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Abstract  

This paper describes and evaluates machine learning techniques for knowledge-base 
refinement. These techniques are central to Einstein, a knowledge acquisition system 
that enables a human expert to collaborate with a machine learning system at all 
stages of the knowledge-acquisition cycle. Experimental evaluation demonstrates that 
the knowledge-base refinement techniques are able to significantly increase the 
accuracy of nontrivial expert systems in a wide variety of domains.  
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1 Introduction  
Einstein is a knowledge acquisition system that enables a human expert to collaborate 
with a machine learning system at all stages of the knowledge acquisition and 
refinement cycle. Both the human expert and the machine learning system can suggest 
modifications and/or critique the knowledge-base at any stage of development. The 
manner in which this collaboration is managed has been described in detail elsewhere 
(Webb, 1992a, 1993a). This paper describes the techniques used by the machine 
learning subsystem to refine a knowledge-base.  

A number of factors distinguish the demands placed upon Einstein’s inductive 
refinement sub-system from those placed upon previous inductive refinement 
programs.  

One of the core design decisions that lie behind Einstein is that it should be easy for 
the human user to use. To this end, it employs a restricted form of production rule-
based knowledge-base. The conclusion of a rule is restricted to a single categorical 
assertion (also known as a classification). There are no intermediate reasoning steps, 
so the conclusion of one rule may not appear in the condition of another. Each rule 
can be interpreted in isolation. That is, in order to determine whether a rule will be 
fired for a case it is not necessary to refer to any other rule.  

Aside from being forced to work within the constraints placed upon it by the form of 
knowledge-representation that is employed, because the refinement sub-system is 
modifying rules created by the human expert, it is essential that it minimises the 
degree of change wrought when refining rules. In general, a user would find it 
extremely frustrating to have key aspects of his or her input to the knowledge-base 
expunged by the refinement sub-system without extremely good cause.  

A further requirement is that the refinement sub-system be able to work with real 
world data which may be incomplete and/or inaccurate. 
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There are numerous previous techniques for inductive knowledge-base refinement. 
While all offer significant facilities, none solves all knowledge refinement problems. 
Some are able to refine or delete existing rules but unable to add new rules (Ginsberg, 
1988; Ginsberg, Weiss & Politakis, 1988; Wilkins and Buchanan, 1986; Ma and 
Wilkins, 1991; Rada, 1985; Caruana, 1989; Quinlan, 1987). Others examine only a 
single example case at a time and thus are not able to take advantage of a machine 
learning system’s capacity for detailed analysis of multiple cases (Davis & Lenat, 
1982; Smith, Winston, Mitchell & Buchanan, 1985). Several systems utilise the initial 
knowledge-base when developing the new, but do not explicitly constrain the degree 
of change that may be wrought upon that knowledge-base when developing the 
refined version (Reinke & Michalski, 1988; Pazzani & Brunk, 1991; Lee & Ray, 
1986). Ourston & Mooney’s (1990) system is unable to accommodate inaccurate data. 
Reinke & Michalski’s (1988) approach requires that any specialisation of a rule 
should cover all positive cases covered by the original rule. This can result in needless 
complexity in the final knowledge-base.  

 

2 DLGref2  
DLGref2, and its precursor, DLGref (Webb, l992c) are variants of the DLG (Webb, 
1991, l992b; Webb & Agar, 1992) data-driven machine learning algorithm. DLG 
differs from most previous data-driven machine learning algorithms by the use of 
least generalisation to develop successive rules of a rule set. Its core operations are 
very similar to those of GOLEM (Muggleton & Feng, 1990) which was developed 
simultaneously and independently.  

DLGref is unable to accommodate noisy data and cannot specialise the range of 
values covered by a clause in a rule’s condition. DLGref2 extends DLGref to handle 
these two cases.  

DLGref2 is designed to operate on the types of production rules that are required by 
Einstein. Each rule is restricted to a single categorical conc lusion. That is, each 
conclusion must assign a single category (called a class) to a case. Further, all classes 
in a single knowledge base must be mutually exclusive. Finally, the rule base must be 
flat. That is, it is not possible to use the conclusion of one rule in the condition of 
another. However, while DLGref2 has been designed and evaluated within this 
restricted context, it should scale up to more complex knowledge representation 
schemes, and, indeed, current work is investigating exactly this issue.  

DLGref2 is applied to a knowledge-base once for each class. Only rules for that class 
are considered during a single application. During such an application, all example 
cases that belong to that class are considered to be positive examples and all cases that 
do not belong to the class are considered to be negative examples. If the condition for 
a rule is satisfied with respect to a case then the rule is said to cover that case.  

First, all cases covered by rules that do not misclassify cases are removed. This 
prevents other rules from being needlessly generalised to cover those cases.  

Next, all rules that misclassify cases are examined in turn.  

1. The DLG induction algorithm is applied using all negative cases but only the 
positive cases that are covered by the rule. This process develops a rule, 
spec_rule, that covers as many as possible of the positive cases. Depending 
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upon the value function used with DLG, either it will not be possible for 
spec_rule to cover any negative cases, or there will be a trade-off between the 
number of negative and positive cases covered. Spec_rule will always be a 
specialisation of the rule being refined (rule). When developing spec_rule, the 
first case considered is always the most central (or typical case) and 
subsequent cases are examined in order of extremity (or atypicallity).  

2. next, a new rule, n, is created such that –  

§ n is a generalisation of spec_rule; 

§ n is a specialisation of rule,  

§ n covers no more negative cases than spec_rule; and  

§ there is no generalisation of n that is a specialisation of rule and which 
covers no more negative cases than spec_rule.  

The technique used to select this rule is a variant of version space narrowing 
(Webb, 1993b).  

3. As each rule is developed, the positive cases that it covers are removed. This 
prevents other rules from being needlessly generalised to cover those cases.  

After all existing rules have been processed in this manner, they are each generalised 
in turn to cover further positive cases. After each such generalisation is performed, 
positive cases are once more removed.  

Finally, if any positive cases remain that are not covered by the amended rules, new 
rules are developed, using the DLG algorithm.  

A formal description of the above algorithm is provided in Appendix A.  

An important feature of this algorithm is the use of a centrality or typicality measure 
in step 1 of the algorithm. The use of a most typical initial case leads to the 
development of a rule that covers as many as possible of the most typical cases 
covered by rule while the subsequent examination of most extreme cases increases the 
probability maximising the number of cases covered when allowing for the possibility 
of noisy data.  

This process is illustrated in Figure 1. In this Figure, example cases are presented as 
points in a two dimensional space representing a case’s age and height. Positive cases 
are represented by uppercase letters. Negative cases are represented by lowercase 
letters. Rules take the form IF a≤AGE≤b AND c≤HEIGHT≤d THEN 
POSITIVE. Thus, each rule can be viewed as defining a rectangle that includes those 
points that the rule assigns to the positive class. The thick outer line indicates the rule 
to be refined (IF 1 ≤ AGE ≤ 4 AND 0.5 ≤ HEIGHT ≤ 4.5 THEN POS1TIVE). It covers 
five positive and three negative cases. Assuming that the rule evaluation function 
favours rules that reach only correct conclusions over those that do not, and prefers 
rules that reach more correct conclusions over those that reach fewer correct 
conclusions, the best specialisation of the initial rule will cover A, B, C and E (IF 
1.5≤ AGE ≤ 4 AND 1 ≤ HEIGHT ≤ 3.5 THEN POSITIVE). Examining successive 
least generalisations, if D is incorporated in the rule, it will not be possible to obtain 
the best rule. The best obtainable specialisation of the initial rule that covers D covers 
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just A, D and  
E (IF 3 ≤ AGE ≤ 4 AND 2 ≤ HEIGHT ≤ 4 THEN POSITIVE). 

DLGref2 selects the most central positive case covered by the initial rule, E, and 
forms the most specialised rule that covers that case (IF 3 ≤ AGE ≤ 3 AND 
2.5≤ HEIGHT ≤ 2.5 THEN POSITIVE). It then generalises against the most extreme 
positive case, B. This results in (IF 1.5 ≤ AGE ≤ 3 AND l≤ HEIGNT≤ 2.5 THEN 
POSITIVE). The next most extreme case is D, but an attempt to generalise against D 
is blocked because the resulting rule (IF 1.5 ≤ AGE ≤ 4 AND 1 ≤ HEIGHT≤ 4 THEN 
POSITIVE) covers two negative cases. Continuing the process by generalising against 
C and A in turn, results in the desired rule. This process does not guarantee the 
selection of the best rule. However, starting from the most typical initial case does 
guarantee that the result will be, in some sense, typical of the initial rule, while 
generalising against successive most extreme cases has demonstrated the best results 
in extensive experimental evaluation.  

 

Figure 1: Illustration of use of centrality measure   

After the replacement specialisation has been developed it will be further generalised 
to cover other positive cases, such as F, that are not covered by the initial rule. D will 
be covered by the refinement of some other initial rule, or by a new rule developed 
after all initial rules have been refined.  

The use of a centrality measure to order cases during induction has been examined in 
detail by Webb (1992e).  

Note that, while the above example and the evaluation to follow, examine only rules 
with simple attribute value tests, the use of least generalisation within DLGref2 
ensures that it can be applied to much more complex forms of rule, as is demonstrated 
by the use of least generalisation to infer rules in first order predicate logic 
(Muggleton & Feng, 1990).  
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Benefits offered by DLGret2 include: 

• rules that are consistent with the training set are generalised the least possible 
amount consistent with ensuring that all cases are covered by at least one rule;  

• rules that are inconsistent with the training set and which cover one or more 
positive cases are modified so as to  

- minimise the change to the original statement of the rule  

- maximise the number of positive cases covered by the original rule, and, 
with lower preference, the number of positive cases covered by no other 
rule, that are covered by the new rule; and  

- minimise the number of negative cases that are covered by the new rule;  

• rules that are inconsistent with the training set and which cover no positive 
cases are not altered on the assumption that the training set simply does not 
address the issues addressed by the rule;  

• new rules are developed that cover any cases not covered by revised versions 
of initial rules; and  

• the manner in which the algorithm accommodates noise, by trading-off the 
levels of positive and negative cover, can be altered by changing a rule 
evaluation function.  

DLGref (the precursor to DLGref2) was evaluated by  

• refining a set of rules developed by C4 rules (Quinlan, 1987) for the 
Hypothyroid domain  

• refining a set of rules developed by DLG from one set of data, using another 
set of data; and  

• refining rules that performed correctly for a single class in order to 
accommodate all classes.  

In almost all cases DLGref was able to create refined rules that performed 
significantly better both than the unrefined rule set and than the rules developed by 
DLG (DLGref without access to the initial knowledge-base) alone (Webb, 1992c).  

However, most of these studies employed initial rule sets created by DLG. DLG has 
been developed with a view to creating rule sets that are easy to comprehend. In 
consequence, each rule is intended to be as modular as possible; to be interpretable in 
isolation without reference to the rest of the rule set. In consequence, each rule can be 
readily revised in relative isolation.  

Unfortunately, rule sets are often not so modular. For example, if there is a suitable 
conflict resolution strategy, rules will often be over-generalised on the grounds that 
the rule will not fire in inappropriate contexts due to higher priority rules firing. 
DLGref (and DLGref2) do not take account of conflict resolution strategies, and thus 
specialise such rules so that they stand as justifiable in isolation from other rules in 
the rule set. This makes the task of the refinement algorithm especially difficult for 
two reasons.  
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1. key information from the initial knowledge base (the inter-relationships 
between rules) is not considered during refinement ; and  

2. the refined knowledge base must incorporate additional complexity in order to 
distinguish all rules from negative cases. This must increase the possibility of 
incorporating inappropriate conditions, solely from the point of view that there 
are more conditions each of which may be inappropriate;  

As it is intended that Einstein should be applicable to the refinement of knowledge-
bases developed in different environments, it is important that its inductive refinement 
subsystem should be able to cope with rules that are optimised with respect to a 
conflict resolution strategy. Further, the human partner in the knowledge-acquisition 
process is encouraged to specify partial or incomplete rules when he or she has some 
insight into how to solve a particular problem but is unable to articulate a fully 
operational solution. When examined without consideration of the conflict resolution 
strategy for which they were developed, rules optimised with respect to such a 
strategy are equivalent to partial or incomplete knowledge. It is essential that 
Einstein’s knowledge-base refinement sub-system be capable of adequately handling 
such rules.  

3 Experimental Evaluation  
Experimental evaluation of DLGref2 has been designed to explore how well it 
performs when refining rule sets in which the rules have been optimised to take 
account of a conflict resolution strategy (and thus constitute partial or incomplete 
knowledge when considered outside tha t context).  

To this end, DLGref2 has been evaluated on its performance when refining rules 
developed by C4.5rules (Quinlan, 1992) against a wide variety of data sets. C4.5rules 
highly optimises its rule sets with regard to the conflict resolution strategy employed. 
It also treats missing values in a different manner to the current implementation of 
DLGref2. Whereas the current implementation of DLGref2 treats a missing value as a 
distinct value, C4.5rules does not (it considers that rules fail if a value referred to in 
the condition is missing from a case). Thus, the rules produced by C4.5rules constitute 
partial knowledge when interpreted in the context of the conflict resolution strategies 
assumed by DLGref2.  

This is also a particularly difficult refinement task because C4.5rules is a 
sophisticated induction system renown for the high accuracy of the rules that it 
induces. DLGref2 is being asked to use induction to improve the output of one of the 
leading induction systems.  

The algorithms were evaluated using a simple production rule language. The 
condition for a rule was restricted to a conjunction of clauses. Each clause related to a 
single attribute. For categorical attributes, a clause consisted of a set membership, 
such as breast_quad ∈ {unknown, upper-left, lower-left, central}. For ordinal 
attributes, a clause consisted of one of the forms, value is unknown; value ≥  c; value 
≤  c; value is unknown ∨  value ≥  c; or value is unknown ∨  value ≤  c, where c is a 
constant. Examples of clauses for a nominal attribute include age ≤  20, age ≥  20, 
age is unknown, age is unknown ∨  age ≤ 20 and age is missing ∨  age ≥  20. 
Although the techniques are not restricted to such a language, the current software is.  

DLGref2 can be customised to a task by altering the rule evaluation function that is 
employed. The rule evaluation function is used to compare rules during the system’s 
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inductive search. Two rule evaluation functions were employed, binomial with upper 
error limit of 0.4 and complete_and_consistent.  

The binomial value function can be described by:  

value(r) = 
u)-1cover(r)u(

u)-cover(r)(1-0.5-)poscover(r
 

where poscover(r) is the number of positive cases covered by r, cover(r) is the total 
number of cases covered by r and u is the upper error limit (a number between 0 and 
1).  

The binomial function approximates an evaluation of the level of evidence that, were 
the rule applied to the population from which the training set was drawn, it would 
misclassify less than the upper error limit of cases. The higher the value of the 
function, the greater the level of evidence.  

The complete_and_consistent value function assigns -1 to any description that covers 
any number of negative cases. If a description does not cover any negative cases its 
value is set to the number of positive cases that it covers.  

Use of the complete and consistent value function results in the development of rule 
sets that are complete and consistent with regard to the training set, where this is 
possible. Use of the binomial value function enables the development of rules that are 
incomplete or inconsistent with the training set, by seeking to develop rules that 
maximise the evidence that there is less than the specified level of noise in the 
training set. The use of each of these value functions with the DLG algorithm has 
been evaluated in detail elsewhere (Webb, 1992d).  

In order to apply a set of production rules it is necessary to define a rule interpreter. 
When applying a rule set to a case, all rules were examined to determine whether their 
conditions were satisfied. Where the conditions of multiple rules were satisfied, the 
conclusion of the rule that covered the most cases from the training set was fired. 
Where no rule’s condition was satisfied, the most common class from the training set 
was assigned to the class. This interpreter is equivalent in effect to the interpreter for 
which C4.5rules optimises its rules.  

The conflict resolution strategy employed by this interpreter was not considered 
during DLGref2’s rule induction. Thus, although no conflict resolution strategy was 
considered during induction, C4.5rule ’s strategy was employed during rule 
application, further increasing the difficulty of DLGref2 producing rules that 
outperform C4.5rule’s rules.  

DLGref2 was evaluated by application to ten machine learning data sets from the UCI 
repository of machine learning data sets (Murphy & Aha, 1992). For all of these data 
sets, the cases are divided into a number of mutually exclusive classes. The induction 
task is to develop an expert system that can classify a case by reference to the values 
of its attributes. These data sets are described in Table 1. The first column of Table 1 
presents the number of attributes by which each case is described. The second column 
presents the percentage of these attributes for which the values are ordinal. The third 
column presents the percentage of attribute values which are missing from the data. 
The fourth column presents the number of cases in the data set. The fifth column 
presents the percentage of these cases that belong to the class which is represented by 
the most cases in the data set. The sixth column presents the percentage of cases for 
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which there is another case that is identical in all respects except that it belongs to 
another class. Where this value is not zero it is not possible to develop complete and 
consistent classifiers with respect to the training set due either to noise or the lack of 
necessary attributes. The last column presents the number of classes in the data set.  

For each test, the data set was randomly divided into three subsets, training set 1 
(45%), training set 2 (45%) and the evaluation set (10%). C4.5rules was applied to 
training set 1 to create an expert system. DLGref2 was then applied to refine this 
expert system against training set 2 twice, once with each value function. DLG 
(DLGref2 with no initial expert system) was also applied to training set 2 once, with 
each value function, in order to determine the ability of the machine learning system 
to develop rules from the data unaided. All five expert systems (those developed by 
C4.5rules, DLG with each value function and DLGref2 with each value function) 
were then evaluated by application to the evaluation set. One hundred such tests, each 
time using a different random division of the data into training and evaluation sets, 
were conducted for each set of data.  

 

Table 1: UCI data sets  

Table 2 presents the results of these experiments. For each data set, the mean 
accuracies obtained by DLGref 2 (complete and consistent), C4.5rules, DLG 
(complete and consistent), DLGref2 (binomial), C4.5rules and DLG (binomial) are 
provided. Following each of the mean accuracies for C4.5rules and DLG, is the p 
obtained by a one tailed matched pairs t-test comparing the respective accuracy with 
that obtained by DLGref2. Where DLGref2 outperformed the other algorithm, this 
represents the probability that the mean performance of the algorithms over an infinite 
number of tests would be identical. Where p is less than or equal to 0.05, the 
difference in performance is statistically significant at the 0.05 level. For ease of 
identification, p values indicating statistically significant improvements in 
performance resulting from the use of DLGref2 are presented in bold type and those 
indicating statistically significant decreases in performance are underlined.  

Domain 
No of 

Attributes 
Ordinal  

% 
Missing  

% 
No of 
cases 

Most 
common 
class %  

Indist-
inguish
-able %  

No of 
classes  

breast cancer  9  0  3  286  70  5  2  

echocardiogram  6  83  3  74  68  0  2  

glass type   9  100  0  214  40  0  3  

hepatitis  19  32  6  155  79  0  2  

house votes 84  16  0  0  435  61  0  2  

hypothyroid  29  24  6  3772  92  0  4  

iris  4  100  0  150  33  0  3  

lymphography  18  0  0  148  55  0  4  

F11 multiplexer  11  0  0  500  50  0  2  

primary tumor 17  0  4  339  25  18  22  
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Treating the experiment as consisting of twenty different treatments (ten data sets by 
two evaluation functions) the following results are apparent. In no case does DLGref2 
lead to a decrease in accuracy to those of both C4.5rules and DLG. In eleven cases, 
the use of DLGref2 results in an increase in performance over both those obtained 
through C4.5rules and DLG alone. In six cases, the use of DLGref2 leads to a 
statistically significant improvement in accuracy over both C4.5rules and DLG alone 
(in two further cases, those relating to the lymphography data, the results very closely 
approach significance at the 0.05 level). In twelve cases the use of DLGref2 leads to a 
statistically significant improvement in accuracy to that obtained by at least one of 
C4.5rules or DLG alone. In only two cases, those for the hypothyroid data, does the 
use of DLGref2 lead to a significant decrease in accuracy over that obtained by 
C4.5rules. In no case does the use of DLGref2 lead to a significant decrease in 
accuracy to that obtained by DLG alone.  

These results are an outstanding endorsement of the DLGrref2 algorithm, especially 
when one considers the difficulties posed for a DLG style algorithm when refining the 
style of rules developed by C4.5rules, as discussed above. 

 

Table 2: Summary of experimental results (mean accuracies over 100 tests)  

It is interesting to attempt to characterise the types of domains for which DLGref2 is 
successful and those for which it is not. There are two data sets for which the use of 
the binomial value function, but not the complete and consistent value function, leads 
to a significant improvement in performance for the refined expert system over that of 
the original expert system - breast cancer and primary tumor. A one-tailed matched 
pairs t-test reveals that DLGref2 with the binomial value function significantly 
outperformed DLGref2 with the complete and consistent value function for both of 
these data sets (breast cancer: p=0.11; primary tumor: p=0.000). Table 1 reveals that 
these are the only data sets which contain indistinguishable cases (cases with identical 
descrip tions belonging to different classes). As a result, these are the only data sets for 
which it is not possible to create an expert system that is complete and consistent with 
regard to the data. As DLGref2 with the complete and consistent value function 

 Complete & Consistent Noise 

Domain DLG  
ref2 

C4.5  
rules 

p DLG p DLG  
ref2 

C4.5  
rules 

p DLG p 

breast cancer  68.5  68.3  0.431  68.1  0.300  70.0  68.3  0.018  69.6  0.236  

echocardiogram  71.2  70.4  0.368  70.0  0.179  70.1  70.4  0.434  71.3  0.216  

glass type  74.8  71.6  0.009  71.0  0.000  74.3  71.6  0.026  71.4  0.002  

hepatitis  81.8  79.7  0.021  82.2  0.305  81.0  79.7  0.136  81.9  0.154  

house votes 84  94.2  93.9  0.240  94.1  0.365  94.0  93.9  0.396  91.1  0.000  

hypothyroid  98.9  99.3  0.000  98.1  0.000  98.9  99.3  0.000  97.3  0.000  

iris  94.9  93.2  0.009  93.5  0.004  94.7  93.2  0.016  93.5  0.013  

lymphography  77.7  78.8  0.171  75.9  0.056  77.7  78.8  0.179  75.6  0.051  

F11 multiplexer  96.5  84.9  0.000  91.7  0.000  94.5  84.9  0.000  81.2  0.000  

primary tumor  36.3  36.5  0.430  35.6  0.056  38.5  36.5  0.013  38.6  0.387  
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attempts to create an expert system that is complete and consistent with regard to the 
data it is to be expected that it should not perform well with this data. Indeed, a one-
tailed matched pairs t-test reveals that DLG with the binomial value function 
significantly outperforms (breast cancer: p=0.024; primary tumor: p=0.000) DLG 
with the complete and consistent value function for these domains alone; whereas 
DLG with the complete and consistent value function significantly outperforms DLG 
with the binomial va lue function for the house votes 84 (p=0.000), hypothyroid 
(p=0.000) and F11 multiplexer (p=0.000) data sets.  

It is not apparent why DLGref2 with the complete and consistent value function 
should significantly improve upon the expert system created by C4.5rules for the 
hepatitis domain whereas the use of the binomial value function does not. As there is 
not a significant difference between the accuracies obtained by DLG alone (p=0.288) 
or DLGref2 (p=0.138) with each of these value functions for this data set, it is perhaps 
inadvisable to draw strong conclusions from the difference in this case.  

DLGref2 with the complete and consistent value function significantly outperformed 
DLGref2 with the binomial value function for the F11 multiplexer data (p=0.000) 
only. Other than the significant differences already noted for the breast cancer, 
primary tumor and F11 multiplexer data sets, the difference in accuracies between 
DLGref2 with the complete and consistent and with the binomial value functions were 
not significant (echocardiogram: p=0.212; glass: p=0.292; hepatitis: p=0.138; house 
votes 84: p = 0.293; hypothyroid: p=0.l69; iris: p=0.239; lymphography: p=0.479).  

The significant improvement in accuracy obtained by DLGref2 over that obtained by 
DLG alone when employing the binomial value function with the house votes 84 data 
can be attributed to the poor performance of DLG in this context.  

There are a number of possible reasons why the use of DLGref2 should lead to a 
significant decrease in performance for the hypothyroid data. This data set is 
distinguished by having the most cases, the most attributes, the highest proportion of 
cases belonging to a single class and the equal highest number of missing values. Of 
these, it is plausible that having the highest proportion of cases belonging to a single 
class is most relevant, as this enables C4.5rules to create a very simple expert system, 
essentially noting only exceptions to the policy of assigning all cases to the most 
common class. Due to the policy of requiring every rule to stand in its own right, 
DLG and DLGref2 create substantially more complex expert systems in these 
contexts.  

Table 3 presents the mean number of rules in the expert systems created by each 
system, along with the result of a one-tailed matched pairs t-test comparing 
differences between DLGref2 and the other two algorithms. As can be seen, DLGref2 
creates significantly more rules than C4.5rules alone in all cases. DLGref2 creates 
significantly more rules then DLG alone for all tests other than hypothyroid when 
using the complete and consistent value function and F11 multiplexer using the 
complete and consistent value function. For the former there is no significant 
difference whereas for the latter DLGref2 produces significantly less rules. These 
results are not surprising when one considers the manner in which C4.5rules 
optimises the rule sets that it produces and that the rules produced by DLGref2 reflect 
more information (C4.5rules’ rules and training set 2) than that used by either 
C4.5rules (training set 1) or DLG (training set 2) alone.  
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Table 3: Summary of rule set complexity (mean number of rules over 100 tests)  

4 Future Research  
The experimental results that have been obtained suggest that the refinement of the 
form of flat expert systems explored has been substantially mastered. It is of interest 
to examine whether the techniques can be extended to cover more complex forms of 
expert system. Of particular interest is the capacity of the approach to handle expert 
systems with multiple reasoning steps (the consequent of one rule can be used in the 
condition of another), probabilistic rules and rules optimised to take account of 
conflict resolution strategies.  

Extension to handle probabilistic rules should not be problematic. Using the binomial 
value function, the system is already developing rules that are not consistent with the 
training set. To be regarded as probabilistic rules, these need only be further evaluated 
to add a probability assessment. Such evaluation would, presumably, take account of 
both the probability assigned the unrefined version of the rule and the number of 
positive and negative cases in the training set covered by the refined rule.  

Extension to optimise the rule set with respect to the conflict resolution strategy 
employed should also be straight forward. To achieve this it should only be necessary, 
when refining a rule, to remove from the training set all cases covered by rules with 
higher precedence than the rule under examination. Depending upon the conflict 
resolution strategy employed, it may also be desirable to examine the relative priority 
of each rule. For example, with weighted rules it may be desirable to adjust rule 
weights before and/or after DLGref2 refinement, using techniques such as those 
developed by Rada (1985) and Caruana (1989). 

It is less apparent to what degree DLGref2 requires modification in order to apply to 
the refinement of rule sets with multiple reasoning steps. It could certainly be used 
without modification to refine the end point rules, those whose consequents do not 
appear in the conditions of further rules. In order to tackle multiple reasoning steps, it 
may be necessary to integrate DLGref2 with techniques, such as those of Ourston & 

 Complete & Consistent Noise 

Domain DLG
ref2 

C4.5 
rules 

p DLG p DLG
ref2 

C4.5 
rules 

p DLG p 

breast cancer  22.6  5.6  0.000  20.7  0.000  17.3  5.6  0.000  15.5  0.000  

echocardiogram  6.6  3.5  0.000  5.5  0.000  6.4  3.5  0.000  4.8  0.000 

glass type  13.7  7.2  0.000  12.1  0.000  13.8  7.2  0.000  10.9  0.000  

hepatitis  7.8  4.0  0.000  5.5  0.000  7.2  4.0  0.000  4.6  0.000  

house votes 84  11.0  4.4  0.000  10.2  0.000  8.5  4.4  0.000  6.1  0.000  

hypothyroid  12.7  7.6  0.000  12.7  0.407  12.7  7.6  0.000  10.1  0.000  

iris  5.3  3.4  0.000  4.9  0.000  5.7  3.4  0.000  4.5  0.000  

lymphography  12.1  6.4  0.000  9.2  0.000  11.7  6.4  0.000  8.0  0.000  

F11 multiplexer  27.7  18.6  0.000  32.6  0.000  27.6  18.6  0.000  25.4  0.000  

primary tumor  65.4  10.6  0.000  60.8  0.000  68.0  10.6  0.000  62.0  0.000  



Webb, G.I. DLGref2: Techniques for Inductive Knowledge Refinement,  
Proceedings of the IJCAI-93 Workshop on Machine Learning and Knowledge Acquisition Page 12 of 17  

Mooney (1990) that take account of the manner in which an alteration to one 
intermediate rule may generalise and/or specialise several other rules.  

5 Conclusions  
DLGref2 is a machine learning algorithm that supports inductive refinement of 
existing rules. DLGref2 creates a rule set consisting of rules that can each be 
interpreted in isolation of the rule set in which they are embedded. A precursor to this 
algorithm, DLGref, demonstrated the capacity in a wide variety of contexts to refine 
rule sets for which this condition held (Webb, 1992c). This study has demonstrated 
that the new version of the algorithm is able to improve the accuracy of initial rule 
sets for which this condition does not hold. This provides a strong indication of the 
capacity for the algorithm to operate with partial and incomplete rules. DLGref2 is 
able to operate both with data for which it is possible to create complete and 
consistent classifiers, and data for which it is not.  

DLGref2 is restricted with respect to the types of rules on which it is designed to 
operate. Rule-bases with multiple reasoning steps, probabilistic rules and rules 
optimised with respect to an evaluation function will be desirable for many 
applications. However, the forms of rules inferred by DLGref2 also have advantages 
in some contexts. In the context of the integration of machine learning with 
knowledge acquisition, the use of these style of rules increases the modularity and 
clarity of the rule sets, especially to those who are not highly trained knowledge 
engineers. It is precisely for use in such a context that DLGref2 is designed.  

Further, considered in the wider context of knowledge-base refinement algorithms, 
there are advantages to developing and thoroughly evaluating inductive knowledge-
base refinement algorithms in simple, readily controlled and manipulated contexts, 
before applying them in more complex contexts. Ongoing research is extending the 
techniques developed to date to more complex contexts.  

DLGref2 has been successfully incorporated in the Einstein knowledge acquisition 
system. This system enables a human expert to collaborate with a machine learning 
subsystem at all stages or the knowledge acquisition process. The success of DLGref2 
and the environment in which it is embedded demonstrates that the integration of 
machine learning and knowledge elicitation is feasible within the current state-of-the-
art.  
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Appendix A 

algorithm DLGref2  

Inputs:  rules: an initial set of rules for a single class  
POS: a set of examples belonging to that class  
NEG: a set of examples that do not belong to the class  
value: a function from rules to numeric values such that the higher the 
value the greater the preference for the rule. This function will usually 
take account of the number of positive and negative cases covered by 
the rule.  

Output:  rules: a revised set of rules for the conclusion  
for r is set to each rule in rules in succession  

if r covers no negative cases  
remove from POS all cases that r covers  

end if  
end for  
for r is set to each rule in rules in succession 

if r covers negative cases  
spec_rule <- induce_rule (covered_cases(r,POS), NEG, value)  
if spec rule is not if FALSE then positive  

r <- select_rule_from_region_of_maximal_cover(r, spec_rule)  
end if  
remove from POS all cases that r covers  

end if  
end for  
while POS is not empty  

new_rule <- induce_rule(P0S, NEG, value)  
if new_rule  is if FALSE then positive  

remove all remaining cases form POS  
else  

new_rule <- select_rule_from_region_of_maximal_cover(if TRUE then positive, 
new_rule)  
remove from POS all cases that new_rule covers  
add new_rule to rules  

end if  
end while  

algorithm induce_rule  

Inputs:  POS: a set of examples belonging to that class  
NEG: a set of examples that do not belong to the class  
value: a function from rules to numeric values such that the higher the 
value the greater the preference for the rule This function will usually 
take account of the number of positive and negative cases covered by 
the rule.  

Output :  rule: a revised set of rules for the conclusion  
rule <- if false then positive  
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for c is set to each case in POS ordered from most to least central  
r <- least_generalisation(rule, c)  
if r covers no cases in NEG  

rule<- r  
exit from the for loop without examining any more cases  

end if  
end for  
if rule ≠ if false then positive  

for c is set to each case in POS ordered from least to most central  
r <- least_generalisation(rule, c)  
if r covers no cases in NEG  

rule<- r  
end if  

end for  
end if  

algorithm select_rule_from_region_of_maximal_cover  

Inputs:  gen_rule: a rule representing the most general bound of the version space to be 
explored  

 spec_rule: a rule representing the most specialised bound of the version space 
to be explored. This rule must be a specialisation of gen_rule.  

Output:  rule: a rule from within the version space that is as general as possible while 
covering no more negative cases than spec_rule.  

Re-express gen_rule and spec_rule in conjunctive normal form.  
while spec_rule ≠  gen_rule  

for each conjunct c in the condition of spec_rule  
if deleting c from spec_rule increases spec_rule’s cover of negative cases  

add c to the condition of gen_rule  
end if  

end for  
for each conjunct c in the condition of spec_rule  

if c is not in the condition of gen_rule and adding c to the condition of gen_rule does not 
decrease the negative cover of gen_rule   

remove c from spec rule  
end if  

end for  
find the conjunct c from the condition of spec_rule that is not in the condition of gen_rule 
such that when c is added to the condition of gen_rule negative cover is maximised 
remove c from spec_rule  

end while  
rule <- gen_rule  
 

least_generalisation(rule, case) returns a least generalisation of the rule against the case. A 
rule l is a least generalisation of rule r against case c iff  

• l is a generalisation of r;  

• l covers c; and  
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• there is no generalisation of r that is also a specialisation of l and which also covers c.  

The centrality of a case c from a set of cases S is measured by  
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∑
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where  

• #S is the number of cases in S;  

• S i  is the ith case in S according to any arbitrary ordering of cases; and  

• ∑
=

=
n

i

ii badistbadist
1

2),(),(  

where  

- n is the number of attributes in the domain; and  

- dist(a i , b i ) represents the distance between the values of the ith attribute for a and b.  

To prevent bias arising from the use of different scales for each attribute, the values of each 
attribute are re-scaled to a value between 0 and 1 inclusive. This can be achieved for ordinal 
attributes by the formula  

min'max
min

−
−

=
val

scaled  

where val is the unscaled value and min and max are the minimum and maximum values for 
the attribute, respectively.  

For categorical attributes, it is not appropriate to consider the space defined by the dimension 
as Euclidean. Rather, all points in the dimension should be considered equidistant to all other 
points. The distance between any two different categorical values for the same attribute 

equals 
n
1

, where n is the number of values for the attribute.  

It is also necessary to consider attributes that can assume both categorical and ordinal values. 
This arises in when an ordinal attribute may also assume the value unknown. In this 
circumstance, the value unknown is assumed to be equidistant from all other values for the 

attribute, the distance being
cases

unknown
#

#
, where #unknown is the number of cases for which 

the value of the attribute is unknown and #cases is the total number of cases in the training 
set. Ordinal values are scaled by the formula  

cases
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#
.

minmax
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−

=  

where val is the unscaled value, #known is the number of cases for which the value of the 
attribute is not unknown, #cases is the total number of cases and min and max are the 
minimum and maximum values for the attribute, respectively.  


