
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evidence may be required in order to enable the system to filter out that noise.  Another 
possibility is that the available features do not permit the construction of an accurate 
model of the agent.  The final possibility is that the agent has changed approach to the 
domain and is now performing in a different manner with regard to the contexts in 
question. 

A hypothesis that noise is the cause of a most specific inconsistent evidence association is 
plausible if # ( aC ~→ ) is small.  Alternatively, it is credible that such an association 
arises from an insufficient model if the contrary evidence is widely distributed across 
time.  The third alternative, that the agent’s approach to the domain is changing, is 
plausible if the contrary evidence (support for aC ~→ ) is concentrated in an identifiable 
time period. 

4.3 Applying the Model 

Associations are equivalent to production rules.  In consequence, it is possible to use a 
constructed model to solve problems.  Depending upon the specificity of the action 
features that appear in the associations, execution of the model may result in either full or 
partial solutions.  The ability to construct partial solutions means that the modelling 
system is able to predict aspects of an agent’s actions even when there is insufficient 
evidence available to predict the precise actions. 

An FBM model can be used to describe the agent’s competency in the domain, predict 
the agent’s future actions and/or assist a computer-based system to manage interactions 
with the agent.  Examples of each of these uses of an FBM model are provided below. 

5 SUMMARY OF THE MODELLING PROCESS 
To summarise, the process of constructing an FBM model, as it is currently implemented, 
is as follows. 

1. The system developer identifies suitable context and action features along with an 
augmented feature network that describes the relationships between those 
features. 

2. The system developer creates mechanisms to allow the system to identify the 
context and action features that characterize agents’ actions. 

3. The augmented feature network is compiled to generate a two dimensional static 
array that will contain the system’s model of an agent.  This array is indexed in 
one dimension by sets of context features and in the other by individual action 
features.  Each entry is a tally of confirmations and disconfirmations of 
associations between the respective set of context features and the action feature. 

4. As agent actions are observed the model is updated incrementally.  Each update 
alters the tallies for every entry for a subset of the set of context features that 
describe the context of the current action as follows:  
 
a. If data aging is employed, the tallies are aged. 
b. The confirmation tallies are incremented for all entries indexed by action 
features that are known to be present. 
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c. The disconfirmation tallies are incremented for all entries indexed by action 
features that are known not to be present. 

5. The model may be consulted at any time. When consulted, suitable simplified 
summaries of the model may be derived. 

6 AN EXAMPLE 
The following is a simplified example of the application of FBM.  In keeping with the 
examples presented so far, a model is to be constructed of competency in three column 
subtraction.  Each column of a subtraction problem is treated as a separate task for the 
purposes of constructing the model.  The following context features are employed. 

• The minuend is less than the subtrahend (M < S) 

• The minuend equals the subtrahend (M = S) 

• The minuend is greater than the subtrahend (M > S) 
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Note: the action features SMR −+≠ 10 and 1−−≠ SMR  apply to all columns and have not been listed above. 

FIG. 2.FIVE EXAMPLE SUBTRACTION PROBLEM SOLUTIONS AND ASSOCIATED FEATURES. 

 

• In the column to the immediate right, the minuend is greater than or equal to the 
subtrahend ( SRMR ≥ ) 

• In the column to the immediate right, the minuend is less than the subtrahend 
( SRMR < ) 
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The following action features are employed. 

• Result equals minuend minus subtrahend (R=M-S) 

• Result equals subtrahend minus minuend (R=S-M) 

• Result equals minuend plus 10 minus subtrahend (R=M+10-S) 

• Result equals minuend minus subtrahend (R=M-S) 

Note that there are siblings to each of these action features 
( SMRMSRSMR −+≠−≠−≠ 10,, and SMR −≠ ) but that in this case the siblings 
are always present whenever the originals are not and vice versa.  These siblings are not 
presented as they add little to the understanding of the approach but do much to clutter its 
presentation. 

This set of features is not sufficient to represent correct subtraction skills or a large range 
of incorrect approaches to subtraction.  It serves, however, to illustrate the basic 
principles of FBM. 

For the sake of simplicity, we will not employ data aging in this example. 

We will illustrate the generation of a model with respect to the set of three column 
subtraction problems and answers presented in Figure 2.  In this figure, immediately 
below each subtraction problem is a summary of the features for each of the columns of 
the problem.  The left-most, centre and right-most columns of this summary correspond 
respectively to the left-most, centre and right-most columns of the problem. 

TABLE 1.  TABLE OF EVIDENCE IN SUPPORT OF EACH ASSOCIATION 

 R=M-S_____________        R=S-M______________ R=M+10-S____________ R=M-S-1_____________ 

 )(# aC →  )~(# aC →  )(# aC →  )~(# aC →  )(# aC →  )~(# aC →  )(# aC →  )~(# aC →  

}{ SM <  0 6 6 0 0 6 0 6 

}{ SM =  1 0 1 0 0 1 0 1 

}{ SM >  8 0 0 8 0 8 0 8 

}{ SRMR ≥  2 2 2 2 0 4 0 4 

}{ SRMR <  4 2 2 4 0 6 0 6 

},{ SRMRSM ≥<  0 2 2 0 0 2 0 2 

},{ SRMRSM ≥=  0 0 0 0 0 0 0 0 

},{ SRMRSM ≥>  2 0 0 2 0 2 0 2 

},{ SRMRSM <<  0 2 2 0 0 2 0 2 

},{ SRMRSM <=  0 0 0 0 0 0 0 0 

},{ SRMRSM <>=  4 0 0 4 0 4 0 4 

 



Webb & Kuzmycz 1996,  Page 14 of 32 
FBM : A Methodology for Producing Coherent, Consistent, Dynamically Changing Models of Agent’s Competencies. 

A table of evidence supporting all possible associations is fo rmed as per Table 1.  In this 
table, there is a row corresponding to each possible combination of context features.  
Note that some combinations are disallowed (such as {M<S, M=S}).  The valid 
combinations are determined by the feature network and associated generalisation 
relationships (not presented here).  There are two columns for each action feature.  The 
columns labeled )(# aC →  contain counts of the numbers of times that the action features 
have appeared in conjunction with the relevant set of context features. The columns 
labeled )~(# aC → contain counts of the numbers of times that the siblings of the action 
features have appeared in conjunction with the relevant set of context features. 

For each of the fifteen columns, the relevant context and action features are determined.   
For the left-most column of the left-most problem these are M > S, MR < SR, R = M - S, 
R ≠ S – M, R ≠  M+10 - S and R ≠ M – S - 1.  The table of evidence is then updated.  In 
this case, the )(# aC → values for R=M - S get incremented for sets of features {M > S}, 
{MR < SR} and {M > S, MR < SR} (the action features R ≠ S-M, R ≠ M+l0-S and R ≠ M-S-
1 are not maintained in this example). The )~(# aC →  values get incremented for all other 
action features in conjunction with these three context feature sets. 

Table 1 represents the evidence after all fifteen columns have been so examined.  Using a 
minimum evidence criterion of 3 and a consistency criterion of 0.8, an association is 
accepted if ( )(# aC → + )~(# aC → ) ≥ 3 and )(# aC → /( )(# aC → + )~(# aC → ) ≥ 0.8. 

The following associations satisfy these conditions: 

• {M < S} →  R = S - M 

• {M > S} →R = M - S 

• {M > S, MR < SR} →R = M - S 

Note that this model is redundant.  The last association is a specialisation of the second.  
If the second is correct then the third must be correct.  Note also that this model is 
incomplete.  It cannot be used to predict the answers for columns in which the subtrahend 
equals the minuend. 

All of these associations are most specific equivalent supported associations.  Only the 
first two are most specific highest supported associations as the second is a generalisation 
of the third and the former has higher support than the latter. 

The associations relating to the feature sets {M = S}, {M > S, MR ≥  SR}, {M < S, MR 
≥  SR} and {M < S, MR < SR} are most general insufficient evidence associations.  The 
examination of problems with these combinations of features has greatest potential to 
strengthen the model. 

There are no most specific inconsistent evidence associations.  While the associations 
{MR ≥  SR} →  R = M - S; {MR ≥  SR} →R = S - M ;{MR < SR} →R = M - S; and {MR 
< SR} →  R= S - M all have inconsistent evidence (the first two of the three criteria for 
most specific inconsistent evidence are satisfied) in each case there exist specialisations 
of the feature set ({M < S, MR ≥  SR}, {M > S, MR ≥  SR}, {M < S,MR < SR} and {M > 
S, MR < SR}).  In consequence, the third criterion is not satisfied.  The absence of most 



Webb & Kuzmycz 1996,  Page 15 of 32 
FBM : A Methodology for Producing Coherent, Consistent, Dynamically Changing Models of Agent’s Competencies. 

specific inconsistent evidence associations suggests that the available features are 
adequate for constructing a model of the student’s competency in the domain. 

7 IMPLEMENTATIONS 
FBM has, been implemented in four major test-bed systems.  The first implementation 
was as part of an experimental generic shell for supporting lessons using feature networks 
as a knowledge representation formalism (Webb, 1988).  The major system developed 
using this shell provided tuition in English word classes.  This implementation of FBM 
served to demonstrate that the approach could develop plausible models and provided 
motivation for further research and evaluation. 

Amato and Tsang (1990) developed a system for tutoring the playing of scales on a 
piano.  In this system, context features described the appropriate tonic, hand motion, 
number of octaves, touch and tone of a scale.  Action features described the observed 
tonic, hand motion, number of octaves, touch and tone of the student’s attempt to play the 
scale.  The model was used both to generate advice to the student and to select 
appropriate scales for the student to practice.  This system has demonstrated the 
applicability of FBM to the training of motor skills. 

The two most extensively studied implementations of FBM, however, are the Unification 
Tutor and the Subtraction Modeller.  It is instructive to examine these systems in some 
detail, 

7.1 The Unification Tutor 

The Unification Tutor was developed to explore the application of FBM to non trivial 
problem solving skills (Webb, 1991).  This system tutors students in the unification of 
terms from the Prolog programming language.  It has been used over a period of four 
years by third year Computer Science students at both La Trobe and Deakin Universities. 

A task in this domain consists of two Prolog terms to be unified.  Context features 
describe the two terms and the relationships between them.  Action features describe the 
solution that the student proposes. 

For use in tutoring, the Unification Tutor needs to identify which associations are 
appropriate and which are inappropriate.  It does this by observing the tasks that a student 
tackles.  For each task the system is able to identify the appropriate action features (the 
features of a correct solution to the unification problem).  An association is considered 
inappropriate if and only if it identifies an inappropriate action feature for one of the tasks 
that the student has examined.  This scheme has two desirable consequences.  First, it 
prevents the system from acting upon an inappropriate association before the agent has 
had a chance to demonstrate that he or she will not apply it in inappropriate 
circumstances.  Second, it circumvents the need for the system designer to provide a 
alternative mechanism by which to identify which associations are appropriate and which 
are not. 

The student model is used both to select problems for the student to examine and to 
provide feedback and advice.  A refined model containing only inappropriate most 
specific highest supported associations is derived from the full student model.  
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Associations from the refined model are described to the student at opportune occasions.  
It is deemed to be an opportune occasion to describe an association aC → when 

• the context features C apply to the most recent task; 

• the action feature a applies to the agent’s response to the task; and 

• a was inappropriate for the task. 

These conditions ensure that 

• only inappropriate associations (associations that the tutor wishes to prevent the 
student from exhibiting) are examined; 

• the student has the opportunity to observe the accuracy of the association in 
describing her approach to the domain; 

• the student has the opportunity to observe that the association is inappropriate; 
and 

• a concrete context is provided in which the association may be examined. 

The explicit description of associations serves to highlight to the students the fo rms of 
error that the system is observing.  It is up to the students to determine how their problem 
solving strategies lead to these forms of error and how those strategies may be repaired. 

When it is not possib le to provide such feedback, the system provides simple feedback 
indicating whether the answer is correct and, if the answer is incorrect, indicating how it 
is incorrect and supplying a correct answer generated by the machine.  In early 
implementations of the system (including that examined by Webb, Cumming, Richards 
and Yum, 1990), this feedback was always generated and displayed while the system 
updated its model, thus minimising the apparent delays caused by the computation of the 
new model.  However, the current implementation of the modelling system has sufficient 
computational efficiency that this is not necessary.  The current system is able to update 
the student model in a matter of CPU seconds.  This time delay is barely perceptible to 
the user.  In consequence, it is able to determine whether an appropriate association can 
be discussed with the student and only resorts to a simple response if no such association 
exists. 

A unification task is only presented to the student if the model does not indicate that it 
will be solved correctly and if the model indicates that the student has acquired sufficient 
sub-skills to be able to tackle it.  The model will not indicate that a task can be solved 
correctly if either there is insufficient evidence to create appropriate associations that 
cover the task or if there are inappropriate associations that cover the task. 

An ambitious study was undertaken to evaluate the educational utility of FBM within an 
early implementation of the Unification Tutor (Webb, Cumming, Richards and Yum, 
1990).  In this study two versions of the tutor were created.  One version employed FBM 
and the other did not.  The aim was to compare two very similar systems for which it was 
reasonable to attribute any difference in performance directly to the use of or failure to 
use FBM. Three forms of evaluation were performed.  Students were asked to provide 
interactive evaluation of the system during its operation, they were asked to answer a 
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questionnaire after its use and their performance on an end of year examination was also 
monitored. 

Although the results in general favoured the use of FBM, few of the differences were 
statistically significant.  In particular, although the average examination results of the 
students that used the version of the system with FBM were higher than those that did 
not, this difference was not statistically significant. 

One of the key lessons to be learned from this study is that it is extremely difficult to 
evaluate a student modelling system. The experimental design did not directly test 
whether the modelling system constructed useful models.  Rather, it tested whether the 
manner in which the models were utilised provided benefit.  In such an experimental 
design a system that developed poor models could well fare better than a system that 
developed good models solely due to the manner in which those models were employed 
for tutoring. 

A further issue highlighted by this study is that it is exceedingly difficult to construct an 
accurate model in an active educational context as the primary aim of an educational 
interaction is to transform an agent’s approach to a domain.  Thus, the modelling system 
is always trying to strike a moving target. 

7.2 The Subtraction Modeller 

Due to the difficulties experienced when evaluating FBM in the context of the 
Unification Tutor, it was decided that the next form of evaluation should concentrate on 
the predictive accuracy of FBM in a non-tutoring context. 

Most previous evaluation of the power of cognitive modelling systems has taken the form 
of constructing a model from a set of examples and then evaluating that model’s capacity 
to explain those examples (for example, Brown and Burton, 1978).  Such evaluation 
provides no indication of the accuracy of the model.  It evaluates only the ability of the 
modelling formalism to create a model that is consistent with the given data.  By contrast, 
to evaluate predictive accuracy, models must be constructed from one set of examples 
and then evaluated in terms of their ability to predict new, previous ly unsighted, cases.  
The latter provides a far more rigorous fo rm of evaluation than the former. 

Evaluation of predictive accuracy should also be distinguished from the form of 
evaluation conducted by Corbett, Anderson and O’Brian (1993) in which the modelling 
system predicts the rate of error and evaluation compares the predicted and observed 
rates of error.  Evaluation of predictive accuracy involves predicting the precise actions to 
be performed and comparing the predicted and observed actions. 

To this end, a modelling system was developed for the domain of elementary subtraction.  
This is one of the ‘classic’ problems in student modelling (Attisha and Yazdani, 1984; 
Brown and Burton, 1978; Langley, Wogulis and Ohlsson, 1990; VanLehn, 1982; Young 
and O’Shea, 1981). 

This system was distinguished from previous FBM modelling systems in that it was not 
embedded in a computer-based tutoring environment.  Rather than providing tuition, it 
concentrated solely on the development and evaluation of models from tests.  In 
consequence, it was expected that there would be less difficulty in evaluating the 
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modelling system’s performance as there would be less likelihood of student’s 
approaches to the domain changing over the period of observation.  The tests were 
printed and the students worked with pen and paper.  Test preparation was decoupled 
from the modelling system so that different techniques for generating test problems could 
be employed.  The features presented in Appendix A were employed by the system. 

An initial study demonstrated average predictive accuracy of 92% when models 
constructed by the system were used to predict students’ answers to subsequent problems 
(Kuzmycz and Webb, 1992). 

This initial study raised a number of issues.  Five tests containing 32 questions each were 
administered to the students with gaps between tests of one or two weeks.  The students 
received ongoing tuition in the subject matter, and, in particular received tuition explicitly 
addressing problems with the subtraction skills revealed by the tests that they were 
receiving.  There was some evidence that this tuition was lowering the system’s 
predicative accuracy. 

Another issue was how consistent were the student’s in their subtraction performance.  
When they made mistakes, were these essentially random (slips); consistent in the 
contexts in which they occurred, but inconsistent in terms of responses (tinkering); or the 
result of a consistent buggy subtraction procedure? 

A final issue was that the tests were generated individually for each student using a 
procedure that produced tests designed to improve the student model.  In consequence, 
the tests contained problems for which the modelling system believed there was reason to 
suspect that the predictions might be poor.  It was impossible to determine what effect 
this might have had on the system’s predictive accuracy. 

8 FURTHER EVALUATION OF THE SUBTRACTION MODELLER 
A new study was conducted to explore these issues.  The number of subtraction problems 
presented per test was increased to 40.  This increased the number of consecutive 
solutions between which no tuition or extended time for procedure change was available. 

Checks were added for consistency of errors.  As these checks could affect student or 
system performance, two treatment groups were formed.  Students in the random 
treatment received two randomly generated tests.  Different tests were administered to 
each student.  For each student in the Error Repeat treatment, each question for which a 
student produced an error on the first test was repeated in the second test.  Randomly 
generated subtraction problems were then added to make a total of forty questions. 

73 nine to ten year old students from three schools were tested.  These were assigned to 
treatments by the following process.  First, all subjects were sorted by school and then 
within each school, into alphabetical order by surname.  The first subject was placed in 
the random treatment and proceeding down the list subsequent subjects were placed in 
alternate treatments. 

The second test was administered one week after the first. 

The random subtraction problems were generated as follows: 

minuend = (random() modulo 900) + 100 



Webb & Kuzmycz 1996,  Page 19 of 32 
FBM : A Methodology for Producing Coherent, Consistent, Dynamically Changing Models of Agent’s Competencies. 

subtrahend = random() modulo (minuend + 1) 

where random () is a pseudo random number generator that generates thirty-two bit 
unsigned integers. This resulted in random three digit positive integer subtraction 
problems such that the minuend contained three digits and the correct result was positive. 

Normal tuition proceeded between tests.  Thus, students’ approaches to the domain could 
be expected to alter between sessions. 

A student model was constructed for each student from analysis of the first test.  
Performance of the system was assessed by using this model to predict the exact digit that 
the student would provide for each column of each answer in the second test (as per 
Kuzmycz and Webb, 1992). 

Of the 8334 digits (forty answers each comprised of three digits provided by each of the 
73 students for the second test, less questions for which no answer was provided) the 
system made a prediction for 80% [Random: 80%, Error Repeat: 80%; one-tailed z-test: z 
= 0.003] of all digits.  Of these predictions, 92% [Random: 93%, Error Repeat: 92%; one-
tailed z-test: z = 1.0882] were correct.  However, the accuracy was cons iderably lower 
when only those 5% [Random: 5%, Error Repeat: 5%; one-tailed z-test: z = 1.4025] of 
answers for which the model predicted the student would provide an incorrect response 
are considered.  Of these, 54% [Random: 52%, Error Repeat: 56%; one-tailed z-test: z =  
-0.6002] were correct.  Of the 665 digits for which the students gave incorrect values, the 
system predicted a value in 62% [Random: 62%, Error Repeat: 61%; one-tailed z-test: z 
= 0.3238] of cases.  Of these predictions 30% [Random: 34%, Error Repeat: 27%; one-
tailed z-test: z = 1.6463] were correct.  A chart of these results is presented in Figure 3.  It 
is interesting to note that none of the differences in performance between the two groups 
are statistically significant at the 0.05 level. 

It is difficult to evaluate the quality of the predictions presented above without further 
information about the subtraction performance of the students involved.  At first hand it 
might seem extremely poor that the system’s predictions were correct in only 30% of the 
cases where a student made an error on the second round.  However, several points 
should be kept in mind when considering these results.  First, the system was predicting 
exactly which of ten possible digits the student would provide for a specific column.  
Thus, random performance would result in 10% predictive accuracy.  A model of correct 
subtraction skills would result in 0% accuracy (as all the answers were, by definition, not 
the answers provided by a correct model).  Thus, the difference between 10% accuracy 
and the observed accuracy can only be accounted for by a non-trivial model of the 
students’ buggy subtraction strategies. 

Further insight into the quality of the model is offered when one considers the 
performance of the students in the Error Repeat treatment on the subtraction problems for 
which they provided an incorrect answer in the first test.  Of the answers provided to 
these problems in the second test. 49% of the answers were correct, 26% were erroneous 
but different from the answer provided in the first test and only 25% of answers were 
identical to those provided in the first test.  These results are charted in Figure 4. 

Each of these categories might be taken as an approximate indication of the relative 
proportions of slips, tinkering and consistent bugs.  Errors that were corrected might be 
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largely slips.  Those that were changed might be tinkering associated with unresolved 
impasses (Brown and VanLehn, 1980).  Those that were repeated might result from 
consistent buggy sub traction strategies.  However, these indicative assumptions can only 
be considered very approximate.  10% of tinkering for which a random response was 
provided would result in each of corrected and repeated answers.  Corrected answers 
could also indicate bugs or impasses that have been repaired. Further,  a student could 
make slips when applying an erroneous strategy. 
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FIG. 3.  SUMMARY OF SYSTEM PREDICTIONS. 
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FIG. 4.  ANALYSIS OF ANSWERS PROVIDED HI THE SECOND TEST TO SUBTRACTION PROBLEMS FOR WHICH 
ERRORS WERE MADE IN THE FIST TEST.  

These results place a new light on the 34% accuracy in predicting student errors obtained 
for the Random treatment.  If only 25% of errors are consistent across tests and 
approximately 50% are corrected by the next test, this suggests a theoretical upper limit 
on the proportion of student errors that could be accurately predicted of approximately 
33%.  This would be obtained if the system made no predictions for the inconsistent 
errors, predicted that the student would provide correct answers for the once off errors 
and identified the consistent strategy for the consistent errors.  The system’s predictions 
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with respect to the once off errors would be incorrect (approximately 50% of the 
student’s answers), the predictions for the consistent errors would be correct 
(approximately 25% of answers) and no prediction would be made for the inconsistent 
errors (approximately 25% of answers). Thus, of the 75% of the student’s erroneous 
answers for which the system made a prediction, 33% would be correct (with respect to 
Figure 4, repeated as a proportion of repeated + corrected).  An accuracy of 34% is 
remarkably close to this approximate theoretical upper limit. 

The analysis of student error consistency also throws a different light on the accuracy of 
the system’s predictions that the student would make an error.  It might at first seem 
surprising that the accuracy of these predictions is lower for the Error Repeat condition 
than for the Random condition.  However, this result suggests the following tendencies.  
When a problem is encountered for which an error was previously observed, the system 
will tend to predict a repetition of that error.  In contrast, when making predictions for 
problems that are similar but distinct from problems for which the student has previously 
made an error, a repetition of the error will only be predicted when there is a consistent 
pattern underlying the student’s answers (a consistent bug).  To re-express this, the highly 
specific rules in the model tend to closely map the student’s exact observed actions.  In 
contrast, the more general rules tend to capture regularities in the student’s performance.  
If this is correct, the model can be expected to improve as more observations are made 
allowing the generation of ever more general rules. 

The consistency results suggest that a modelling system that was not distinguishing the 
consistent from the once-off and inconsistent errors would only obtain an accuracy of 
25% for its predictions that the student would make an error.  The system has clearly 
demonstrated that it is successfully abstracting consistent errors from the others by 
obtaining an accuracy of 54% in its predictions that the student would make an error. 

It is not clear to what extent the above results are influenced by the passage of time 
between the two tests.  Class room tuition proceeded between tests.  The student’s 
approaches to subtraction may also have evolved under any number of other influences 
over this period of time. 

8.1 Study 2 

To isolate these influences, a further study was conducted in which 16 nine to ten year 
old students were given two pre-generated tests of forty problems each with an interval 
between tests of no more than thirty minutes.  It was not possible to perform consistency 
checking in this study as it was not feasible within this time frame to generate new tests 
based on the answers from previous tests. 

Like the first study, models were formed for individual students by analysis of their 
performance on the first test.  For each student, the model constructed for that student 
from the first test was then used to predict the precise answers that would be provided for 
the problems in the second test. 

Of the 1917 digits (forty answers each comprised of three digits provided by each of the 
16 students, less one problem for which no answer was provided) the system made a 
prediction for 84% of all digits.  Of these predictions, 93% were correct.  The system 
predicted an erroneous response for 5% of answers.  Of these, 83% were correct (a 
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considerable increase over the results for the first study).  Of the 293 digits for which the 
students gave incorrect values, the system predicted a value in 168 cases.  Of these 
predictions, 44% (74) were correct, another large increase in accuracy.  When these 
results are considered in the context of the observed consistency rates from the previous 
study, the accuracy rates are very high.  As the system exceeds the 33% plausible upper 
limit suggested by the consistency results from Study 1, it seems likely that there is 
greater consistency in performance over a thirty minute interval than over a one week 
interval of time.  Figure 5 presents a comparison of these results with those obtained for 
the Random treatment in Study 1. 
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FIG. 5.  COMPARISON OF SYSTEM PREDICTIONS, IMMEDIATE RETEST VS. RANDOM TREATMENT FROM ONE 
WEEK RETEST STUDY. 

The results of the second study show that when the system is not hampered by the 
concept shifts that accompany a sizeable temporal gap between test applications, it is 
quite accurate in its ability to identify the students’ consistent erroneous solution patterns.  
It is also able to identify at least some parts of the problem space for which the student 
does not have a consistent solution pattern and to refrain from making predictions in this 
part of the solution space. 

9 GENERAL ISSUES 

9.1 Evidence of the Existence of Consistent Bugs 

The studies provide strong evidence that, while the majority of errors cannot be attributed 
to a buggy subtraction procedure, a non-trivial proportion can.  If a student provided 
random answers in contexts in which he or she did not have a correct procedure, only 
10% of errors would be repeated. A one-tailed z-test demonstrates that the observed 
repetition rate (25%) was significantly greater than 10% (z = l0.05; p < 0.005).  The 
students’ erroneous answers are not random. 

Further, the identification by the system of consistent bugs provides the only plausible 
explanation of the accuracy with which the system was able to both predict that the 
student would provide an erroneous answer and predict the answer provided when it was 
erroneous.  The accuracy of error predictions (54%) and the proportion of errors for 
which a predic tion was made for which that prediction was correct (30%) were both 
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significantly higher than the observed error repetition rate (25%) (one-tailed z-test ; z = 
12.09, p < 0.005 and z = 2.92, p < 0.005, respectively). 

The higher accuracy of the system in predicting student errors in the second study 
suggests that more consistent bugs were still present after thirty minutes than survived the 
week between tests in the first study.  This suggests that, at least in a class room context, 
many buggy procedures have a short life span.  Possible explanations of this effect 
include short-term memory of procedures developed by tinkering; self reflection leading 
to revision of erroneous procedures; and procedure change resulting from educational 
interactions. 

9.2 Computational Issues 

Aside from the predictive accuracy that FBM can provide, it also promises low 
computational overheads in comparison to process modelling.  The most recent version 
of the FBM modelling system has been designed to maximise computational efficiency.  
This software was developed during 1990 and used with the Unification Tutor and 
Subtraction Modeller in 1991 and 1992. 

The Unification Tutor uses thirty-seven context features, and eighteen action features.  
These have been described in detail by Webb, Cumming, Richards and Yum (1989). 
From thirty-seven context features it is possible to derive 2 37 potential sets of context 
features.  Through elimination of invalid and redundant sets of features this was reduced 
to just 1531 context feature sets.  Each of these can be associated with any of the eighteen 
action features, providing the system with a total of 27,558 potential associations.  As an 
agent model consists of a set of associations, the number of models that can be expressed 
is 2 27558. 

As explained above, the computational complexity of updating the model is of the order 
2 n , where n is the number of context features that describe the action for which the 
model is being updated.  (While the elimination of redundant feature sets reduces the 
total number of updates, it does not reduce them sufficiently to reduce the order of 
magnitude of the update task). 

Despite the large number of models that the system has the potential to form, efficient 
implementation provided more than adequate perfo rmance for interactive use.  During 
1993 access to the Unification Tutor was provided to third year Computer Science 
students on a Solbourne series 5/602 computer.  After each action that the student 
performed the model was updated and then used to control the system’s responses and 
subsequent actions.  The average real time taken to upgrade the model was just 1.4 
seconds.  The average CPU time was 1.2 seconds.  Such response times are clearly rapid 
enough to support interactive application. 

9.3 Relationship to Constraint -Based Modelling 

There are some similarities between FBM and Constraint-Based Modelling (Ohlsson, 
1992).  Constraint-Based Modelling monitors for constraints on an application domain 
that are violated by the agent.  Like FBM, Constraint-Based Modelling restricts itself to 
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consideration of observable aspects of the agent’s problem solving and does not form a 
process model of the student. 

However, the approaches differ in a number of significant respects.  First, whereas 
Constraint Based Modelling detects only aspects of an agent’s erroneous performance 
(the constraints that the agent violates) FBM also models mastery (both what the agent 
does correctly and incorrectly).  Further, unlike Constraint Based models, Feature Based 
models are executable.  They can be used to predict future performance. 

It is possible to combine both FBM and Constraint Based modelling. If constraints are 
cast as action features (a feature that is present when the constraint is violated), FBM will 
form a model that indicates not only which constraints are violated, but also the 
circumstances in which they are violated.  Such a model provides an executable form of 
Constraint Based model.  Many of the action features employed in the unification tutor 
can be thought of in this way (Webb, 1991). 

9.4 Viewpoint Independence 

Viewpoints raise a serious issue for cognitive modelling systems.  Wenger (1987) defines 
a viewpoint as an interpretive context.  A viewpoint can be defined in many dimensions 
including problem solving strategies, solution methods and conceptual frameworks. In 
many educational contexts, different students will have different viewpoints of the 
subject matter being examined.  For example, one widely documented difference between 
viewpoints in subtraction relates to the strategy for handling cases where the subtrahend 
in one column is greater than the minuend (Fawcett and Cummins, 1970).  One strategy 
adds one to the subtrahend in the column to the left.  Another subtracts one from the 
minuend. 

If a modelling system assumes one viewpoint and the agent being modelled adopts 
another, it will not be possible to construct an accurate model.  Further, if the content of a 
model based on an incorrect viewpoint is discussed with the agent (for example, if a 
tutoring system describes a bug that it believes a student exhibits), the outcome is likely 
to be undesirable (for example, the student will lose faith in the tutor). 

A system that seeks to model the internal operation of the cognitive system is forced to 
assume a viewpoint.  Those systems that address the issue of multiple viewpoints do so 
by supporting a set of alternative viewpoints.  When constructing a model, such a system 
must select one of the available viewpoints for that model (see, for example, Burton and 
Brown. 1982; Langley, Ohlsson and Sage, 1984).  Selection between multiple viewpoints 
adds greatly to the computational complexity of modelling task. The need to adopt a 
viewpoint adds an additional factor that may introduce error into a model. 

In contrast, FBM does not require the adoption of a viewpoint because the model relates 
contexts directly to actions without attempting to reconstruct the intervening cognitive 
processes.  For example, the Subtraction Modeller does not make any assumptions about 
whether a student borrows from the minuend or carries to the subtrahend. 

This is not to say that viewpoints can never cause difficulties for an FBM modelling 
system.  Different viewpoints may take account of different context features.  If the 
designer of a modelling system fails to anticipate the features relevant to a particular 
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viewpoint, then the system will not be able to produce accurate models for agents 
adopting that viewpoint.  For example, although most common approaches to subtraction 
consider columns from right-to-left, it is also possible, and in some respects less complex, 
to solve subtraction problems working from left-to-right.  For a student that solves 
subtraction problems from left-to-right, features of the columns to the left of the current 
column might be relevant to modelling perfo rmance.  The current implementation of the 
Subtraction Modeller considers only features of columns to the right of the current 
column, and thus is unable to adequately model a student with a left-to-right solution 
strategy. 

While the existence of multiple viewpoints can cause difficulties for an FBM system, the 
magnitude of the problem is much smaller than for process modelling techniques.  A 
single set of context features may be adequate to describe competency in multiple 
viewpoints.  An FBM system does not need to select a viewpoint in order to produce a 
model. 

9.5 Multiple Strategies 

There is considerable evidence that students, in at least some problem domains, employ 
many different problem solving strategies, selecting between strategies on a task-by-task 
basis (Ohlsson and Bee, 1991; Payne and Squibb, 1990; Siegler, 1989; VanLehn, 1982). 
This appears to present a major difficulty to the construction of process models, which 
often rely on the assumption that a single strategy can capture the student’s competency. 

Just as FBM is not reliant upon identifying a single viewpoint for a student, it is not 
reliant upon identifying a single problem solution strategy.  Rather, an FBM model, as a 
model of competency, can as adequately model competency arising from the consistent 
use of a set of strategies as it can model competency arising from the consistent use of a 
single strategy. 

9.6 Defensibility 

Martin and VanLehn (1993) raise the issue of the potential need to defend the models 
produced by a modelling system.  For example, defensibility could become very 
important if the models are to be used for educational assessment. Martin and VanLehn 
even raise the spectre of the validity of a model being the subject of legal action. 

To Martin and VanLehn, the essential requirement for a model to be defensible appears 
to be that the process by which it is generated is deterministic and statistically sound.   
This rules out the use of heuristics in the construction of the model. 

RBM satisfies this criterion.   The construction of a model is not heuristic, is based on 
simple statistics and thus is readily defensible. 

9.7 Interpretability 

Another dimension along which modelling systems may be evaluated is that of ease of 
interpretation.  Such a criterion relates to the ease with which users of the system (in an 
educational context, both teachers and students) can comprehend the models that the 
system constructs. 
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FBM models are relatively straight forward to interpret.  They can be considered as a set 
of independent production rules (each association is equivalent to a single production 
rule).  Each association can be considered in isolation.  The meaning of each association 
is straight forward.  An association means that, in general, when the nominated context 
features are present the agent acts in the manner indicated by the action feature. 

Experience with the Unification Tutor has demonstrated that it is straight forward to 
generate natural language descriptions of associations and that students have little 
difficulty in interpreting those descriptions. 

10 LIMITATIONS AND FURTHER RESEARCH 
FBM ignores internal cognitive states.  In the real world, identical contexts may produce 
different actions if the cognitive system is in a different state.  For example, when solving 
subtraction problems, if an agent is working from right to left, the solution of one column 
will depend upon internal cognitive states (such as remembering carry) resulting from the 
analysis of previous columns.  FBEM is forced to assume that the only relevant cognitive 
states pertain to the agent’s understanding of the subject domain and to the features of the 
context with which the system is presented.  It is important that FBM be applied at a level 
of granularity at which this assumption is realistic.  Thus, for example, it is essential that 
a modelling system for subtraction that examines individual columns should consider 
other columns of the current problem as part of the context for each action. 

The use of categorical attribute-value machine learning techniques is restrictive. For 
example, it is cumbersome to describe with categorical attributes whether borrow from 
the previous column is appropriate for the current column (unless a new high level 
attribute is defined for this purpose).  There is scope for the application of more powerful 
machine learning paradigms, such as the induction of logic programs (Muggleton and 
Feng, 1990; Quinlan. 1991), to the induction of models that describe the relationships 
between the inputs and outputs to the cognitive system. 

Within the attribute-value machine learning paradigm, Kuzmycz (in preparation) is 
seeking to extend the power of FBM by supporting constructive induction (Bloedorn and 
Michalski, 1991) whereby new features are developed and employed as needed. 

FBM employs a number of user defined parameters, namely, min_evidence, 
min_accuracy and the data discounting rate.  Values of 3, 0.8 and 0.9, respectively, have 
been employed for these parameters throughout most of the evolution of FBM.  These 
values were derived through intuition and limited info rmal experimentation.  It would be 
valuable to perform formal evaluation of the effects of different values for these 
parameters in various contexts.  With a view to establishing guidelines for selecting 
appropriate values for specific applications it would be even better if a sound theoretical 
basis could be developed for selecting appropriate values for these parameters. 

There is a need for further consideration and evaluation of the potential educational 
applications for FBM.  While Kuzmycz and Webb (1992) have demonstrated that FBM is 
able to construct models that capture aspects of an agent’s approach to a domain and 
Webb, Cumming, Richards and Yum (1990) have provided informal evidence of 
educational benefit arising from the use of FBM, it is yet to be formally demonstrated 
that such a model can be harnessed for educational benefit.  The experience of Webb, 
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Cumming, Richards and Yum (1990) illustrates the difficulties inherent in evaluating the 
educational benefit of a modelling system.  However, this in no way diminishes the 
importance of performing such experimentation. 

11 SUMMARY 
FBM employs attribute-value machine learning principles to produce a model of the 
cognitive system that captures the relationships between the inputs and outputs to that 
system.  Such a model may be considered to be a model of an agent’s competency but not 
as a model of the mechanisms that produce that competency.  This approach to cognitive 
modelling prevents the modelling system from having to reason about chains of 
hypothesised and unobservable events that are internal to the cognitive system.  This 
greatly reduces the complexity of the modelling task.  It minimises the amount of 
empirical research into student errors that is required before a modelling system can be 
produced.  It also reduces the degree to which the problems of viewpoints and the use of 
multiple strategies affect the validity of the models produced. 

FBM has been implemented in a wide variety of domains encompassing simple 
classification (word classes), manual skills (keyboard scale tuition) and problem solving 
(unification and subtraction). 

Classroom use of the Unification Tutor has demonstrated that the methodology is capable 
of producing complex models within a time frame that supports interactive application.  
Formal evaluation of the Subtraction Modeller has demonstrated that the approach is able 
to develop models capable of predicting in excess of 90% of an agent’s actions in a real 
world classroom environment despite the presence of noise and of concept shifts resulting 
from ongoing tuition.  Further, the system demonstrated the ability to identify bugs-
consistent erroneous approaches to subtraction.  In short, FBM is an approach to 
modelling an agents’ competencies that has demonstrated the capacity to produce 
coherent, consistent models with high predictive accuracy. 
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Appendix 

FEATURES EMPLOYED BY THE SUBTRACTION MODELLER 
 
The following is a complete list of the features used by the Subtraction Modeller in the 
studies presented above.  An example illustration is provided for each feature.  In this 
illustration, the column to which the feature refers is outlined by a box.  Digits for which 
the value is not relevant are represented by a question mark.  The context features are 
grouped by feature choice.  All action features belong to binary feature choices.  Only 
one value is presented for each of these feature choices.  Thus, for each listed action 
feature there is a corresponding negative action feature. 
CONTEXT PEATURES  

 

Minuend>Subtrahend    ? 2 ? 
- ? 1 ? 

Minuend<Subtrahend    ? 1 ? 
- ? 2 ? 

Minuend=Subtrahend    ? 2 ? 
- ? 2 ? 

Minuend>Subtrahend in the column to the right    ? ? 2 
- ? ? 1 

Minuend<Subtrahend in the column to the right    ? ? 1 
- ? ? 2 

Minuend=Subtrahend in the column to the right    ? ? 2 
- ? ? 2 

Minuend>Subtrahend two column to the right    ? ? 2 
-  ? ? 1 

Minuend<Subtrahend two column to the right    ? ? 1 
-  ? ? 2 

Minuend=Subtrahend two column to the right    ? ? 2 
-  ? ? 2 

Minuend is zero    ? 0 ? 
- ? ? ? 

Minuend is not zero    ? 1 ? 
- ? ? ? 

Minuend is zero in the column to the left     0 ? ? 
- ? ? ? 

Minuend is not zero in the column to the left     2 ? ? 
- ? ? ? 

Minuend is zero in the column to the right    ? ? 0 
- ? ? ? 

Minuend is not zero in the column to the right    ? ? 2 
- ? ? ? 
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Minuend is one in the column to the left     1 ? ? 

- ? ? ? 

Minuend is not one in the column to the left     2 ? ? 
- ? ? ? 

Subtrahend is zero    ? ? ? 
- ? 0 ? 

Subtrahend is not zero    ? ? ? 
- ? 2 ? 

Subtrahend is nine    ? ? ? 
- ? 9 ? 

Subtrahend is not nine    ? ? ? 
- ? 2 ? 

Subtrahend is nine in the column to the right    ? ? ? 
- ? ? 9 

Subtrahend is not nine in the column to the right    ? ? ? 
- ? ? 2 

Subtrahend is blank    ? ? ? 
-    ? ? 

Subtrahend is not blank    ? ? ? 
- ? 2 ? 

This column is right-most    ? ? ? 
- ? ? ? 

This column is left-most    ? ? ? 
-  ? ? ? 

This column is neither left nor right-most    ? ? ? 
- ? ? ? 

 
ACTION FEATURES 

 

Result = Minuend - Subtrahend     ? 2 ? 
 -  ? 1 ? 
=  ? 1 ? 

Result = Minuend - Subtrahend - 1     ? 2 ? 
 -  ? 1 ? 
=  ? 0 ? 

Result = Minuend - Subtrahend + 10     ? 2 ? 
 -  ? 3 ? 
=  ? 9 ? 

Result = Minuend - Subtrahend + 9     ? 2 ? 
 -  ? 3 ? 
=  ? 8 ? 

Result = Minuend     ? 2 ? 
 -  ? ? ? 
=  ? 2 ? 
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Result = Subtrahend     ? ? ? 

 -  ? 1 ? 
=  ? 1 ? 

Result = Zero     ? ? ? 
 -  ? ? ? 
=  ? 0 ? 

Result = Minuend - Subtrahend - 2     ? 4 ? 
 -  ? 1 ? 
=  ? 1 ? 

Result = Minuend - Subtrahend + 8     ? 2 ? 
 -  ? 1 ? 
=  ? 9 ? 

Result = Subtrahend - Minuend     ? 1 ? 
 -  ? 2 ? 
=  ? 1 ? 

Result is correct     ? 2 ? 
 -  ? 1 ? 
=  ? 1 ? 

Result is incorrect     ? 2 ? 
 -  ? 1 ? 
=  ? 2 ? 

 

 




