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Abstract: The induction of classification rules has been dominated by a single generic
technique—the covering algorithm. This approach employs a simple hill-climbing search
to learn sets of rules. Such search is subject to numerous widely known deficiencies.
Further, there is a growing body of evidence that learning redundant sets of rules can
improve predictive accuracy. The ultimate end-point of a move toward learning redun-
dant rule sets would appear to be to learn and employ all possible rules. This paper
presents a learning system that does this. An empirical investigation shows that, while
the approach often achieves higher predictive accuracy than a covering algorithm, the
covering algorithm outperforms induction of all rules significantly more frequently. Pre-
liminary analysis suggests that learning all rules performs well when the training set
clearly defines the decision surfaces but that the heuristic covering algorithm performs
better when the decision surfaces are not clearly delineated by the training examples.
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1 Introduction

The induction of classification rules is domi-
nated by variations of the covering algorithm1

[5, 9, 12, 16]. The covering algorithm (see
Figure 1) employs a heuristic hill-climbing
search. Such search is subject to a number
widely known difficulties including the prob-
lems of local minima, plateaus and ridges.

The covering algorithm, through its heuris-
tic search, seeks to develop the smallest set
of rules that adequately describe the train-

1The limited number of alternatives includes the
induction of decision trees that are then converted to
classification rules, such as performed by C4.5rules
[15], and the instance-based approach of RISE [8].

ing data. However, there is a growing body
of evidence that learning redundant classifiers
(classifiers that contain elements in addition
to the bare minimum necessary to adequately
describe the training data) can improve pre-
dictive accuracy [2, 8, 13, 14, 21].

In this context it seems surprising that
there has been little evaluation of the relative
power of the covering algorithm or exploration
of alternative approaches to the induction of
classification rules. This paper presents such
an alternative and a comparative evaluation
of its relative inductive power. This alterna-
tive is the induction of all rules.

Covering algorithms infer a set of rules by
inferring one rule at a time. In most cover-
ing algorithms, at each stage, the rule that



On presentation of training examples training examples:

1. Initialise rule set to a default (usually empty, or a rule assigning all objects to the
most common class).

2. Initialise examples to either all available examples or all examples not correctly han-
dled by rule set.

3. Repeat

(a) Find best, the best rule with respect to examples.

(b) If such a rule can be found

i. Add best to rule set.

ii. Set examples to all examples not handled correctly by rule set.

until no rule best can be found (for instance, because no examples remain).

To classify object object:
Apply rule set to object employing a resolution strategy, such as selecting the rule with
the greatest support with respect to training examples, to resolve situations where object
is covered by more than one rule.

Figure 1: The covering algorithm

performs best on the remaining training set is
selected. As each rule is inferred and added
to the rule set, the training set is adjusted to
reflect the impact of the inclusion of that rule
on the rule set’s performance with respect to
the training set.

The new technique, induction of all rules,
instead employs a rule set composed of all
rules defined by the learning system’s lan-
guage for describing rules (see Figure 2).
In contrast to the incremental heuristic hill-
climbing search employed in covering algo-
rithms, learning all rules involves the use of
no heuristics whatsoever during classifier for-
mation.

This paper provides an empirical evaluation
of the relative predictive accuracy obtained by
a heuristic covering algorithm and by learning
all rules. While each approach outperforms
the other for some learning tasks, there ap-
pears to be a general advantage to the heuris-
tic covering algorthm.

2 Learning all rules

There are a number of reasons to believe that
there may be advantages to learning and em-
ploying all rules that characterise a domain
as opposed to using a relatively blind hill-
climbing search algorithm to select a subset
of those rules.

As already outlined, hill-climbing search is
subject to generic limitations. It is relatively
common for this search strategy to lead to far
from optimal solutions. By contrast, learning
and employing all rules involves no heuristics.
The set of rules is determined by the language
for expressing rules with which the learning
system is provided.

Further, any inductive rule selection strat-
egy is going to be subject to uncertainty. Typ-
ically there will be many selections that could
be made but, necessarily, only one subset of
rules can be selected. This introduces an el-
ement of chance that may affect the quality
of the classifiers that are learnt. In contrast,
there is no such element of chance when all



On presentation of training examples training examples:
Set rule set to the set of all rules that can describe training examples.

To classify object object:
Apply rule set to object employing a resolution strategy, such as selecting the rule with
the greatest support with respect to training examples, to resolve situations where object
is covered by more than one rule.

Figure 2: Learning all rules (abstract description)

rules are learnt.

Finally, there is a growing body of empir-
ical evidence that learning and employing a
minimal set of rules is in general sub-optimal,
at least with respect to predictive accuracy.

Ali, Brunk and Pazzani [2] have developed
a system that learns and employs multiple
sets of definite clause rules. Both Domin-
gos [8] and Nock and Gascuel [13] have de-
veloped systems that learn redundant (in the
sense that there are more than the minimum
number necessary) sets of classification rules.
Oliver and Hand [14] have developed a sys-
tem that learns and employs multiple deci-
sion trees for classification. Webb [21] has
developed a decision tree post-processor that
adds redundant (in the sense that they do
not alter resubstitution performance) leaves
to a decision tree. All of these systems learn
and employ more rules (or in the case of de-
cision trees, leaves) than would be developed
by a standard covering algorithm. All have
demonstrated that this can lead to increased
predictive accuracy.

Learning all rules could be presented as the
ultimate end point of this movement away
from learning single classifiers of minimal
complexity. Unless it is possible to identify a
credible point at which one stops adding rules
to the set of rules to be learnt and employed,
if one abandons the notion that one should
learn a minimal set of rules then learning all
rules appears to be a logical outcome.

2.1 An approach to learning all
rules

The number of possible rules for a given learn-
ing task may be infinite. In consequence, in
the general case, it is clearly infeasible to pro-
duce individual explicit representations of all
possible rules. However, this is not necessary
in order to apply all possible rules. The ap-
proach that is employed herein is to produce
explicit rule representations only when classi-
fying an object. At this stage, the only ex-
plicit representations of rules that are created
are of those rules that are directly relevant
to classifying that object. Thus, rather than
initially processing the training data to de-
velop an explicit representation of the rules to
be used for classification, the training objects
will be retained. Then, when an object is to
be classified, those rules directly relevant to
classifying that object will be derived explic-
itly from the training objects. This process is
outlined in Figure 3.

This raises the question of which rules will
be relevant to classifying an object.

Covering algorithms can be used to develop
two quite distinct forms of sets of rules. One
possibility is to form ordered rules [5] (also
referred to as decision lists [18]). These are
ordered lists of rules. When such a list is ap-
plied to classify an object, the first rule to
cover the object is used to classify that ob-
ject.

The alternative is to use unordered rules
[4, 6, 9]. In this case the set of rules is not
ordered. For classification, all rules are ex-
amined to determine which covers an object.



On presentation of training examples training examples:
Store training examples for later use.

To classify object object:

1. Set best to the rule that covers object that has the greatest support with respect to
training examples.

2. Use best to classify object.

Figure 3: Learning all rules (actual process)

If more than one rule covers an object then
some form of resolution procedure is invoked
to select one rule with which to classify the
object.

Systems that learn ordered rules often seek
to order the rules from highest to lowest em-
pirical support (where empirical support is a
measure of how well the rule performs on the
training data, usually favouring maximisation
of the number of positive examples covered
and minimization of the number of negative
examples) [5]. Systems that learn unordered
rules often resolve situations in which multiple
rules cover a single object by selecting the rule
with the highest empirical support [4, 6, 10].

If, when seeking to classify an object, one
finds the rule that covers the object and that
has the highest empirical support from the
training objects then one will obtain the same
classification as if all rules have been explicitly
developed and ordered on empirical support,
or if all rules had been explicitly developed,
applied in an unordered manner and situa-
tions in which multiple rules cover an object
were resolved by selecting the rule with high-
est empirical support. Thus, to obtain the
effect of employing all rules, using either the
ordered or unordered rules approaches, it is
necessary only, when classifying an object, to
perform a search of the space of rules that
cover that object in order to find that with
the highest empirical support. The computa-
tional tractability reduces to that of a single
search. Webb [20] has demonstrated that such

search is feasible for a wide range of categor-
ical attribute-value learning tasks.

2.2 The learning system

A learning system was implemented to sup-
port this form of induction. All training ob-
jects were retained for use during classifica-
tion. To classify an object, a search was per-
formed through the space of all rules that cov-
ered the object. The rule with the highest em-
pirical support was selected and used for clas-
sification. Admissible search was employed
to guarantee that the rule with the highest
empirical support was always selected. The
OPUS search algorithm [20] was employed to
perform this search. Two metrics of empirical
support were employed. The first, max con-
sistent, favoured rules that covered no neg-
ative examples and covered the most posi-
tive examples. The second, Laplace, allowed a
trade-off between positive and negative cover.

Let N be the number of negative train-
ing objects covered, P the number of positive
training objects and C the number of classes.
The max consistent empirical support for a
rule equals−N , if N > 0, else P . The Laplace
empirical support for a rule equals P+1

P+N+C
.

Where multiple rules shared the same max-
imal empirical support, a rule from the
class mentioned first in the data description
(names) file was selected. This corresponds
to the resolution procedure used in the cover-
ing algorithm with which the induction of all



rules was compared.
For the sake of computational efficiency, af-

ter each classification using all rules, the rule
employed was recorded. Subsequent searches
were made more efficient by examining the
list of previously employed rules for the high-
est valued rule that covered the new object. If
such a rule was found, the search was seeded
by setting the best rule found so far to the
identified rule. This enabled rapid pruning of
the search space.

3 Experimental

evaluation

In keeping with common machine learning
practice, the two machine learning approaches
were evaluated with respect to their predic-
tive accuracy—the proportion of previously
unseen objects that the system could correctly
classify.

Due to the limitation of current imple-
mentations of the OPUS search algorithm
to searching for categorical attribute-value
rules, evaluation was restricted to categorical
attribute-value machine learning tasks. All
such tasks of which the author was aware
from the UCI machine learning repository [11]
were employed. These sixteen tasks are de-
scribed in Table 1. For each data set this table
presents the number of attributes, the num-
ber of classes, the number of rules that could
be formed for each class and the number of
objects in the data set.

The antecedents of the rules took the form
of a conjunction of equality tests. For each
attribute there was at most one test. Each
test took the form attribute = value. In con-
sequence, for each class there were

a∏
i=1

(vi + 1)

possible rules, where a is the number of at-
tributes and vi is the number of values for
attribute i. The consequent of each rule was
a simple class assignment. This form of rule

was chosen because of its widespread use in
machine learning.

The Cover machine learning system [19]
was used as the covering algorithm for the ex-
periments. It was used to develop unordered
rules. The algorithm employed is presented in
Figure 4.

This algorithm is identical to the unordered
version of CN2 [4] with the exception that
at step 2(b)i the OPUS search algorithm was
used to provide admissible search in place of
the heuristic search employed within CN2.
Note that while admissible search is employed
to find individual rules within the covering al-
gorithm, the outer search for a set of rules
still employs the standard heuristic covering
search.

Cover was employed with both of the em-
pirical support metrics employed with the all
rules approach.

As a control, to evaluate whether the Cover
system was performing at a credible level,
C4.5 was also included in the study.

Each data set was randomly divided into
training (80%) and evaluation (20%) sets 100
times. For each pair of training and evalua-
tion sets so formed, all five learning methods
(all rules max consistent; all rules Laplace;
Cover max consistent; Cover Laplace; and
C4.5) were applied to the training set and the
predictive accuracy of the resulting classifiers
evaluated on the evaluation set.

Table 2 presents for each domain the mean
and standard error of the accuracy for each
treatment. For two domains (lymphography
and monk 2) learning all rules with the max
consistent empirical support metric results in
the highest mean accuracy. For a further four
domains (Slovenian breast cancer, Wiscon-
sin breast cancer, house-votes-84, primary tu-
mor), making a total of six, all rules with max
consistent empirical metric obtains a higher
mean accuracy than Cover with either empir-
ical support metric.

Learning all rules with the Laplace empir-
ical support metric does not perform so well.
For no domain does it obtain a higher mean
accuracy than all other treatments. For only



Table 1: Summary of experimental data sets.

Domain Attributes Classes Rules Cases
Audiology 70 24 1.831298× 1035 226
House Votes 84 17 2 4.294967× 1009 435
KR vs KP 37 2 2.668349× 1017 3198
Lenses 5 3 1.080000× 1002 24
Lymphography 19 4 7.971615× 1010 148
Monk 1 7 2 2.880000× 1003 556
Monk 2 7 2 2.880000× 1003 601
Monk 3 7 2 2.880000× 1003 554
Multiplexor 12 2 1.771470× 1005 500
Mushroom 23 2 1.634593× 1017 8124
Primary Tumor 18 22 1.133741× 1009 339
Promoters 58 2 6.938894× 1039 106
Slovenian Breast Cancer (SBC) 10 2 7.338240× 1006 286
Soybean Large 36 19 3.852636× 1023 307
Tic Tac Toe 10 2 2.621440× 1005 958
Wisconsin Breast Cancer (WBC) 10 2 2.572307× 1009 699

Table 2: Mean and standard error of accuracy for each treatment and domain

All rules Cover
Domain m cons Laplace m cons Laplace C4.5

Audiology 0.57±0.01 0.29±0.01 0.66±0.01 0.64±0.01 0.77±0.01
House Votes 84 0.94±0.00 0.94±0.00 0.93±0.00 0.93±0.00 0.95±0.00
KR vs KP 0.97±0.00 0.97±0.00 0.99±0.00 0.99±0.00 0.99±0.00
Lenses 0.66±0.02 0.63±0.02 0.81±0.02 0.82±0.02 0.80±0.01
Lymphography 0.80±0.01 0.79±0.01 0.79±0.01 0.79±0.01 0.76±0.01
Monk 1 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 0.96±0.00
Monk 2 0.81±0.00 0.67±0.00 0.79±0.00 0.78±0.00 0.64±0.01
Monk 3 0.97±0.00 0.98±0.00 0.98±0.00 0.98±0.00 0.99±0.00
Multiplexor 0.98±0.00 0.98±0.00 0.99±0.00 0.99±0.00 0.85±0.01
Mushroom 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00
Primary Tumor 0.39±0.01 0.33±0.01 0.35±0.01 0.35±0.01 0.39±0.01
Promoters 0.61±0.02 0.61±0.02 0.71±0.01 0.71±0.01 0.76±0.01
SBC 0.71±0.01 0.72±0.01 0.68±0.01 0.68±0.01 0.74±0.01
Soybean Large 0.76±0.00 0.44±0.01 0.88±0.00 0.89±0.00 0.87±0.00
Tic Tac Toe 0.96±0.00 0.96±0.00 0.96±0.00 0.96±0.00 0.83±0.00
WBC 0.95±0.00 0.92±0.00 0.92±0.00 0.92±0.00 0.95±0.00



1. ruleset← ∅.

2. for class ← each class if turn

(a) examples← the training examples.

(b) while examples contains objects belonging to class

i. rule← the rule for class class with highest empirical support on the training
set

ii. remove all objects of class class that are covered by rule from the training
set

iii. add rule to ruleset

Figure 4: The Cover algorithm

two (Slovenian breast cancer and house-votes-
84) does it obtain higher accuracy than Cover.

Both Cover treatments outperform all rules
with the max consistent empirical support
metric for the same seven domains (audiol-
ogy, kr-vs-kp, lenses, monk 3, F11 multi-
plexor, promoters and soybean large). Both
Cover treatments outperform all rules with
the Laplace empirical support metric for
the same eight domains (audiology, kr-vs-
kp, lenses, monk 2, F11 multiplexor, pro-
moters, primary tumor and soybean large).
Both Cover treatments have higher accuracy
than C4.5 for seven domains (lenses, lym-
phography, monk 1, monk 2, F11 multiplexor,
soybean large and tic-tic-toe) and lower for
six domains (audiology, Slovenian breast can-
cer, Wisconsin breast cancer, house-votes-84,
monk 3 and promoters).

These results suggest that learning all rules
with the Laplace empirical support metric is
in general less effective than the other ap-
proaches, but that there is little general differ-
ence between the remaining four treatments.

To assess these apparent outcomes, a Fried-
man rank test was used to evaluate the sta-
tistical significance of the observed differ-
ences between treatments. This test evaluates
whether at least one of the treatments tends
to yield larger observed values than at least
one other treatment [7]. The test was applied

to all 1600 observations resulting from the 100
observations for each of the 16 domains. The
result (f=69.02, p=0.000) shows that there
is a difference for at least one treatment that
is significant at the 0.05 level. To compare
each combination of pairs of treatments, a
multiple comparisons test [7] was employed.
This shows which pairs of treatments have
rankings that significantly differ and the di-
rection of that difference. The result is dis-
played in Table 3. In this table, ‘<’ indicates
that the treatment for the row has obtained
a lower rank significantly (at the 0.05 level)
more often than the treatment for the column.
‘>’ indicates that the treatment for the row
obtained a higher rank significantly (at the
0.05 level) more often than the treatment for
the column. ‘=’ indicates no overall signifi-
cant difference in ranking. The table indicates
that—

• all rules Laplace is in general ranked
lower than all other treatments;

• there is not a significant difference in the
relative rankings of all rules max consis-
tent and Cover max consistent (all rules
max consistent obtained a higher accu-
racy in 541 cases and lower in 644 cases);

• all rules max consistent is ranked lower
than Cover Laplace (which obtained



higher accuracy in 661 cases and lower
in 527 cases) and C4.5 (which obtained
higher accuracy in 720 cases and lower in
599 cases); and

• there is no significant difference in the
general rankings of Cover max consistent,
Cover Laplace and C4.5.

4 Discussion

It seems apparent that learning all rules with
the Laplace empirical support metric is not
a credible alternative to the traditional cov-
ering algorithm. The situation with respect
to learning all rules with the max consistent
empirical support metric is less clear cut, how-
ever. While both versions of Cover and C4.5
all achieve higher accuracy more often than
learning all rules with the max consistent em-
pirical support metric, learning all rules still
achieves higher predictive accuracy in a large
number of cases. While learning all rules does
not in general provide better performance, it
is credible that there exist types of problem
for which it will provide better performance.

If one considers the five domains for which
the space of possible rules contains more than
1015 rules, it is striking that for all but one
domain the average accuracy for Cover is
higher than that for learning all rules. For
that one exception, the mushroom domain, all
treatments always achieve 100% accuracy—
the data so clearly defines the decision sur-
faces that the learning task is quite straight
forward.

If one considers the eleven domains for
which the space of all possible rules contains
less than 1015 rules, learning all rules with
the max consistent empirical support met-
ric achieves higher mean accuracy for six and
Cover achieves higher mean accuracy for only
two.

One possible explanation for this effect is
oversearch [17]. As Quinlan and Cameron-
Jones [17] describe this effect, the more rules
there are in the space of possible rules, the
greater the probability that there will be

rules that have high apparent empirical sup-
port from the training set but low predictive
power.

However, there is a further issue that Quin-
lan and Cameron-Jones [17] do not raise. The
probability of this misleading high apparent
support occurring will also depend upon the
quality of the training set. If the training
set contains a broad range of objects that
clearly delimit the decision surfaces (within
the language for expressing the rules that is
employed), as appears to be the case with
the mushroom data, then it is not relevant
how large the space of possible rules is. The
probability of finding rules with high empir-
ical support but low predictive accuracy will
be low, irrespective. If the training set does
not clearly delimit the decision surfaces then
even a relatively small space of possible rules
may include rules with deceptively high em-
pirical support. Possible reasons for a train-
ing set failing to clearly delimit the decision
surfaces might include—

• too few objects (as might be the case for
the lenses data set);

• noise (as is the case for the monks 3 do-
main); and

• poor distribution of objects.

It is credible from this analysis and the em-
pirical results presented above that learning
all rules is indicated where the training set
clearly delimits the decision surfaces but is
not indicated otherwise. However, this leaves
unresolved how one should identify whether
the training set clearly delimits the decision
surfaces!

Another issue that needs consideration is
whether the technique that has been devel-
oped is the best way to use all rules. During
classification, the current technique arbitrar-
ily selects one from any set of rules with max-
imal empirical support that cover an object.
It would seem appropriate, however, to take
account of the class distribution of all such
rules. If there are many rules with high empir-
ical support that cover an object for one class



Table 3: Multiple comparisons test

All rules Cover
max cons Laplace max cons Laplace C4.5

all max cons > = < <
rules Laplace < < < <
Cover max cons = > = =

Laplace > > = =
C4.5 > > = =

but not for the others, then this would seem to
support selecting that class over the others. It
might be worth investigating techniques that
take account of such issues by combining the
evidence from all relevant rules. Some form
of probabalistic combination of the evidence
from multiple rules has intuitive appeal, but
faces the difficulty that one cannot assume in-
dependence between the rules involved and
hence that it is far from clear how the evi-
dence could be best combined.

It is also worth considering that there may
be a possible confound in the experimental
work from the use of admissible search within
the covering algorithm. Such use of admissi-
ble search is certainly not standard practice
in covering algorithms. However, comparison
with C4.5 shows that the covering algorithms
are performing at close to the defacto ‘stan-
dard’, suggesting that this is not a serious is-
sue.

4.1 Related Research

The learning all rules approach to induction
has some commonalities with instance based
learning [1]. Like instance based learning,
classification is performed by reference to the
training set at the time of classification. The
learning all rules approach could be consid-
ered to be a form of qualitative instance based
learning whereby the selected rule is used to
define a similarity metric for classification in
place of the use of a distance metric.

The use of such a qualitative similarity
metric instead of geometric distance metrics

might be justified on the grounds that it is
not possible to derive a priori distance metrics
for accurate measurement of similarity. Even
for a single ordinal attribute, it is not possi-
ble to determine a priori whether the correct
similarity metric is linear with respect to the
numeric value. Is an eighteen year old person
more similar to a one year old or forty year
old? It is implausible that it is possible to
provide an a priori answer to such a question.
The problem is further compounded by the
possible incommensurability of metrics repre-
sented by different attributes, as illustrated
by the question “is an eighteen year old male
more similar to an eighteen year old female or
to an eighty-one year old male?”.

There are also commonalities with OSP [3].
OSP performs induction by selecting a set of
rules at classification time that cover the ob-
ject to be classified and have high empirical
support with respect to the training set. The
class distribution within the set of training
objects covered by one or more of these rules
is then used for classification. The two ap-
proaches are similar due to their search for
classification rules that cover the object to be
classified and which have high empirical sup-
port with respect to the training set. They
differ in that the learning all rules approach
selects and directly uses just one of these rules
while OSP uses all of the rules as a filter on
the training set and then employs the filtered
training set for classification.



5 Conclusion

The strategy of learning all rules has been pre-
sented as a theoretically credible alternative
to heuristic covering algorithms. However, ex-
perimental evaluation failed to demonstrate a
general advantage to the approach and, in-
deed, suggested that the heuristic covering al-
gorithms held a significant general advantage.
Further analysis of these results revealed an
apparent correlation between the size of the
space of possible rules and the probability
of learning all rules outperforming the cov-
ering algorithms. One possible explanation
of this effect is that for such learning tasks
oversearch leads to the use of rules with mis-
leading apparent empirical support from the
training set. If this analysis is correct, learn-
ing all rules might be expected to outperform
a covering algorithm when the training data
clearly delineates the decision surfaces for a
domain. Where the data is less comprehen-
sive, the heuristic covering algorithm would
appear to remain the method of choice.
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