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Abstract. Cost-sensitive specialization is a generic technique for mis-
classification cost sensitive induction. This technique involves specializ-
ing aspects of a classifier associated with high misclassification costs and
generalizing those associated with low misclassification costs. It is widely
applicable and simple to implement. It could be used to augment the ef-
fect of standard cost-sensitive induction techniques. It should directly
extend to test application cost sensitive induction tasks. Experimental
evaluation demonstrates consistent positive effects over a range of mis-
classification cost sensitive learning tasks.

1 Introduction

Most research into machine learning has considered all misclassifications to have
equivalent cost. However, for many applications this assumption will not be
justified. For example, when diagnosing diseases, the cost of failing to diagnose
some diseases will be low, because the symptoms will eventually become more
pronounced, enabling suitable diagnosis. In contrast, failure to diagnose other
diseases will have high cost, as irreparable damage will occur before adequate
diagnosis is eventually obtained. Similarly, mis-diagnosis of a disease will in some
cases have low cost—the patient receives unnecessary treatment with few side-
effects; but in others will have high cost, such as undesirable side-effects.

Previous approaches to misclassification-cost sensitive induction can be con-
sidered to fall into four main categories. The first of these divides the training
data into subsets on which inductive experiments are performed in order to infer
a learning bias that will minimize misclassification costs [11, 14]. The selected
bias is then employed to learn a classifier from the full set of training data.

The better safe than sorry strategy [10] considers for high misclassification
cost classes only rules with high empirical support (that cover large numbers of
training examples) while rules with lower empirical support are considered for
low misclassification cost classes. The classification rules are learnt independently
from one another. However, on application they are considered in order from
lowest to highest misclassification cost.

A number of approaches alter the empirical bias of the learning system [1,
2, 5, 8, 9]. An empirical bias is a learning bias that selects between hypotheses
on the basis of how they perform on the training data. This is modified so as to
provide different weights to different types of misclassification.



The final category employs background knowledge to provide biases toward
suitable hypotheses [3].

This paper presents the cost-sensitive specialization strategy. This strategy
was inspired by the theorem of decreasing inductive power [15]. This theorem
predicts increases in the proportion of false positives to true positives on previ-
ously unseen cases when a classifier is generalized without altering empirical sup-
port. (The empirical support for a classifier is evidence based on its performance
on the training data.) In the context of learning with variable misclassification
costs, this theorem suggests that elements of a classifier associated with high
misclassification costs should be specialized (so as to minimize the proportion
of false positives to true positives). In the context of classifiers that cover all of
the instance space (classifiers that never respond I don’t know), specializing one
element of the classifier requires generalization of another. As the generalized ele-
ments are expected to have higher proportions of false positive to true positives,
they should be selected from those with low misclassification cost. (The mis-
classification cost of a class is taken herein, except where specifically indicated
otherwise, to mean false positive misclassification cost—the cost of incorrectly
assigning the nominated class to an object.)

In the context of learning decision trees, this translates into a strategy of gen-
eralizing leaves for classes with low misclassification costs and specializing leaves
for classes with high misclassification costs. In the context of learning decision
rules, this translates into generalizing rules for classes with low misclassification
costs and specializing rules for classes with high misclassification costs.

However, this general strategy can be justified without recourse to the the-
orem of decreasing inductive power. If there are cases where, without altering
the expected error rate, the leaves or rules associated with high misclassification
costs can be specialized in favor of leaves or rules with lower misclassification
costs then such a change will decrease expected total misclassification costs as
there can be expected to be a transfer from errors with high cost to those with
low cost without any change in the numbers of those errors.

This paper presents a theoretical analysis of the cost-sensitive specialization
strategy and evaluates a modification to the C4.5 [12] decision tree induction
system that supports cost-sensitive specialization.

2 Cost sensitive specialization

Consider a region of the instance space to which one is considering assigning a
single class in an n class classification learning task. This will be the case with the
region associated with a single classification rule or decision tree leaf. Let pi =
the expected proportion of objects belonging to class i that will be encountered
in this region of the instance space. Let cij = the expected cost of classifying an
object belonging to class i as belonging to class j. We assume that ∀i : cii = 0
(correct classifications have no cost).

Let ti be the total expected misclassification cost if the region is assigned
class i. ti =

∑n
j=1 pj .cij . The empirical bias approaches to misclassification cost



sensitive induction [1, 2, 5, 8, 9] seek to minimize ti but do not consider areas of
the instance space that are occupied by no training objects. These are treated
as if they make no contribution to the total expected misclassification cost.

Consider the case where there is no evidence relating to the distribution of
classes within a region. In such a case one should not distinguish between classes
with respect to the expected proportion of objects for that class. It follows that
∀i, j : pi = pj . In this case pi can be considered to be a constant. From this it
follows that ti will be minimized for the class for which

∑n
j=1 cij is minimized.

In other words, when one has no prior knowledge about the distribution of
classes within a region of the instance space, expected misclassification costs
will be minimized by assigning to that region the class for which the average of
misclassifications to that class is minimized.

So far we have considered the case of a complex misclassification cost func-
tion, where the misclassification cost is a function of the correct class for an
object and of the class assigned to that object. Two less complex forms of cost
function are worth considering. A false positive misclassification cost function
is one where misclassification costs are a function of the class assigned to an
object—∀i, j, k : i 6= j ∧ i 6= k → cji = cki.. A false negative misclassification
cost function is one where misclassification costs are a function of the class of
an object—∀i, j, k : i 6= j ∧ i 6= k → cij = cik..

For a false positive misclassification cost function,
∑n

j=1 cij is ordered on
the relative false positive misclassification cost for a class. For a false negative
misclassification cost function

∑n
j=1 cij is ordered in the reverse of the order of

the false negative misclassification cost for a class.
To summarize, in general one should seek to minimize the expected misclas-

sification cost function. Where there is no evidence as to the relative frequencies
of alternative classes for a region of the instance space, expected misclassification
costs are minimized by selecting the class for which the mean expected cost of
misclassifications is lowest. For false positive misclassification cost functions this
is the class with the lowest false positive misclassification cost. For false negative
misclassification cost functions this is the class with the highest false negative
misclassification cost.

Where one has available an empirical bias that is able to minimize expected
errors, the above analysis suggests that between alternatives that maximize that
empirical bias, one should favor classifiers for which classes with high mean ex-
pected misclassification cost are as specific as possible and classes with low mean
expected misclassification costs are as general as possible. This is because if the
empirical bias gives equal weighting to the two classifiers, on the assumption
that it agrees with respect to the expected error rates for regions of the instance
space for which the two classifiers agree, then it does not in general distinguish
between the expected error rates for the classes involved in regions of the in-
stance space which are associated with different classes by the two classifiers. As
the above analysis shows, associating such regions with classes with low mean
expected misclassification costs minimizes total expected misclassification costs.
Cost-sensitive specialization is a bias toward specializing aspects of classifiers



associated with high expected misclassification cost where such specialization
is neutral with respect to the other learning biases. Such specialization has the
associated effect of generalizing aspects of classifiers that are associated with low
expected misclassification cost.

3 C4.5CS

C4.5CS is a decision tree post-processor that is used in conjunction with C4.5.
This post-processor implements cost-sensitive specialization by seeking to spe-
cialize leaves for high misclassification cost classes in favor of leaves for low
misclassification cost classes. The current implementation of C4.5CS assumes a
false positive misclassification cost function.

The decision trees learnt by C4.5 have different forms of decision nodes for
discrete and continuous attributes. For continuous attributes C4.5 selects a cut
value and generates two branches. A test is generated of the form v ≤ cut.
Objects for which this test succeeds pass down one branch while those for which
it fails pass down the other.

With respect to branches on continuous attributes that lead directly to leaves,
it is straight forward to specialize the leaf for the higher misclassification cost
class. This is achieved by moving the cut to the most extreme value that special-
izes the branch for the higher misclassification cost class. C4.5 sets the cut at the
greatest value for an object from the training set that passes down the ≤ branch.
It is therefore not possible to further specialize the ≤ branch without affecting
the empirical support for a classifier. The method employed herein to specialize
the > branch is to set the cut to the least value of a training object that passes
down that branch and to alter the test to <. This ensures the greatest possible
specialization without affecting the empirical support for the classifier.

However, not all branches lead directly to leaves. Relaxing the condition
attached to a branch will generalize all leaves below that branch. This will in
general only be desirable when all leaves below that branch are associated with
classes with costs no greater than the lowest misclassification cost of a class
for a leaf below the alternative branch. To this end, a split on a continuous
attribute with ≤ branch l and > branch g is changed to a < test if and only if
max (cost(x) : leaf(x) ∧ below(l, x)) ≤ min (cost(y) : leaf(y) ∧ below(g, y))
where leaf(x) is true if and only if node x is a leaf; below(x, y) is true if and only
if node y is below branch x; and cost(x) = the false positive misclassification
cost associated with the class for leaf node x.

For discrete attributes C4.5, by default, generates a branch for each value.
(An optional technique for grouping multiple values to a single branch is not
considered herein but could be treated by separating out values that apply to
no training objects.) It is not possible to directly generalize or specialize any of
these branches by altering the test. However, when no objects from the training
set follow a branch, C4.5 constructs a leaf node for the class that dominates the
node from which the branch descends. As such an assignment has only weak
empirical support, it might be possible to change the class for such a leaf with



Table 1. UCI data sets used for experimentation

No. of % cont- No. of No. of
Name Attrs. inuous objects classes
audiology 69 0 226 24
autos 25 44 205 7
breast cancer Slovenia 9 4 286 2
breast cancer Wisconsin 9 100 699 2
Cleveland heart disease 13 46 303 2
credit rating 15 40 690 2
echocardiogram 6 83 74 2
glass 9 100 214 3
hepatitis 19 32 155 2
house votes 84 16 0 435 2
Hungarian heart disease 13 46 295 2
hypothyroid 29 24 3772 4
iris 4 100 150 3
lymphography 18 38 148 4
new thyroid 5 100 215 3
Pima indians diabetes 8 100 768 2
primary tumor 17 12 339 22
promoters 57 0 106 2
soybean large 35 0 307 19
tic-tac-toe 9 0 958 2

little risk of increasing expected errors. Changing the class to that with the
lowest misclassification cost leads to generalizing the proportion of the instance
space associated with that class and specializing that associated with higher
misclassification cost classes.

C4.5 develops two types of decision tree—pruned and unpruned trees. C4.5CS
post-processes both types of tree. It identifies and performs all of the types of
generalization described above for each tree to which it is applied.

4 Experimental evaluation

To evaluate the efficacy of this approach, C4.5CS was applied to the twenty data
sets from the UCI repository of machine learning databases described in Table 1.
For each data set this table lists the number of attributes by which each object is
described, the proportion of these that are continuous, the number of objects in
the data set and the number of classes into which these objects are divided. These
data sets were selected with the intention of exploring as wide a cross-section of
attribute-value machine learning tasks as possible. In the absence of true cost
functions for a wide range of learning tasks and in the interest of exploring as
wide a range of different types of misclassification cost sensitive task as possible,
a range of different false positive misclassification cost functions were randomly
generated for each data set.

For each data set, 100 runs were performed. For each run—



Table 2. Errors

Unpruned trees Pruned trees

Data Set C4.5 C4.5CS p Ratio C4.5 C4.5CS p Ratio

audiology 11.3±0.3 11.8±0.3 0.000 1.06 10.7±0.3 11.1±0.3 0.000 1.04
autos 10.6±0.4 10.8±0.4 0.032 1.02 10.8±0.4 11.0±0.4 0.022 1.02
breast cancer Slov. 21.6±0.4 21.6±0.4 0.708 1.00 17.1±0.4 17.1±0.4 0.530 1.00
breast cancer Wisc. 8.3±0.2 8.4±0.2 0.132 1.01 7.2±0.2 7.2±0.2 1.000 1.00
Cleveland heart dis. 16.6±0.3 16.6±0.3 0.744 1.00 16.1±0.3 16.1±0.3 0.770 1.00
credit rating 25.0±0.5 25.3±0.5 0.011 1.02 21.4±0.4 21.5±0.4 0.193 1.01
echocardiogram 4.0±0.2 3.8±0.2 0.013 0.97 3.8±0.1 3.6±0.1 0.000 0.96
glass 13.7±0.3 13.8±0.3 0.734 1.00 13.8±0.3 13.8±0.3 1.000 1.00
hepatitis 6.9±0.2 6.8±0.2 0.028 0.99 6.5±0.2 6.4±0.2 0.032 0.98
Hung. heart dis. 14.0±0.3 13.9±0.3 0.140 0.99 12.9±0.3 12.8±0.3 0.195 0.99
house votes 84 5.0±0.2 5.1±0.2 0.074 1.04 4.5±0.2 4.6±0.2 0.198 1.01
hypothyroid 4.1±0.2 4.1±0.2 1.000 1.01 4.1±0.2 4.1±0.2 0.083 1.01
iris 1.5±0.1 1.5±0.1 0.368 1.00 1.5±0.1 1.5±0.1 0.250 1.00
lymphography 8.1±0.3 8.1±0.3 1.000 1.00 8.0±0.3 8.0±0.3 0.158 1.00
new thyroid 4.0±0.2 4.0±0.2 0.549 1.03 4.1±0.2 4.1±0.2 0.558 1.03
Pima indians diab. 46.2±0.5 46.0±0.5 0.107 1.00 43.0±0.5 42.9±0.5 0.235 1.00
promoters 5.4±0.2 5.5±0.2 0.566 1.03 5.4±0.2 5.4±0.2 0.664 1.03
primary tumor 40.8±0.5 40.8±0.5 0.045 1.00 40.7±0.4 40.7±0.4 0.083 1.00
soybean large 15.5±0.5 16.0±0.5 0.000 1.03 15.3±0.6 15.3±0.6 0.259 1.03
tic-tac-toe 29.6±0.7 29.5±0.7 0.101 0.99 31.9±0.7 31.7±0.7 0.030 0.99

Mean ratio 1.01 1.00

1. the data was randomly divided into training (80%) and evaluation (remain-
ing 20%) sets.

2. misclassification costs were assigned to classes as follows.
(a) The classes were randomly ordered from 0 to n− 1.
(b) Each class was assigned the misclassification cost i. 99

n−1 + 1 (truncated
to the closest integer) where i is the rank order of the class.

This ensured that the minimum cost was 1, the maximum cost was 100 and
that the remaining costs were evenly spaced between those extremes.

3. Both C4.5 and C4.5CS were applied to learn decision trees from the training
set. Both pruned and unpruned decision trees were learnt by C4.5 and post-
processed by C4.5CS.

4. All decision trees were applied to the evaluation set and the total number of
errors and total cost of misclassifications calculated.

Table 2 presents the means and standard errors for the numbers of errors
per run in these experiments. For each of unpruned and pruned trees this table
presents the mean and standard error of each treatment followed by the result
of a two-tailed t-test comparing these means and the ratio of total numbers of
errors (C4.5CS/C4.5). The bottom row presents the mean ratio of numbers of
errors for C4.5CS against C4.5. This is the mean of the ratio for each run.

Post-processing had a variable effect on the total error rate. While C4.5CS
is seeking to perform specializations that will not affect total error rate, for



Table 3. Costs

Unpruned trees Pruned trees

Data Set C4.5 C4.5CS p Ratio C4.5 C4.5CS p Ratio

audiology 560±18.7 507±18.8 0.000 0.90 536±17.6 489±17.4 0.000 0.91
autos 543±31.3 519±31.6 0.000 0.95 552±29.9 539±30.1 0.001 0.97
breast c. Slov. 1139±46.5 1124±45.6 0.001 0.99 925±58.8 923±58.3 0.330 1.00
breast c. Wisc. 408±21.1 407±21.3 0.350 0.99 329±18.1 329±18.1 1.000 1.00
Cleve. heart dis. 836±30.1 808±29.0 0.000 0.97 800±28.3 781±27.7 0.000 0.98
credit rating 1210±33.6 1155±33.2 0.000 0.96 1041±32.9 1014±32.1 0.000 0.98
echocardiogram 205±13.9 184±13.9 0.000 0.91 188±11.4 169±11.3 0.000 0.91
glass 665±28.2 641±27.5 0.000 0.96 658±28.4 633±27.2 0.000 0.96
hepatitis 330±17.7 317±17.6 0.000 0.95 320±18.3 310±19.0 0.004 0.96
Hung. heart dis. 727±31.9 706±31.8 0.000 0.97 668±33.4 652±33.0 0.000 0.98
house votes 84 261±18.6 251±17.6 0.013 0.98 227±19.9 222±20.0 0.028 0.99
hypothyroid 191±12.8 189±12.9 0.265 1.00 183±12.3 183±12.5 0.975 1.00
iris 79±7.8 78±7.7 0.338 1.00 78±7.6 77±7.4 0.341 1.00
lymphography 359±21.6 346±21.0 0.000 0.97 350±21.6 343±21.4 0.005 0.98
new thyroid 186±16.4 176±16.5 0.011 1.00 190±16.9 179±16.7 0.010 1.00
Pima ind. diab. 2353±48.6 2266±48.4 0.000 0.96 2221±50.1 2154±50.7 0.000 0.97
promoters 274±17.0 236±15.3 0.000 0.90 264±17.3 236±16.1 0.000 0.91
primary tumor 1971±38.0 1969±38.0 0.112 1.00 1956±39.6 1956±39.6 0.083 1.00
soybean large 798±34.2 741±31.4 0.000 0.94 784±41.8 757±39.2 0.037 0.97
tic-tac-toe 1618±80.4 1558±80.5 0.000 0.96 1713±98.9 1673±99.4 0.000 0.97

Mean ratio 0.96 0.97

unpruned trees it is averaging 1% more errors than C4.5. For pruned trees the
overall difference in error rates is negligible. On a treatment by treatment basis
the effect varied from an increase in total errors of 6% for the audio data set
with unpruned trees to a decrease in total errors of 4% for the echocardiogram
data set with pruned trees.

It appears that the effect of C4.5CS is smaller for pruned trees than unpruned
trees. Of the 592 occasions on which the number of errors for a C4.5 unpruned
tree differed from the C4.5CS unpruned tree, in 219 cases there was no difference
between the corresponding pruned trees. In comparison, of the 406 occasions
on which the number of errors for a C4.5 pruned tree differed from the C4.5CS
pruned tree, in only 33 did the unpruned trees not also differ. A binomial sign test
indicates that this difference in numbers of unique effects is significant (p=0.000).
It is hardly surprising that C4.5CS has more frequent effect for unpruned than for
pruned trees as pruned trees have fewer nodes and hence fewer opportunities for
C4.5CS to make a change. In particular, pruning frequently deletes the leaves
associated with no training items. These leaves provide the only mechanism
relating to discrete attributes that C4.5CS can apply.

Table 3 presents the means and standard errors for the misclassification costs
per run. This table follows the format of Table 2.

Despite the slight increase in errors apparent in Table 2, Table 3 shows that
there is a marked decrease in misclassification costs. For 37 of the 40 treatments
there is a decrease in mean misclassification costs. The only exceptions are the



Wisconsin breast cancer data set with pruned trees for which both systems had
identical costs for all 100 runs; the hypothyroid data set for pruned trees for
which the mean costs to 2 decimal places are C4.5: 183.58 and C4.5CS: 183.61
and the primary tumor data set for pruned trees for which the mean costs to 2
decimal places are C4.5: 1956.43 and C4.5CS: 1956.46. These small differences
are not statistically significant. On average, misclassification costs were reduced
by 4% for unpruned trees and by 3% for pruned trees. Decreases of 8% or more
occurred for the audio, echocardiogram and promoters data sets for both pruned
and unpruned trees. In the case of unpruned trees for the promoters data set,
the decrease was 10%.

The effect appears smaller for pruned trees than unpruned. Of the 725 oc-
casions on which the total costs differ for the unpruned C4.5 and C4.5CS trees,
on 236 occasions there is no difference between the corresponding pruned trees.
Of the 511 occasions on which the pruned C4.5 and C4.5CS trees differ, the
corresponding unpruned trees fail to differ in only 22. A binomial sign test in-
dicates that this difference in numbers of unique effects is significant (p=0.000).
This can be explained by the decrease in opportunities for post-processing with
pruned trees.

Table 4 presents the results of binomial sign tests comparing the numbers of
times each system obtained a higher value than the other for each measure. With
respect to unpruned decision trees, C4.5 had fewer errors significantly more often
than did C4.5CS. With respect to pruned decision trees, C4.5 had fewer errors
more often than did C4.5CS, but this difference was not statistically significant.
For both pruned and unpruned trees, C4.5CS had lower misclassification costs
significantly more often than did C4.5.

Table 4. Summary comparison

Measure C4.5 > C4.5CS C4.5 < C4.5CS p

Unpruned Errors 251 341 0.0001
Pruned Errors 196 210 0.2594
Unpruned Costs 472 253 0.0000
Pruned Costs 332 179 0.0000

These experimental results demonstrate that C4.5CS can significantly re-
duce misclassification costs for a wide range of learning tasks. The numbers of
errors that were observed demonstrate that this effect cannot be attributed to a
reduction in the numbers of errors.

5 Extension to complex cost functions

C4.5CS is restricted in application to situations in which the relative misclassi-
fication costs of the classes can be ordered. Note that it is not dependent upon



the assignment of accurate misclassification costs or ratios between costs. The
only information that it utilizes is the order of these costs.

It can be utilized with orderings either by the costs of false positives or of false
negatives. While the above work has considered misclassification costs to relate
to false positives (the cost is a function of the class that is incorrectly assigned
to the object) the techniques are equally applicable to situations where the
misclassification costs relate to the costs of false negatives (the cost is a function
of the class to which the misclassified object belongs). In the latter context,
classes with high misclassification costs should be generalized (to minimize a
chance of a false negative) and those with low misclassification costs should be
specialized.

C4.5CS could be extended to more complex cost functions by considering
at each branch on a continuous attribute the greatest cost of misclassifying an
object of any class as belonging to a class represented by a leaf on the ≤ branch
and comparing this to the minimum cost of misclassifying an object of any class
as belonging to a class represented by a leaf on the > branch.

A default class i for leaves that cover no objects in the training set could be
selected on the basis of minimizing the mean cost of incorrectly classifying an
object of another class as belonging to i.

While the modifications made by C4.5CS depend upon the relative ordering
of misclassification costs but not their relative magnitude, the size of the effect
of its application will depend upon the magnitude. The greater the difference in
magnitude of misclassification costs for different classes the greater the expected
reduction in total misclassification costs resulting from its application.

6 Increasing the degree of specialization

The cost-sensitive specialization strategy espoused by this paper involves the
specialization of aspects of a classifier relating to high false positive or low false
negative misclassifications and generalization of those relating to low false nega-
tive or high false positive misclassifications where those specialization and gener-
alization actions have low impact on expected accuracy. This has been evaluated
in the context of two specialization/generalization operators for C4.5 decision
trees, one relating to tests on continuous attributes and the other to tests on
discrete attributes.

For these operators the degree of reduction in misclassification costs is small
but consistent. Where greater reductions are sought, more powerful specializa-
tion/generalization operators should be employed. Candidate operators for de-
cision trees include the generation of characteristic leaves [4] and cuts based on
evidence for neighboring regions of the instance space [16]. A variety of poten-
tially useful specialization and generalization operators for classification rules
have been described elsewhere [15].

This research deliberately avoided the use of these more powerful operators
as they are likely to also improve predictive accuracy. Operators that did not
improve predictive accuracy were used in order to provide clear cut support for



the predicted effect without the possibility that costs were reduced simply by a
reduction in errors.

7 Relationship to previous approaches

Unlike approaches based on altering the empirical bias, the cost-sensitive spe-
cialization approach does not require accurate misclassification costs. All that
is required is a relative ordering of the misclassification costs. Nor does cost-
sensitive specialization require additional background knowledge.

It is distinguished from approaches that use induction to select learning biases
by avoiding the problem of induction and the subsequent risk that the inferred
bias will turn out to be inappropriate.

Cost-sensitive specialization can be seen as a more specific statement of the
better safe than sorry policy. In this light, the two types of mechanism that
Provost and Buchanan [10] propose can be seen as techniques for specializing
high misclassification cost rules and generalizing low misclassification cost rules.
Relative ordering of rules does this by implicit conjunction of the conditions for
subsequent rules with negations of the conditions for preceding rules. Allowing
rules with lower empirical support to be developed for low misclassification cost
classes has the effect of generalizing the total classifier with respect to those
classes.

Cost-sensitive specialization could be applied in conjunction with alterna-
tive approaches to misclassification cost sensitive learning in the expectation of
further boosting the effect of those approaches.

8 Other types of classification cost

While cost sensitive specialization has been presented as a means of minimizing
misclassification costs, the same technique could also be employed to minimize
other costs such as the costs of applying tests [6, 7, 13, 14]. In the context of a
decision tree, specialization of branches leading to high cost tests will reduce the
average cost of applying the tree as those tests will be applied less frequently.
Where such specialization is neutral with respect to expected misclassification
rate, there will be a reduction in expected application costs with no effect to
expected accuracy.

9 Conclusion

Cost-sensitive specialization is a generic technique for cost sensitive induction.
This technique involves specializing aspects of a classifier associated with high
costs and generalizing those associated with low costs. It

– is widely applicable;
– is simple to implement;



– requires only relative ordering of costs rather than precise ratios between
costs;

– is based on a simple intuitive principle; and
– has demonstrated consistent positive effect on a wide range of learning tasks.

While it has been implemented herein as a post-processor for an existing
machine learning system, cost-sensitive specialization could also be employed
directly during initial tree induction. The technique should extend in a straight
forward manner to sensitivity to costs of test application. It should be empha-
sised that the implementation of the technique herein has been intended solely
as proof-of-concept. To this end, specialisations that may be expected to in-
crease predictive accuracy, such as has been investigated elsewhere [?] have been
avoided. The magnitude of gains could be expected to rise if such specialisations
were included.

It should also be noted that these techniques would be best applied to aug-
ment other cost sensitive induction techniques [1, 2, 3, 5, 8, 9, 10, 11], with which
they are fully compatible. Cost sensitive specialisation could be applied to aug-
ment any induction technique that relies primarily upon empirical support for
selecting between alternative hypotheses.
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