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Abstract 

This paper describes an application of established machine learning principles to student modelling. Unlike 
previous machine learning based approaches to student modelling, the new approach is based on attribute-
value machine learning. In contrast to many previous approaches it is not necessary for the lesson author to 
identify all forms of error that may be detected. Rather, the lesson author need only identify the relevant 
attributes both of the tasks to be performed by the student and of the student’s actions. The values of these 
attributes are automatically processed by the student modeler to produce the student model. 
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1. Introduction 

The development of knowledge-based systems has paved the way for intelligent tutoring systems (ITS) - 
systems whose purpose is the communication to learners of the knowledge in an internal knowledge-base 
(Wenger, 1987.) 

An important requirement of any such system is that it be able to evaluate the student’s mastery of the 
knowledge to be communicated.  Without the ability to evaluate the student’s mastery of a domain, an ITS 
will be unable to coordinate effectively its attempts at communication. 

Most intelligent tutoring systems maintain a record of their on-going evaluation of the student’s mastery of 
the subject matter.  This record is known as the student model.  Previous approaches to student modelling 
have described the student’s mastery of the domain as expert systems (Clancey, 1987; Sleeman, 1984; 
Reiser, Anderson & Farrell, 1985; Goldstein, 1979), scripts (Stevens. Collins & Goldin, 1982) and 
procedures (Brown & Burton, 1978.) 

An ITS has three potential sources of knowledge from which to construct a student model.  On the one 
hand, it has prior knowledge of the domain in the form of its knowledge-base.  A second knowledge source 
is prior knowledge about likely forms of error with regard to a domain.  This can take the form of a 
collection of possible errors (such as the bug libraries of Brown & Burton, 1978) or of constraints on the 
possible forms of error that may occur (VanLehn, 1982.)  Finally, the system has its observations of the 
student’s performance during the lesson. 

The modelling system must use induction, guided by the domain knowledge and knowledge of likely forms 
of error, to produce a student model that explains the observed behaviour. 

Although the discipline of machine learning has conducted extensive formal research into theories and 
methodologies for automated induction, few student modelling systems have taken advantage thereof. This 
paper examines how established machine learning principles can be applied to student modelling. 

Pre-publication draft of a paper which appeared in the Proceedings of the Third Australian Joint 
Conference on Artificial Intelligence (AI 89), pp 195-205. 
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2. Previous uses of Machine Learning in Student Modelling 

Two previous student modelling systems have incorporated general machine learning principles and 
techniques - ACM (Langley, Ohlsson & Sage, 1984) and LMS (Sleeman, 1984.) 

ACM diagnoses student understanding in the domain of elementary subtraction.  The student is presented 
with a simple subtraction problem and her/his answer is analysed. 

Analysis of each answer has two stages.  First, the student’s solution path is inferred.  To do this it is 
necessary to pre-define the problem space in which the student is working.  This is achieved by specifying 
a set of operators which the student may use.  A constrained search is conducted to determine the most 
plausible path through the search space to the observed answer. 

When ACM has a record of a number of such paths it is able to apply the second stage.  A discrimination 
net is constructed for each operator that specifies the conditions under which it is u sed. This enables the 
detection of differences between the correct restrictions on the use of the operator and the restrictions 
placed by the student. 

LMS operates in the domain of elementary algebra.  It has a library of rules and mal-rules.  Rules represent 
correct production rules for solving problems in the domain.  Mal-rules are erroneous versions of the 
correct rules.  The mal-rules used by the system have been identified by the domain expert.  A model of the 
domain is specified by a set of rules and mal-rules and an ordering for the application of those rules. 

Before interactions with a student LMS generates a set of all models that it will consider.  This set of 
models is restricted by both domain specific and pragmatic heuristics.  Problems are generated that 
discriminate between models.  The student’s responses are used to select which of the possible models best 
describes the student. 

A problem faced by both of these systems is that they rely on prior identification of operators that the 
student ma y apply.  Extensive studies of the domain of elementary subtraction have shown that even in 
such a simple domain students typically use greatly varied approaches (VanLehn, 1982.)  Neither of the 
above systems will be able to produce sensible models of a student who has a different viewpoint (Wenger, 
1987) of the domain from that of the system. 

3. Comparison with attribute-value Machine Learning 

One of the most highly developed areas in machine learning is induction from attribute-value data (Hunt, 
Marin & Stone. 1966.)  Examples are presented to the machine learning system described in terms of a 
vector of attribute values and a class.  The system develops a mapping from combinations of attribute 
values to classes based on the available examples.  When applied to a case (described in terms of a vector 
of attribute values) the mapping will predict a class for that case. 

Two main formalisms have been adopted for representing such a mapping.  Decision trees (Quinlan, 1986) 
are trees whose internal nodes represent tests on attribute values and whose leaves represent classes.  When 
a decision tree is applied to the vector of attribute values representing a case the tree is traversed starting 
from the root and ending at a leaf.  At each internal node the relevant test is applied.  The result determines 
a branch to follow leading to another node.  The leaf that is reached specifies the class for the case. 

The other major formalism that has been adopted is the characteristic description (Michalski, 1984.)  A 
characteristic description (in the context of attribute-value machine learning) can be any form of 
description of arrays of attribute values.  Characteristic descriptions are associated with classes.  When a 
case is examined, the characteristic description that best de scribes the array of attribute values for that case 
is selected and the associated class is assigned to the case.  Any characteristic description that is true of a 
case is said to cover that case. 

Characteristic descriptions can be reformulated as production rules.  To achieve, this, each characteristic 
description is treated as the antecedent of a rule.  The consequent of each rule specifies the class of any case 
whose vector of attribute values satisfies the antecedent.  This is determined from the class which is 
associated with the characteristic description that formed the antecedent of the rule.  When applied to a 
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case, the rule is selected whose antecedent is best satisfied by the cases attribute values.  The consequent of 
this rule assigns a class to the case. 

Characteristic descriptions can be partially ordered on generality (Mitchell, 1977.)  A characteristic 
description ∝ is a generalisation of another characteristic description β iff it is necessarily true that ∝ 

covers all cases that β  covers and that ∝ may cover some cases that β  does not.  If ∝ is a generalisation 

of β  then β  is a specialisation of ∝.  For example, X is red is a generalisation of X is red and X is 
rectangular  because the former must cover all cases covered by the latter and may cover cases not covered 
by the latter (namely, any red non-rectangular cases.) 

Attribute-value machine learning differs greatly from the forms of machine learning used by ACM and 
LMS.  Attribute-value machine learning can be used to produce a description of what decision will be made 
in a particular situation without regard for the cognitive processes that would occur in a human making that 
decision.  By contrast, both ACM and LMS attempt to develop a model of the procedures and strategies 
that a student adopts in order to reach a decision.  Clearly the latter is the harder of the two tasks. 

4. Feature Based Modelling 

FBM (Feature-Based Modelling) is an approach to student modelling whose core is the application of 
attribute-value machine learning techniques to student modelling.  This paper concentrates on this core 
aspect of FBM.  The approach is described in full by Webb (1989.) 

FBM describes the tasks that a student tackles as vectors of attribute values.  The student’s actions are 
described as classifications of those problems. 

FBM does not restrict the description of each student’s action to a single classification.  Rather, like the 
description of the tasks being tackled, the description of the student actions can take the form of a vector of 
attribute values.  Standard machine learning techniques can then be applied separately with each of these 
attributes being treated as the target of classification. 

An FBM model is able to describe the regularities between task attributes and action attributes.  It achieves 
this without having to produce a detailed model of the internal operations of the student’s cognitive system.  

For consistency with the ITS for which FBM was originally developed (Webb, 1988), the attributes that 
FBM considers are called feature choices and attribute values are called features. 

There are two types of features.  Task features describe the tasks that the student tackles.  It is intended that 
these features should provide a very broad description of the tasks, describing not only the formal problem 
solving features of the task but also any relevant features of the particular environment in which the task is 
tackled.  This is important as it will frequently not be possible to interpret a student’s actions correctly 
except in the context of factors external to the formal task being undertaken.  To provide an extreme 
example, if one student is copying another student’s solutions then it will nor be possible to create an 
accurate model of the former student without reference to details of the behaviour of the latter student. 

Action features describe the student’s performance when tackling a task.  Any aspects of the student’s 
behaviour which can be observed and which may be relevant to understanding their mastery of the domain 
may be included as an action feature. 

To clarify these concepts we will refer to a tutoring system in which this methodology is imbedded.  The 
Unification Tutor examines the unification of terms from the Prolog programming language.  This has been 
chosen as a simple yet non-trivial problem solving task. 

Each task is specified by two Prolog terms.  The student must either provide a most general unifier for the 
terms or state that the terms cannot be unified.  Table 1 lists some tasks and their task features. 
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Term 1 Term 2 Task Features 

x(X,X) x(a,Z) Two Compound Terms 

  The Terms are Different, 

  The Functors Have Identical Names, 

  The Functors Have Identical Arity, 

  The Terms Contain Variables, 

  A Variable Appears More Than Once, 

  No Variable Has Inconsistent Bindings, 

  No Variable Opposes Itself, 

  All Arguments Unify. 

x(X,X) X(a,b) Two Compound Terms 

  The Terms are Different, 

  The Functors Have Different Names, 

  The Functors Have Identical Arity, 

  The Terms Contain Variables, 

  A Variable Appears More Than Once, 

  A Variable Has Inconsistent Bindings, 

  No Variable Opposes Itself, 

  Not All Arguments Unify. 

Table 1: Some unification tasks and their task features. 

 

Table 2 provides some examples of tasks, the student’s responses and a selection of the action features 
exhibited by those responses. 

 

 

Term 1 Term 2 Answer Action Features 

x(X,X) x(a,Y) {X=a, Y=a} The Answer is Correct 

   The Terms Unify, 

   No Variable has Multiple Bindings. 

x(X,X) x(a,Y) none The Answer is Not Correct, 

   The Terms Do Not Unify. 

x(X,X) x(a,Y) {X=a, X=Y}  The Answer is Not Correct, 

   The Terms Unify, 

   A Variable has Multiple Bindings. 

x(X,X) x(a,b) none The Answer is Correct, 

   The Terms Do Not Unify. 

x(X,X) x(a,b) {X=a, X=b} The Answer is Not Correct, 

   The Terms Unify, 
    A Variable has Multiple Bindings. 

Table 2: Some responses and their action features. 
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The features used by the Unification Tutor and their meanings are described by Webb & Van der Klooster 
(1989.) 

The action features that describe appropriate actions for the student to perform in response to a task are 
called the appropriate action  features for that task.  The current implementations of FBM assume that only 
one action will be appropriate for a task and hence that only one consistent set of actions features will he 
appropriate.  However, this is not a necessary restriction on the methodology. 

Associations are the target of the machine learning component of FBM.  An association can be viewed as a 
production rule.  The antecedent is a set of task features and the consequent is a single action feature.  Each 
association represents the system’s determination that the given set of task features, whenever present, lead 
the student to act in the manner represented by the action feature. 

An association can be viewed alternatively as a characteristic description of the tasks for which a particular 
feature is present in the student actions. 

The aim of FBM is to produce a student model consisting of associations such that for any set of task 
features describing a task for the student, the system is able to predict all of the action features that d escribe 
the student’s response to the task. 

FBM uses generalisation to construct the set of associations from the observed relationships between sets of 
task features and individual action features.  In principle, the set of associations is the set of all most 
general characteristic descriptions ACCC n ⇒∧ ...21  such that for every task that exhibited task features 

nCCC ...21 ∧ , the student’s actions exhibited feature A . 

This differs significantly from most approaches to characteristic description machine learning which 
attempt to select a minimal set of characteristic descriptions that are capable of assigning the correct class 
to every example.  Using all most general characteristic descriptions increases the chance of forming 
multiple characteristic descriptions that apply to a single case but are associated with different classes.  On 
the other hand, it decreases the chance of relevant characteristic descriptions being excluded from the 
model on the grounds that a simpler model can be constructed. 

An even greater advantage of using all most general characteristic descriptions is that it decreases the 
probability that a new example will force a radical revision of the model.  If a minimal set of most general 
characteristic descriptions was used, once a choice between alternative characteristic descriptions was 
subsequently demonstrated to be incorrect, the inappropriate characteristic description would have to be 
removed from the model and another characteristic description inserted in its place.  This would result in 
frequent dramatic revisions to the student model. 

By contrast, when the set of all most general characteristic descriptions are included in the student model, 
most changes to the model will take the form of generalisations or specialisations of existing associations.  
An association will only be deleted when either the student’s treatment of the domain changes and the 
association is no longer supported, or if additional observations of the student allow the association to be 
specialised to a characteristic description which is itself a specialisation of another association in the model.  
Totally new associations are only added when the student’s treatment of the domain alters or when there 
have not previously been sufficient examples to warrant their inclusion.  This strategy leads to more 
gradual change in the student model which is more conducive to consistent and comprehensible 
interactions with the student. 

5. Allowance for noise 

A major problem encountered in student modelling is the presence of noise in the system’s observations of 
the student.  That is, in many cases the observable behaviour of the student will not be consistent with 
her/his actual comprehension and mastery of the domain.  Examples of such situations are slips, such as 
accidentally pressing the wrong key on the keyboard, and inattentiveness causing failure to take in and or 
process all of the relevant details. 
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As a result of noise it is possible that the associations that should be in student model will be either more 
generalised or more specialised than those that fully describe the observed behaviour. 

FBM addresses this problem by placing a requirement of sufficient evidence upon the associations that it 
will accept.  This allows associations to he accepted under some circumstances in which there are counter-
examples in the observed behaviour, and rejects some associations for which there are examples in the 
observed behaviour. 

The current criterion for sufficient evidence for accepting a hypothesis is stated in terms of two quantities – 
P, the number of positive cases consistent with the hypothesis, and N, the number of cases inconsistent with 
the hypothesis.  There is considered to be sufficient evidence for accepting an hypothesis if 

4≥+ NP and 8.>
+ NP
P

.  The first condition prevents the system from accepting associations from 

too few examples.  The second condition allows the system to accept associations for which less than 20% 
of the relevant evidence is negative.  The limits 4 and .8 used in these conditions are the result of informal 
experimentation. 

On the face of it, the possibility of accepting associations for which almost 20% of the relevant evidence is 
negative suggests that the system will tend to accept overly general associations.  However, there is an 
additional guard against this possibility.  If an association βα ⇒  is overly general then it should be the 
case that there are regularities in the counter-examples that it covers.  If the student  has tackled such 
counter-example tasks then the FBM model will contain an association between a specialisation of α  and 
a different action feature from the feature choice for β .  Under these circumstances, the overly general 
association is rejected enabling it to be replaced by one or more of its specialisations. 

6. Erroneous associations  

It is important to recognise that many associations will be appropriate  associations.  For example, it is 
appropriate to associate the task features The Terms Do Not Contain Variables and The 
Terms are Identical with the action feature The Terms Unify.  Whenever confronted by the 
task of finding a most general unifier for two identical terms that do not contain variables the student  
should provide a response that indicates that they unify. 

In general it is important to identify the erroneous aspects of the student’s comprehension of the domain.  
To this end, erroneous associations are identified and placed in a separate partition of the student model.  It 
is these associations that are most commonly used by the tutoring system. 

An association is identified as erroneous only if the student has tackled a task covered by the task features 
of the association for which the action feature was inappropriate and for which the action feature described 
the student’s actions.  That is, the association must have been observed to apply in a situation in which it 
should not have applied. 

This measure also suppresses overly general associations that would otherwise be accepted solely because 
no counter-examples have been observed.  Until the association has been observed in an inappropriate 
context it is not held to be erroneous and so will not be acted upon by the tutor. 

7. Current implementations 

FBM has been implemented in three separate systems. 

The first implementation is an off-line student modelling sub-system for the DABIS knowledge-based 
tutoring system (Webb, 1988.)  This sub-system takes a record of a student’s performance and produces a 
student model.  Unfortunately, there is no facility for this model to be accessed by the tutoring sub-system.  
Thus, it cannot be used to aid interactions with the student.  Its primary function is to provide intelligent 
student evaluation for use by teachers. 
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This system has been used in a number of informal trials, primarily in the context of a lesson on English 
word classes for Linguistics students.  Experience gained from these trials has helped plan the integration 
of the student modelling facilities into an interactive tutoring environment. 

Amato & Tsang (1988) have implemented a piano scale tutor that utilises FBM.  This system uses seven 
feature choices to describe the tonic, hand motion, number of octaves, touch and tone of a scale.  These 
feature choices contain only action features.  They describe the features of an attempt to play the scale.  The 
tutor requests that the student play a specified scale.  The analysis compares the appropriate action features 
for a task with the features observed in the students attempt to play the scale.  The results of the analysis are 
used to select further scales for practice. 

A third system has been created to provide a test bed for the interactive use of FBM student modelling.  It 
is a computer-based tutor for the domain of the unification of terms from the Prolog programming 
language.  This tutor consists of seven sub-systems, a feature set selector, a task generator, a student 
interface, an action analyser , a task adviser, an FBM student modeler and a model-based advi ser. 

The feature set selector consults the FBM student model and selects a set of task features that are either - 

• not associated with the action feature The Answer Is Correct; or 

• have a subset erroneously associated with any action feature 

and have all prerequisite feature sets associated with the action feature The Answer Is Correct 
(prerequisite feature sets are specified by the lesson author.) 

This ensures that the student is only presented with tasks that the system does not yet have sufficient 
evidence to believe that s/he has mastered and is not presented with tasks that are too advanced. 

The task generator generates a task with the features in the feature set output by the feature set selector.  
This task is presented to the student by the student interface which also handles input of the student’s 
response.  The response is passed to the action analyser which produces a set of action features that 
describe the student’s actions. 

The first source of feedback is managed by the task adviser which takes as input the task features of the 
task and the action features describing the student’s actions.  From these it generates suitable domain model 
driven advice and comments.  The task adviser does not refer to the student model when generating 
comments.  Rather it acts on general domain based assumptions as to the likely basis of any observed 
behaviour. 

The second source of feedback is managed by the model-based adviser.  This sub-system scans the student 
model for a suitable association on which to comment.  The selected association is described to the student 
and it is suggested that s/he reconsider how s/he tackles the tasks described by the association.  The advice 
from this sub-system is student model driven . 

An association is considered suitable for comment if it has not previously been commented upon and it is 
erroneously demonstrated by the student’s immediately preceding action.  An association is erroneously 
demonstrated by an action if its task features describe the task on which the student was engaged, its action 
feature describes the student’s action, and the action feature was not appropriate to the task.  These 
conditions ensure that the model-based adviser’s advice is both salient and pertinent. 

In future implementations of the Unification Tutor, the system will offer to demonstrate how the selected 
association is erroneous and how it would tackle the relevant class of tasks. 

Figure 1 shows an interaction with the Unification Tutor which includes comments generated by both the 
task adviser and the model-based adviser.  The model-based adviser’s comment is based on an association 
that has been detected over an extended period of interaction between the task feature A Variable 
Appears More Than Once and the-action feature A Variable has Multiple Bindings. 

It should be noted that the Unification Tutor does not assume that the student has adopted any particular 
viewpoint of the domain.  It will operate effectively with any approach to problem solving in the domain. 
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Consider the following two terms 

Term (B, variable (B)) 

Term (Atom, Atom) 

Enter the most general, unifier for these terms or type none, help or exit. 

=>{Atom=B, Atom=variable(b)} 

A substitution should never contain the same variable on the left of more than one pair.  Your answer has 
Atom on the left of more than one pair. 

It appears to me that whenever you examine two terms that have the one variable appearing more than once 
you give an incorrect answer. 

Perhaps you should reconsider how you tackle such problems. 

Press Space to continue. 

The student interface presents the task to the student.  The student’s answer is underlined.  The first 
comment is provided by the task adviser.  The boxed comment is provided by the model- based adviser. 

Figure 1: The unification tutor in action. 

8. Scope and Limitations  

As demonstrated by the range of domains for which successful implementations exist, FBM has very 
general application. The major limitation is the requirement that it be possible to identify relevant features 
of the student’s problem solving behaviour. 

The identification of a student’s problem solving behaviour can be performed at a number of different 
levels of detail.  The most simple characterisation is a simple identification of whether it is appropriate for 
the c urrent task.  More detailed characterisations are necessarily domain specific in nature.  Lesson authors 
must provide the means of identifying the relevant action features. 

The use in the student model of all most general characterisations, rather than a minimal set, entails major 
computational overheads.  The modelling system maintains a record for every possible association.  This 
results in an exponential increase in computational complexity as the number of task features increases.  
This limits the numb er of features that may be used. 

However, the limits imposed are not too severe.  The Unification Tutor is able to provide satisfactory 
interactive FBM modelling using 22 task features and 14 action features.  During use a La Trobe University 
in September 1989 the average CPU time spent on student modelling after a task was 4.19 CPU seconds 
(11.45 seconds real time) on a heavily loaded Pyramid 90 mx.  As modelling occurs while the student is 
reading the feedback provided by the Task Advisor, the student rarely experiences a significant delay due 
to modelling.  Further, there is considerable room for optimisation of this modelling system, which 
suggests that it should be able to provide acceptable performance in considerably more complex domains 

9. Conclusion 

FBM is an approach to student modelling based on standard attribute-value machine learning techniques.  It 
has been successfully implemented in three separate computer-based tutoring systems The domains to 
which it has been applied range from analytic (English word classes) to skill acquisition (piano scales) to 
problem solving (unification.) 

FBM provides an approach to student modelling whose success does not depend upon the lesson author 
identifying all forms of mistakes that the student may make.  Nor need the lesson author specify the 
problem solving operators that the student may use.  Rather, the lesson author need only specify what 
features of a task and of a student’s response to a task may be relevant to student modelling.  This greatly 
simplifies the demands placed upon the lesson author and increases the versatility of the modelling system.  
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