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Abstract 

Previous implementations of the Aq algorithm have used rule optimisation search strategies to 
attempt to develop optimal classification procedures. These strategies involve generating 
successive characteristic descriptions each of which is individually of maximal value. This is 
contrasted with theory optimisation search strategies which, instead, generate successive complete 
classification procedures from which those with the maximal value are selected. These two 
strategies have been applied to the domain of the diagnosis of Immunoglobulin A Nephropathy 
disease. The theory optimisation strategy was observed to out perform the rule optimisation 
strategy. 

1 Introduction 
The two key components of a data driven machine learning system are its classification language 
and its search algorithm. The classification language is a language in which classification 
procedures can be expressed. This defines the classification procedures that the system can 
produce. Typical examples of classification languages are predicate logic [1] and decision trees 
[2]. 

The search algorithm takes as input a training set, a set of examples of correct classifications of 
instances from a domain. The training set is used to select one of the classification procedures that 
can be described by the classification language. The algorithm attempts to select a classification 
procedure that will correctly classify all instances from the domain from which the training set is 
drawn. 

A search algorithm usually attempts to maximize two measures - 

• the number of instances from the training set that are correctly classified by the 
classification procedure; and  

• the intrinsic value of the classification procedure. 

Intrinsic value is primarily based on the simplicity of the classification procedure. It is generally 
accepted that the more simple classification procedure is preferable to the more complex [3]. 

The relative weights of these two measures reflect the degree of noise that is expected in the data. 
If no noise is expected then intrinsic value is usually used as a secondary measure to select 
between theories that classify the example set equally well. 

Measures of the complexity of a classification procedure are not self-evident. For example, is a 
predicate logic statement in conjunctive normal form containing a two disjuncts that each contain 
three conjuncts more complex than a statement containing three disjuncts each of which contains 
two conjuncts? What are the relative complexities of two predicates (such as male(X) and 
olderthan(X, 25))? 

Criteria for assigning the intrinsic value of a classification procedure and for weighing the intrinsic 
and the accuracy with relation to the training set are called classification procedure evaluation 
criteria. 

Pre-publication draft of a paper which appeared in the Proceedings of the First Japanese Knowledge 
Acquisition for Knowledge-Based Systems Workshop (JKAW ’90), Ohmsha, Tokyo 
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It might be thought that, given a classification procedure evaluation criteria, the rest is trivial - a 
system need only search the space of classification procedures to find the procedure that 
maximizes the criteria. This is indeed possible for attribute-value machine learning where all 
attributes are discrete [4]. It is also possible where no disjunction is required [5]. However, where 
disjunction is required and ordinal attributes or structural relations are allowed by the language, the 
number of potential theories usually precludes exhaustive search. As a result, heuristic search 
strategies are usually employed. 

The Aq algorithm [6] is a very successful data driven machine learning algorithm. It can be 
described as follows. The input is a set of instances divided into POS (instances belonging to the 
class of interest) and NEG (instances not belonging to the class of interest.) The output is a set of 
characteristic descriptions for the class. 

Algorithm: Aq 

Input: POS (a training set of instances belonging to the class of interest) 
 NEG (a training set of instances not belonging to the class of interest) 
 criteria (classification procedure evaluation criteria) 

Output:   R (a set of characteristic descriptions for the class.) 
initialize R to empty. 
while POS is not empty 

 randomly select an instance i from POS 
 select a characteristic description c that covers i and maximizes criteria. 
 remove from POS all instances covered by c. 

 add c to R 
end while. 
simplify R using both general and domain specific rules. 

 
To obtain a complete classification procedure for a domain, the above algorithm is applied to each 
class in the domain, with POS and NEG set accordingly. Any new instance covered by a 
characteristic description so formed is deemed to belong to the class for which that characteristic 
description was developed. 

It should be noted that the above is not a strict expression of the Aq algorithm which specifies that 
all most general characteristic descriptions that cover c and cover no instances in NEG should be 
generated at step 2, and that step 6 should select the subset of the characteristic descriptions so 
generated that maximizes the evaluation criteria. However, as noted above, an exhaustive search, 
which is required by this latter approach, is not computationally feasible for many domains. As a 
result, the exhaustive search is replaced in practice by the above algorithm with a heuristic search 
employed at step 2 that attempts to find the same characteristic description as would be found by 
an exhaustive search. 

The heuristic search usually employed is a beam search. A beam search maintains a set of a 
maximum size, n, which contains the best n characteristic descriptions discovered to date. This set 
is called the beam. Successive cycles of the search attempt to refine the candidates in the beam, 
replacing current candidates with new candidates as better characteristic descriptions are 
discovered. 

Two general strategies are usually employed. The beam may be seeded by the set of most general 
characteristic descriptions that cover the selected example. The search then considers successive 
specializations of candidates in the beam [7]. Alternatively, the beam may be seeded with the most 
specialized characteristic description that covers the selected example. In this ease the search 
considers successive generalizations of candidates in the beam [8]. 

A version of the latter strategy is the ROA algorithm (below.) Note that this algorithm constrains 
the search by only considering generalizations that expand the number of instances covered. This 
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is achieved by only generalizing a rule by a least generalization [9] that causes the characteristic 
description to cover a new positive instance. 

It can be seen that Aq attempts to construct the best theory by attempting to select successive 
characteristic descriptions each of which individually maximizes the given evaluation criteria. This 
is a rule optimisation search strategy. This type of strategy is subject to the flaw that individual 
characteristic descriptions that rate highly will not necessarily form a classification procedure that 
rates highly. 

An alternative strategy is to generate successive complete classification procedures and to select 
that which maximizes the evaluation criteria. This is a theory optimisation search strategy. The 
TOA algorithm (below) is a modification of the ROA algorithm that utilizes theory optimisation. 

It should be noted that the strict Aq algorithm, which generates all most general characteristic 
descriptions that cover each case examined, is a theory optimisation strategy, as an optimal theory 
is selected from the set of characteristic descriptions that are generated. The strict Aq algorithm 
differs from the TOA algorithm, however, in. that the TOA algorithm generates successive 
complete theories and selects between these. This strategy proves to be computationally efficient 
even with respect to continuous attributes. 

Note that when width = 0, both the ROA and TOA algorithms perform identically. 

Algorithm: ROA (Rule optimisation algorithm) 

Input: POS (a training set of instances belonging to the class of interest) 
 NEG (a training set of instances not belonging to the class of interest) 
 criteria (an evaluation criteria) 

 width (an integer specifying the maximum width of the beam) 
Output: R (a set of characteristic descriptions for the class.) 
initialise R to empty. 

while POS is not empty 
 randomly select an instance i from POS. 
 initialise beam with the most specific characteristic description that covers  i 

 for x = each instance in POS other than i, in random succession 
    initialise beam* to an empty list. 
    for y = each characteristic description in beam in succession 

  add the least generalization of y that covers x to beam*. 
    end for. 
    add beam* to beam. 

if beam contains more than width characteristic descriptions remove those that 
rate lowest according to criteria until only width characteristic descriptions remain. 

 end for. 

 remove from POS all instances covered by c. 
 add c to R 
end while. 

simplify R using both general and domain specific rules. 

2 Evaluation 
To compare the algorithms they were implemented on a Sun 4/60 SPARCstation 1 and applied to 
the diagnosis of Immunoglobulin A Nephropathy disease. This domain was selected because it 
poses a difficult data driven machine learning task. Each instance is described by 37 attributes 
specifying relevant clinical information. For only 17 of these attributes are the values known for all 
instances. Only 276 instances are available. For no instance are all attribute values known. Of the 
276 instances, 57 are positive and 219 are negative. 
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The data includes all patients for whom biopsies were conducted for renal conditions at Geelong 
Hospital from 1979 to 1989 inclusive. Clinical evaluation of a biopsy results in a definitive and 
objective diagnosis. Due to the objective nature of both the diagnosis and the attributes, the 
absence of noise from the data can be guaranteed. 

Algorithm: TOA (Theory optimisation algorithm) 

Input: POS (a training set of instances belonging to the class of interest) 
 NEG (a training set of instances not belonging to the class of interest) 
 criteria (an evaluation criteria) 

 width (an integer specifying the maximum number of theories to examine) 
Output: r (a set of characteristic descriptions for the class) 
initialise r to empty. 

repeat widthtimes 
    initialise r* to empty. 
    while POS is not empty 

      randomly select an instance i from POS 
      initialise c to the most specific characteristic description that covers i. 
      for x =  each instance in POS other than i, in random succession 

  set c* to the least generalization of c that covers x. 
if the value criteria assigns to c* is greater than the value criteria assigns to c set c 
to c* 

      end for. 
      remove from POS all instances covered by c. 
      add c to r 

    end while. 
    restore POS to its initial value. 
    if r* rates higher than r according to criteria set r to r*.  
end repeat. 

simplify r using both general and domain specific rules. 
Note that the algorithms as presented do not specify the evaluation criteria that are to be employed 
within a search. In order to test the algorithms, they were executed using simple evaluation criteria. 
The intended objective of these criteria is to develop the simplest possible classification procedure 
that correctly classifies all instances in the training set. Simplicity is measured by the number of 
characteristic descriptions in the classification procedure. 

The algorithm used to implement these criteria is listed below. Essentially, of any two 
classification procedures, one with no negative cover is preferred to one with negative cover. If 
neither has negative cover then the one with the highest positive cover is preferred. Of any two 
classification procedures with no negative cover and identical positive cover, the one with the 
fewest characteristic descriptions is preferred. Note, C  denotes the number of characteristic 
descriptions in C. 

Algorithm: CPEA (Classification procedure evaluation algorithm) 
Input: C (a set of characteristic descriptions) 
Output:  v (a value) 
if any characteristic description in C covers an instance in NEG then set v to 0 
else set v to the number of instances in POS covered by characteristic descriptions in C. 

add1 - 
C
1

to v 

As it does not relate to the difference between the two algorithms, the final step of ROA and TOA 
algorithms, refinement by general and domain specific rules, has been omitted. 
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The ROA and TOA algorithms were evaluated by application to a subset of the data and then 
evaluating the performance of the resulting classification procedure against the remnant of the 
data. In each test, instances were individually randomly selected for the training set with a 75% 
chance of inclusion. As both algorithms are sensitive to the order of instances in the training set, 
the data was randomly shuffled before each use. The algorithms were applied 100 times for each 
even setting of width from 0 to 20. 

To generate a complete classification procedure, the respective algorithms were applied twice to 
each training set, once with POS set to contain those instances diagnosed with Immunoglobulin A 
Nephropathy disease and once with POS set to contain all other instances. The characteristic 
descriptions formed were expressed as production rules and sorted in order of the number of 
positive cases that they covered from highest to lowest. During evaluation, the first rule to apply to 
a case was selected. 

The language used to express characteristic descriptions supported conjunctions of conditions each 
relating to a single attribute. For nominal attributes a condition tests whether the value for an 
attribute falls within a specified set of values. A missing value is treated as a distinct value. For 
ordinal attributes a condition either tests whether the value of an attribute falls within a specified 
range or requires that it is missing. 

The Appendix shows the output of a run of the TOA algorithm with width set to 20. 

Figures 1 and 2 chart the accuracies of the two algorithms at successive settings of width . As can 
be seen, as the setting of width increases, both algorithms show an initial increase in accuracy 
which appears to rapidly level out. The average accuracy over all runs of ROA was 79.1% and of 
TOA was 79.9%. 

Although these results suggest a modest advantage for TOA over ROA, this fails to take account 
of the fact that identical settings of width are not commensurate across the two algorithms. Rather 
than attempting to compare performance on the basis of performance for given setting of width, a 
more relevant measure is accuracy against computation time. Figure 3 compares the performance 
of the two algorithms on this basis. This comparison shows TOA consistently providing higher 
accuracy than ROA for equivalent expenditures of computation time. 

 
Each point represents the average accuracy over 100 runs at the specified setting of width. 

Figure 1: Rule optimisation accuracy 
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Each point represents the average accuracy over 100 runs at the specified setting of width 

Figure 2: Theory optimisation accuracy 

 

 
Each point represents the average accuracy and average computation time in CPU seconds over 
100 runs at a single setting of width [n = ROA, o = TOA] 

Figure 3: Comparative performance of ROA and TOA plotting accuracy against 
computation time. 

One measure of the power of an induction algorithm is to compare its performance against chance 
performance (the accuracy obtained by making random classifications.) With two classes, random 
performance would he expected to provide 50% accuracy. Both algorithms perform considerably 
better then this. 

Another interesting measure of the power of an induction algorithm is to compare its performance 
against the Default Classification Strategy (always classifying an instance as belonging to the most 
common class.) This extremely simple strategy gives an indication of the difficulty of obtaining 
high accuracies for a domain. For each of the experimental runs of the system, the accuracy 
obtained by the Default Classification Strategy was measured. Figure 4 compares the performance 
of the Default Classification Strategy and ROA and Figure 5 compares the performance of the 
Default Classification Strategy and TOA. These results show that both algorithms perform 
consistently better than the Default Classification Strategy with settings of width above two. 

The accuracy of the Default Classification Strategy equals the proportion of the data withheld for 
evaluation which belongs to the most common class. The variations observable in Figures 4 and 5 
in the performance of the strategy reflect random variations in the proportion of the most common 
class in the withheld data. Correspondences between variations in the proportion of the most 
common class in the withheld data and variations in performance of ROA and TOA that are 
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apparent in Figures 4 and S suggest that this is one of the factors affecting performance of both 
ROA and TOA. This accounts to some extent for the ragged nature of the performance curves for 
the two algorithms observable in Figures 1 to 5. 

A final comparison to draw between the two strategies is the number of characteristic descriptions 
that are produced. The evaluation criteria have been tailored to produce as few characteristic 
descriptions as possible on the assumption that this is a good measure of the simplicity of a 
classification procedure and that the simpler classification procedure is more likely to be accurate. 
Figure 6 plots the number of characteristic descriptions produced against computation time. As can 
be seen, TOA is considerably more successful than ROA in producing smaller sets of 
characteristic descriptions. 

 
Each point represents the average accuracy over 100 runs at a single setting of width 
 [n = Default, o = ROA] 

Figure 4: Comparative performance of ROA and the Default Classification Strategy 

 

 
Each point represents the average accuracy over 100 runs at a single setting of width 
[n = Default, o = TOA] 

Figure 5: Comparative performance of TOA and the Default Classification Strategy 

 



G.I. Webb (1990) Rule Optimization and theory optimisation: Heuristic Search Strategies for Data Driven 
Machine Learning 

  Page 8 of 12 

 
Each point plots the average number of characteristic descriptions produced against the average 
computation time in CPU seconds over 100 runs at a single setting of width 
[n = ROA, o = TOA] 

Figure 6: Comparative performance of ROA and TOA plotting number of characteristic 
descriptions produced against computation time  

 

It is worthy of note that the large reduction in the number of characteristic descriptions produced 
by TOA has not produced such a dramatic improvement in performance. The average accuracy of 
all runs of TOA was only 0.7% greater than the average accuracy of all runs of ROA. By contrast, 
the average number of rules produced by all runs of TOA was 8.0% smaller than the average 
number of rules produced by all runs of ROA. Further, comparing runs that produced comparable 
numbers of rules (such as TOA with width two and ROA with width four), ROA produces higher 
accuracy. This suggests that although TOA is considerably better at developing sets of 
characteristic descriptions that maximize the evaluation criteria, those criteria do not provide an 
ideal measure of the value of a set of classification procedure. TOA can be expected to provide 
even greate r improvements in accuracy over ROA when the evaluation criteria employed more 
adequately measure the relative worth of different classification procedures. 

3 Conclusion 
Previous approaches to the generation of classification procedures based on characteristic 
descriptions have utilized search heuristics that attempt to maximize the value of the entire 
classification procedure by finding a succession of characteristic descriptions each of which 
individually is of maximal value. This rule optimisation is achieved by generating multiple 
candidate rules and selecting the rule with the highest value. 

This strategy has been contrasted with a strategy that generates and selects between multiple 
candidate classification procedures. The theory optimisation strategy has the advantage that the 
final object of interest, the classification procedure, is the direct object of evaluation. However, the 
possibility remains that the single candidate classification procedure generation algorithm 
employed will not produce sufficient high value classification procedures for the strategy to be 
successful. 

This study has demonstrated that this possibility is not realized, at least for the domain of the 
diagnosis of Immunoglobulin A Nephropathy disease. For an extremely small set of data with high 
levels of missing values theory optimisation has out performed rule optimisation. 
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Appendix 

The following is output generated by the TOA algorithm with width set to 20. Each characteristic 
description is expressed as a production rule. The number of positive cases covered by each rule is 
listed in brackets at the end of the rule. 

 

IF 2<=AGE<=77 IF 15<=AGE<=72 
 100<=SYST_BP<=230  105<=SYST_BP<=210 
 60<=DIAST_BP<=120  60<=DIST_BP<=115 
 DYSPNOEA is T  H’PTYSIS is F 
 800<=U.RBC’s<=500000  BOWEL_SX is F 
 0.l0<=UTP<=23.13  0<=U.RBC’s<=33000 
 0.l0<=CRCL<=10.50  0.43<=UTP<=16.25 
 30.00<=S.CR<=680.00  0.l8<=CRCL<=3.23 
 3.0<=S.UREA<=30.6  70.00<=S.CR<=561.00 
 0.20<=C3<=1 96  3.2<= S.UREA<=43.8 
 0.03<=C4<=I.21  42<=TOT.PROT<=89 
 5.4<=HB<=16.6  28<=S.ALB<=52 
 3.8<=WCC<=31.8  7.4<=HB<=20.4 
 I00<=PL’TS<=648  4.3<=WCC<=11.0 
 5<=ESR<=142  140<=PL’TS<=280 
 ANF is unknown or NEG or P0S  ANF is unknown or NEG or P0S 
 ANTI-GBM is unknown or NEG or P0S  ANTI-DNA is unknown 
THEN DIAGNOSIS = other [45]  ANTI-GBM Is unknown or NEG 
 THEN DlAGN0SlS = other [25] 
 

 

 

IF 2<=AGE<=68 IF 15<=AGE<=66 
 90<=SYST_BP<=160  110<=SYST_BP<=230 
 50<=DIAST_BP<=100  65<=DIAST_BP<=160 
 DYSPNOEA is F  H’PTYSIS is F 
 H’PTYSIS is F  RASH is F 
 0<=U.RBC’s<=500000  WT_L0SS Is F  
 0.20<=UTP<=11.00  1000<=U.RBC’s<=640000 
 40.00<=S.CR<=112.00  0.10<=UTP<=6.79 
 IGG is unknown  0.50<=CRCL<=2.76 
 IGM is unknown  60.00<=S.CR<=1188.00 
 ANF is unknown or NEG or POS  3.5<= S.UREA<=18.9 
 ANTI-GBM is unknown  2.6<=IGA<=5.40 
THEN DIAGNOSIS = other [28]  11.7<=HB<=17.3 
   3.7<=WCC<=9.8 
   I66<=PL’TS<=299 
   ANF is unknown or NEG or P0S 
   ANTI-DNA is unknown 
   ANTI-GBM is unknown 
 THEN DlAGN0SlS = IGA_NX[24] 
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IF 2<=AGE<=79 IF 8<=AGE<=58 
 100=SYST_BP<=260  120<=SYST_BP<=180 
 60<=DIAST_BP<=150  65<=DIAST_BP<=100 
 ANOREXIA is T  OEDEMA is F 
 8000<=U.RBC’s<=500000  DYSPNOEA is F 
 0.62<=UTP<=22.69  H’PTYSIS is F 
 65.00<=S.CR<=1000.00  22000<=U.RBC’s<=500000 
 3.1<= S.UREA<=78.6  0.15<=UTP<=1.47 
 0<=TOT.PROT<=74  0.60<=CRCL<=3.58 
 0<=S.ALB<=51  47.00<=S.CR<=138.00 
 8.0<=HB<=15.1  2.5<= S.UREA<=7.9 
 ANF is unknown or NEG or POS   7.90<=IGG<=14.4 
 ANTI-GBM Is unknown or NEG or POS  0.90<=IGA<=3.20 
THEN DIAGNOSIS = other [24]  0.34<=IGM<=2.60 
   S.CHOL is unknown 
  S.TRIGLY is unknown 
   11.2<=HB<=16.3 
   4.4<=WCC<=16.0 
   174<=PL’TS<=550 
   2<=ESR<=41 
   ANF is unknown or NEG  
   ANTI-GBM Is unknown or NEG 
  THEN DlAGN0SlS = other[13] 

 

IF 4<=AGE<=78 IF 13<=AGE<=55 
 80=SYST_BP<=210  110=SYST_BP<=180 
 50<=DIAST_BP<=120  70<=DIAST_BP<=100 
 LOIN PAIN is F  HEADACHE is F 
 ANOREXIA is F  RASH is F 
 WT_L0SS Is F  ANOREXIA is F 
 0<=U.RBC’s<=500000  BOWEL_SX is F 
 2.44<=UTP<=28.97  112000<=U.RBC’s<=500000 
 30.00<=S.CR<=938.00  0.13<=UTP<=2.00 
 3.7<= S.UREA<=32.3  0.85<=CRCL<=3.32 
 9.5<=HB<=16.6  52.00<=S.CR<=270.00 
 4.6<=WCC<=13.6  3.9<= S.UREA<=12.0 
 187<=PL’TS<=590  S.CHOL is unknown 
 ANF is unknown or NEG or POS  S.TRIGLY is unknown 
 ANTI-GBM Is unknown or NEG  S.GLUCOSE is unknown 
THEN DIAGNOSIS = other [21]  11.0<=HB<=15.7 
   5.6<=WCC<=8.8 
   244<=PL’TS<=467 
   3<=ESR<=58 
   ANF is unknown or NEG or POS 
   ANTI-GBM Is unknown 
  THEN DlAGN0SlS = IGA_NX[8] 
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IF 11<=AGE<=76  6<=AGE<=72 
 105=SYST_BP<=200  SEX is M 
 70<=DIAST_BP<=115  90=SYST_BP<=200 
 H’PTYSIS is F  55<=DIAST_BP<=120 
 BOWEL_SX is F  RASH is F 
 5000<=U.RBC’s<=500000  BOWEL_SX is F 
 0.31<=UTP<=2.56  5000<=U.RBC’s<=114000 
 0.52<=CRCL<=2.12  0.22<=UTP<=1.60 
 50.00<=S.CR<=200.00  50.00<=S.CR<=1083.00 
 63<=TOT.PROT<=76  3.4<= S.UREA<=52.1 
 29<=S.ALB<=47  ASOT is unknown 
 S.GLUCOSE is unknown  S.CHOL is unknown 
 11.3<=HB<=17.5  S.TRIGLY is unknown 
 7.0<=WCC<=12.5  S.GLUCOSE is unknown 
 164<=PL’TS<=436  8.1<=HB<=13.5 
 1<=ESR<=118  3.2<=WCC<=24.6 
 ANF is unknown or NEG  100<=PL’TS<=433 
 ANTI-GBM Is unknown or NEG  ANF is unknown or NEG 
THEN DlAGN0SlS = IGA_NX[17]  ANTI-DNA is unknown 
  ANTI-GBM Is unknown or NEG 
 THEN DIAGNOSIS = other [7] 
   
 

 

IF AGE=11   
 SEX is M   
 110=SYST_BP<=240   
 55<=DIAST_BP<=130   
 HEADACHE is T   
 DYSPNOEA is F   
 H’PTYSIS is F   
 U.R.T.I. is T   
 ANOREXIA is T   
 BOWEL_SX is T   
 300000<=U.RBC’s<=500000   
 0.30<=UTP<=0.50   
 0.27<=CRCL<=1.47   
 100.00<=S.CR<=320.00   
 17.8<=S.UREA<=24.0   
 8.80<=IGG<=22.0   
 1.70<=IGA<=2.85   
 1.10<=IGM<=1.22   
 0.20<=C3<=2.08   
 0.18<=C4<=0.60   
 S.CHOL is unknown   
 S.TRIGLY is unknown   
 S.GLUCOSE is unknown   
 10.5<=HB<=11.0   
 7.4<=WCC<=8.4   
 460<=PL’TS<=608   
 36<=ESR<=55   
 ANF is NEG   
 ANTI-DNA Is unknown   
 ANTI-GBM Is unknown   
THEN DIAGNOSIS = other [2]   
 

 


