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Abstract 

This paper describes an application of machine learning to student modelling. Unlike 
previous machine learning approaches to student modelling, the new approach is based on 
attribute-value machine learning. In contrast to many previous approaches it is not 
necessary for the lesson author to identify all forms of error that may be detected or to 
identify the possible approaches to problem solving in the domain that may be adopted. 
Rather, the lesson author need only identify the relevant attributes both of the tasks to be 
performed by the student and of the student’s actions. The values of these attributes are 
automatically processed by the student modeler to produce the student model. 

 

1. Introduction 

It is possible to describe the cognitive system at many levels of detail. A description in 
terms of neural interaction provides a very low level description.  Various levels of 
description of symbolic processing provide intermediate levels of description. The highest 
level of description provides a function mapping cognitive inputs to cognitive outputs 
without attempting to describe the precise internal mechanisms that cause the particular 
mapping.  Feature Based Modelling (FBM) uses attribute-value machine learning to 
produce a model at this latter, highest possible, level of detail. 

Cognitive modelling at the level of input and output contrasts with most previous 
approaches to cognitive modelling which have attempted to produce a model describing 
the internal operation of the cognitive system (Brown & Burton, 1978; Clancey, 1987; 
Goldstein. 1979 Reiser, Anderson & Farrell, 1985: Sleeman, 1984; Stevens, Co llins & 
Goldin, 1982; VanLehn, 1982.) 

To appreciate the details of FBM, it is necessary first to review some of the basic 
principles of attribute-value machine learning. 

2. Attribute-value machine learning 

Attribute-value machine learning involves developing procedures for classifying objects.  
Those objects are described by vectors of attribute-values.  A classification procedure 
maps vectors of attribute values onto discrete classes. 
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Research into attribute-value machine learning has been conducted in two contexts - the 
induction of decision trees (Quinlan, 1986b); and the induction of class descriptions, 
expressions that denote a class of objects. Michalski’s (1984) Aq algorithm is an example 
of a machine learning algorithm that learns class descriptions- In the context of attribute-
value machine learning, a class description is a partial description of a vector of attribute 
values that is associated with a class.  Any object represented by a vector of attribute 
values to which the description applies is covered by that description.  Any object covered 
by a class description is deemed to belong to the class with which the description is 
associated. 

Most machine learning systems examine a set of examples, called the training set, in order 
to develop a classification procedure that correctly classifies the entire set.  Some systems, 
however, make allowance for the possible presence of noise (inaccuracies) in the training 
set and allow the classification procedure to mis-classify some examples from the training 
set if there is evidence that the details of that example are inaccurate (see, for example, 
Quinlan, 1986a) 

Where more than one classification procedure will adequately classify all examples, 
alternative classification procedures are usually evaluated on a criteria that measures the 
simplicity of the procedure.  A more simple classification procedure is usually preferred to 
a more complex classification procedure. 

An important observation about class descriptions is that they can be partially ordered in 
terms of generality (Mitchell, 1977.)  Class description A is a generalization of class 
description B if A necessarily covers every case that B covers and A may cover cases that B 
does not cover. If A is a generalization of B, then B is a specialization of A. 

3. Feature-Based Modelling 

FBM is an attribute-value machine learning approach to cognitive modelling. It describes 
the inputs to the cognitive system in terms of attribute values and develops class 
descriptions that map those inputs onto symbolic descriptio ns of the cognitive system’s 
outputs. 

The attribute values necessary to describe the cognitive system’s inputs are selected by the 
designer of the modelling system.  These generally consist of a description of the task on 
which the subject is engaged and salient aspects of the context in which that task is being 
tackled.  Each such attribute value is called a task feature.  An attribute of which a task 
feature is a value is called a task feature choice. 

The outputs of the cognitive system are also described as a vector of attribute values.  Each 
of these attribute values is called an action feature.  The attribute of which an action 
feature is a value is called an action feature choice. 

The relationship between features and feature choices is described using a knowledge 
representation formalism called the feature network (Webb, 1988.) 
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The objective of FBM is to form for each action feature the set of all most general class 
descriptions that describe tasks for which the action feature will apply to the subject’s 
actions.  Each such class description is called an association. 

An association relates a set of task features to a single action feature. It indicates that when 
every one of the task features is present for a task and the subject is able to produce the 
action feature, s/he will do so. An association of a set c task features T with action feature 
a is written as T→a. 

Association A→a is more general than association B→b if and only if a = b and there are 
potential tasks to which A applies to which B does not apply and no potential tasks to 
which B applies and A does not apply. This will always be the case when A is a subset of 
B. 

Unlike most machine learning algorithms, FBM does not seek to develop the simplest 
model that correctly classifies all examples.  If this were the case, it would seek to uncover 
the smallest set of associations such that for every example of an action feature being 
present during execution of a task, an association existed for that action feature whose task 
features were a subset of the task’s features.  Instead, FBM develops a model of all most 
general associations that are supported by the evidence.  That is, every association 
supported by the evidence is included in the model unless there is a generalization of that 
association also supported by the evidence. 

The model includes all most general associations so as to provide consistency over time.  
This is because the use of a minimal set of associations frequently results in a single 
example causing the formation of a new model that has little in common with the model 
held before consideration of that example.  In the face of such frequent dramatic revisions 
to the cognitive model, it is extremely difficult for a system to provide consistent 
interactions with the subject of the model.  By contrast, under the FBM approach, most 
revisions to the model involve generalizing or specializing a small number of associations.  
This leads to gradual changes in the cognitive model.  Each successive state of the model 
relates to the previous state in a manner that directly reflects the content of the most recent 
example made available to the system.  

As FBM uses induction to detect the associations, it is not necessary to identify in advance 
the bugs that a student may adopt.  The student’s bugs are identified at run time through 
the use of machine learning without reference to a library of possible bugs. 

4. Noise 

In developing an FBM model it is necessary to allow for the possibility of noise in the 
examples available to the system.  Noise can be introduced by a number or mechanisms.  
Inattentiveness may cause a subject to perform in a manner that is not representative of 
her/his underlying approach to a type of task.  A simple slip, such as pressing the wrong 
key on a keyboard, may also introduce inaccuracies. 

FBM accommodates this possibility by allowing an association to be formed despite the 
existence of a small number of counter-examples and by requiring a minimum number of 
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positive examples before an association can be formed.  The criterion for accepting an 
association T→a refers to two quantities -  

1. P, the number of times that the task features in T have been present and the subject 
could have produced action feature a; and 

S, the number of times that the task features in T have been present and the subject has 
produced action feature a. 

Current implementations of FBM accept that there is sufficient evidence for an association 

if 3≥P  and 8.≥
P
S . The first condition seeks to ensure that sufficient examples have been 

encountered to demonstrate that the apparent association is not the result of noise.  The 
second condition seeks to establish that sufficient of the examples support the association 
while allowing some counter-examples as a result of noise.  These conditions have been 
developed by trial and error and provide good performance in practice. 

On the face of it, allowing up to 20% of the evidence relating to an association to be 
contra-indicative might appear likely to lead to accepting associations that are overly 
general.  However, a number of additional measures guard against this possibility. 

5. Contra-indicative associations 

Assuming that there are regularities in the operation of the cognitive system being 
modelled, if an association T→a is overly general then there will be regularities in counter-
examples that are covered by T→a.  If the relevant task features are available to the 
modelling system, these regularities will be represented in the student model by an 
association between a specialization of T and a feature other than a that belongs to the 
same feature choice as a.  If such a contra-indicative association exists then T→a is 
rejected.  As a result, a specialization of the rejected association will be accepted that does 
not cover the contra-indicative examples. 

6. Appropriate and inappropriate associations 

It is important to realize that many associations will be appropriate.  That is, they will be 
associations that will be adopted by the ideal subject.  For example, when modelling the 
cognitive system of a learner driver it would be appropriate for there to be an association 
between the task features that represent approaching a red traffic signal and an action 
feature that represents applying the brake. 

By contrast, some associations will be inappropriate.  It should be noted that an 
association T→a may be inappropriate even if a is appropriate to many of the tasks 
covered by T.  For example, when modelling the cognitive system of a learner driver it 
would be inappropriate for there to be an association between the task features that 
represent approaching a traffic signal and an action feature that represents applying the 
brake, even though it is sometimes appropriate to apply the brake when approaching a 
traffic signal.  
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In most circumstances, inappropriate associations will be of greater interest than 
appropriate associations. 

An association T→a is flagged as inappropriate only if the student has exhibited a or a task 
covered by T for which a was inappropriate. 

Aside from allowing the system to determine which associations are appropriate and 
inappropriate, this measure also prevents the system from acting upon associations that are 
overly general as a result of having not yet encountered a counter-example.  For instance, 
if the subject has only approached red traffic signals and has acted appropriately by 
applying the brake each time then the evidence to hand would support an association 
between approaching a traffic signal and applying the brake.  However, this association 
would not be flagged as inappropriate as it had not been demonstrated in an inappropriate 
context. 

7. Viewpoint independence 

Most domains can be tackled from multiple viewpoints (Wenger. 1987.). Substantially 
different sets of operators and strategies can provide equally valid solutions for tasks from 
a single domain.  Even for such a simple domain as elementary subtraction substantially 
different solution methods are widespread (Fawcett & Cummins, 1970.) 

This has profound implications for approaches to cognitive modelling that seek to develop 
accurate models of the internal operation of the cognitive system.  In order to determine 
which operators a subject applies incorrectly it is first necessary to determine which 
viewpoint is being applied.  Otherwise, the operators that it is assumed are being applied 
incorrectly may bear no relationship whatsoever to those utilized by the subject.  As it is 
not possible to directly observe the cognitive operators that a subject applies to a task, this 
is a problem of enormous complexity that is yet to be successfully tackled. 

By contrast, FBM does not need to place the subject within a viewpoint.  Nor does it need 
to deal with unobservable internal cognitive entities.  It deals solely with observables, the 
input and output to the cognitive system.  The effect on the relationship between the 
cognitive input and output of the viewpoint that the subject adopts can be evaluated 
without the need to identify that viewpoint. 

Closely related to the need to locate a subject within a viewpoint is the requirement of 
many approaches to cognitive modelling for a pre-specified library of possible correct and 
incorrect cognitive operators and strategies.  A typical example of such an approach is the 
bug library of the BUGGY system (Brown & Burton 1978.) 

FBM has no such requirement.  It is not necessary to identify the possible bugs that a 
subject may adopt.  Rather, it is only necessary to identify in advance the aspects of 
cognitive input and output that are required to identify the bugs.  The precise description of 
each bug, in the form of an associa tion, will be automatically generated when and if 
required. 
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8. Existing implementations 

FBM has been implemented in four intelligent educational systems.  The first 
implementation is an off- line student modelling sub-system for the DABIS knowledge- 
based tutoring system (Webb, 1988.)  Being off- line, the student model is not available to 
the tutoring system and so cannot be used to manage interactions with the student.  The 
primary value of the modelling sub-system has been to demonstrate that FBM produces 
credible models and to provide models for use by the teacher managing the system.  The 
major lesson to have utilized this system examines English word classes for Linguistics 
students. 

Amato & Tsang (1988) have incorporated FBM in a piano scale tutor.  Each task involves 
playing a scale on an electronic keyboard.  Task features include the appropriate tonic, 
hand motion, number of octaves, touch and tone of scale.  Action features describe the 
tonic, hand motion, number of octaves, touch and tone of the student’s attempt to play the 
scale.  The model is used to generate advice and to select appropriate scales for the student 
to practice. 

The English word classes lesson and the piano tutor have demonstrated the application of 
FBM to classification tasks and to complex skills.  The third and fourth systems to be 
developed demonstrate the application of FBM to problem solving domains.  The 
Unification Tutor (Webb, Cumming, Richards & Yum, 1989) examines the unification of 
terms from the Prolog programming language.   The student is presented with a pair of 
Prolog terms and asked to provide a most general unifier for those terms.  Task features 
describe the pairs of terms.  The student model is used both to select tasks for the student 
to examine and to generate advice.  In the initial implementation of the system, this advice 
takes the form of describing an association and exhorting the student to revise her/his 
approach to tasks to which the task features apply. 

 

Enter a most general unifier for the following terms or type none, ? or exit. 
second(value(z), u) 
second(E, E) 

=>{E=value(z) ,E=u} 

It appears to me that when two terms have a variable appearing more than once opposite 
terms that are different you create two substitution pairs with the same variable on the left 
of each.  
You should never create two substitution pairs with the same variable on 
the left of each. 

Perhaps you should reconsider how you tackle such problems. 

My answer is none. 

Press space to continue. 
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Figure 1: An interaction with the Unification Tuto r 

 

The Unification Tutor illustrates the viewpoint independence of FBM. The Unification 
Tutor does not incorporate assumptions about the subject’s viewpoint.  The only tie to a 
particular viewpoint is a description of an algorithm for unification that is available as part 
of a help facility.  The modelling system does not assume that this algorithm is being 
applied and the feedback provided to the student in no way relates to the algorithm.  
Indeed, the student need not even consult the help facility and may remain quite unaware 
of the algorithm. 

Figure 1 shows a typical interaction with the Unification Tutor.  The Tutor presents two 
terms to be unified.  The student’s response is underlined.  A range of associations are 
developed as a result of this interaction all those with a set of task features that is more 
general than {FUNCTORS_ARE_IDENTICAL, 
ALL_INDIV1DUAL_ARGUMENTS_UNIFY, 
ARGUMENTS_OPPOSITE_A_VARIABLE_ARE_DIFFERENT} and more specific than 
{ARGUMENTS_OPPOSITE_A_VARIABLE_ARE_DIFFERENT} associated with each 
of the task features PROVIDE_A_UNIFIER and PROVIDE_MULTIPLE_BINDINGS.  
The association with the most general set of task features and most specific action feature 
is chosen - {ARGUMENTS_OPPOSITE_A_VARIABLE_ARE_DIFFERENT} 
→PROVIDE_MULTIPLE_BINDINGS.  Suitable student model based feedback is 
provided that relates to this association.  Note the viewpoint independence of the 
interaction - no assumptions are made about the student’s viewpoint of the domain.  

The extremely crude current use of the student model will be upgraded in future versions 
of the system. One obvious measure to incorporate is to offer to demonstrate to the student 
methods for tackling the types of task that that an association predicts the student will 
tackle incorrectly. 

The Unification Tutor has been used successfully in third year Computer Science courses 
at La Trobe University and Deakin University.  Formal experimental comparisons of 
versions of the system that utilize the FBM model and those that do not have shown better 
performance for students using versions incorporating the model (Webb, Cumming. 
Richards & Yum, 1990.)  However, the size of the groups involved and the differences in 
performance have been too small for the results to be statistically significant. 

The fourth system to incorporate FBM is a modelling system for student’s performing 
elementary subtraction problems (Kuzmycz, 1990.)  This system is able to detect all of the 
most common bugs identified by Brown & Burton (1978.)  The system was evaluated on a 
class of 23 Year Four (eight to nine year old) students.  These students were given four 
tests at weekly intervals.  After the first test, the student model was used to produce the 
subsequent tests with the aim of refining the model.  After analysis of the first three tests, 
the model was used to generate predictions about the student’s solutions on the fourth test.  
Despite this test concentrating on aspects of the student’s subtraction ability for which the 
system could determine that its model required refinement, 97% of the system’s 
predictions were correct. 
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More detailed evaluation of the Unification Tutor and the Subtraction Modeler is on going. 

9. Scope and limitations 

As demonstrated by the range of domains to which it has been applied, FBM has wide 
scope.  It has been successfully applied to a classification task, a manual skill and problem 
solving domains. 

However, a number of potential shortcomings need to be addressed. 

The computational complexity of the methodology increases exponentially with the 
number of task features, although the increase with additional action features is only linear.  
While this may become a serious problem as FBM is applied to more complex domains, it 
has not yet proved to be a difficulty.  The Unification Tutor employs 22 task features and 
14 action features.  During use at La Trobe University in 1989 on a heavily loaded 
Pyramid 90 mx the average CPU time spent on updating the student model after a task was 
3.4 seconds (8.3 seconds real time.)  As student modelling was performed while the 
student was reading domain model based comments provided by the tutor, the experienced 
delay as a result of modelling was minimal.  Further, a re- implementation of the modelling 
system is in progress which is expected to improve dramatically on the computational 
performance of the existing system. 

Another shortcoming of the current methodology is that it is slow to respond to a change in 
the subject’s approach to a domain.  Consider the situation where the student has adopted 
an erroneous approach to a domain and an association reflecting this approach has been 
formed on the basis of 100 positive examples.  If the student now changes her/his approach 
to the domain, at least 21 negative examples will be required before the association will be 
rejected.  More than 21 negative examples may be required as some examples of the new 
approach are likely to be positive examples of the association.  Further, if the new 
approach is also erroneous and differs substantially from the previous approach, large 
numbers of positive associations may be required before an association reflecting the new 
approach can be developed. 

Consider a FBM model of a learner driver who has applied the brake every one of the 100 
times s/he has approached a traffic signal.  An association will have been formed between 
approaching a traffic signal and applying the brake.  S/he now revises her/his approach to 
driving and only applies the brake when approaching a red or amber traffic signal.  If 50% 
of traffic signals approached are green, it will take another 52 examples before the old 
association is rejected. 

To overcome this problem, the next implementation FBM will discount the value of older 
examples so that greater weight will be placed on more recent examples.  As a result, the 
model will more closely correspond to the subject’s recent approach to the domain.  
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10. Conclusion 

In contrast I most previous approaches to cognitive modelling, FBM does not attempt to 
produce a model of the internal operation of the cognitive system.  Instead, through the 
application of attribute value machine learning, it is able to produce detailed models at the 
level of cognitive input and output. 

It would clearly be preferable to have accurate models of the internal operation of the 
cognitive system.  Such models could support more powerful educational interactions than 
can be provided by FBM.  However, it is not always feasible to create such models. 

FBM can create accurate high level cognitive models that are computationally inexpensive 
to develop without the need to anticipate the forms of bug that may be encountered or the 
student’s approach to problem solving in a domain.  These models have been successfully 
utilized in computer based courseware in four widely differing domains. 
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