
Webb, G.I. (1988) A knowledge-based approach to computer-aided learning Page 1 of 29

A Knowledge-Based Approach to Computer-Aided Learning

Geoffrey. I Webb
Division of Computing and Mathematics, Deakin University ,

Victoria, 3217, Australia

Abstract
This paper describes a methodology for the creation of knowledge-based computer-
aided learning lessons. Unlike previous approaches, the knowledge base is utilized
only for restricted aspects of the lesson - both for the management of flow of control
through a body of instructional materials and for the evaluation of the student’s
understanding of the subject matter. This has many advantages. While the approach
has lower developmental and operational overheads than alternatives it is also able to
perform far more flexible evaluations of the student’s performance. As flow of control
is managed by a knowledge-based component with reference to a detailed analysis of
the student’s understanding of the subject matter, lessons adapt to each student’s
individual understanding and aptitude within a domain.

1 INTRODUCTION

The test and branch style of computer-aided learning (CAL), as typified by such
authoring languages as PILOT (Khieriaty & Gerhold, 1980) and CAL systems as
PLATO (Alpert, 1975) has several deficiencies, including:

1. poor evaluation of student performance;
2. restrictively rigid forms of interaction with the student; and
3. failure to modularize or explicitly separate logically independent aspects of a

lesson such as domain knowledge, student evaluation, and teaching strategy.
These deficiencies are discussed in greater detail in section 2.
One response to these deficiencies has been the development of intelligent tutoring
systems. Sleeman & Brown (1982) is a good reference point for examples of the types
of approaches that have been pursued in this paradigm. However, intelligent tutoring
systems are themselves not without shortcomings. Webb (1986) identifies the
following deficits in most general approaches that have been adopted:

1. high developmental overheads;
2. high operational overheads;
3. inability to handle complex domains:
4. lack of methods for knowledge representation that enable necessary forms of

knowledge to be recorded; and
5. need for the inclusion of unnecessary domain knowledge.

This paper presents an alternative approach to computer-aided learning - one which
bases lessons on a representation of the knowledge to be taught, but does not attempt
to generate all aspects of the instructional interaction from such a representation. By
this means it is possible to avoid most of the pitfalls of both test and branch CAL and
intelligent tutoring systems.

Pre-publication draft of paper which was published in the International Journal of Man-Machine Studies
(1988) 29, 257-285, Academic Press Ltd.

Webb, G.I. (1988) A knowledge-based approach to computer-aided learning Page 2 of 29

2 THE DEFICIENCIES OF TEST AND BRANCH CAL

Although in principle test and branch CAL can provide highly individualized
instruction that is sensitive to learners’ aptitudes and learning rates in a domain, in
practice this is extremely difficult to achieve.
The primary form of evaluation that test and branch systems are capable of providing
is a raw performance score at different levels of grouping within a lesson. A raw
performance score is a simple tally of the number of correct and incorrect answers
that the student provides. At best, this may be useful in determining a crude form of
individualization on the basis of initial competence and learning rate. This can be
achieved to some extent within test and branch CAL by providing branching in the
educational material dependent upon mastery of individual components as determined
by a raw performance score. Learning rate can be accommodated by accelerating the
student’s progress by respectively adding or subtracting optional subcomponents to
the student’s path through the instructional materials. This will only provide suitable
individualization if the component level at which conditional branching is determined
happens to correspond with a decomposition of the student’s difficulties. If there is an
underlying misapprehension that the student holds that does not neatly correspond
with the material covered by one of the components, then the manner in which the
system adjusts its tuition is not likely to be appropriate for remedying that problem.
For example, the methodology is unable to detect the fact that a student is consistently
misapplying one of the underlying skills or principles required throughout a lesson
unless that skill or principle is the specific subject of a component of that lesson
CAL systems based on the test and branch approach are inevitably quite rigid in terms
of their interactions with the student. Only one mode of interaction is possible, one
where the computer is very much in control of proceedings. Of necessity the
interaction is extremely one-sided. The computer presents information to the student
and then the student makes a. response, usually a very brief response. The computer
responds to the student’s response and then the cycle is repeated.
There is very little scope for the student’s response to influence the overall lesson in
any major way. Certainly the model allows for the possibility, through very
complicated branching routines and the utilization of a history of the student’s
responses, of different responses leading to different paths through the instructional
material. However, in any significant sense, this is just not practical. The amount of
coding that has to be produced to create a highly reactive lesson using test and branch
CAL is simply too great to be practical for most applications.
Another problem with test and branch CAL is that it inextricably mixes domain
knowledge, teaching strategy and student evaluation. For instance, in. a test and
branch CAL system a branch instruction can represent any one of:

1. a logical, connection between two aspects of the knowledge being examined
by a lesson (for instance, that the material in Unit 2 builds upon the material in
Unit 1);

2. part of the teaching strategy (for instance, a particular mistake should receive
negative reinforcement);

3. an aspect of student evaluation (do procedure x to determine if the student
knows fact y); or, more often,

4. a mixture of 1 - 3.
This makes it extremely difficult to update any of these three aspects of a lesson once
it has been created. With the pace at which domain-specific knowledge advances in

Webb, G.I. (1988) A knowledge-based approach to computer-aided learning Page 3 of 29

some domains it can be seen that it can be quite important to be able to update this
aspect of a lesson if it is not quickly to become outdated. Just as domain knowledge
alters, so does pedagogical practice. A tutorial strategy or approach to student
evaluation is as likely to become dated as is domain-specific knowledge. The inability
to readily upgrade these aspects of a lesson is likely to reduce drastically its useful
lifespan.

3 KNOWLEDGE-MANAGED CAL

One solution to these problems that has been attempted is the creation of CAL
systems that base a lesson on a description of the knowledge to be taught and then
generate lessons directly from that description. Such an approach evidently has at
least the potential to overcome the problems with test and branch CAL outlined
above. First, as the lessons are based on an explicit representation of the knowledge to
be taught there is the possibility of forming a detailed profile of the student’s
understanding of the subject domain and thus of being able to adjust tuition directly to
student’s instructional needs. As the exact interactions to take place need not be
specified in advance, further flexibility is provided by different forms of computer-
student interaction being generated for each different situation. Finally, there is the
potential for domain knowledge, student evaluation and teaching strategy to be
explicitly represented by individual modules of the system, enabling each to be
modified with minimal impact on the other. However, as demonstrated in Webb
(1986) and discussed briefly above (in Section 1), these potentials have not been
realized, and indeed, are not likely to be realized, so long as previous approaches are
pursued.
In the ECCLES system (Richards & Webb, 1985) we attempted to tackle these
problems by the use of topic-structuring - basing lessons on explicit descriptions of
the sequences of actions that must be performed to solve the problems or exercises
which the lesson addresses. However, this approach is not without its limitations.
Most notably, if it is not possible to associate each aspect of the knowledge to be
taught directly with one of tube actions which has been described then it is not
possible to evaluate accurately which aspects of the relevant knowledge the student
has and has not acquired. In this case it is only possible to determine which generic
actions the student is able to perform correctly. An underlying student
misapprehension that results in the failure to perform several distinct generic actions
cannot be adequately diagnosed and treated. This is discussed in more detail in
Richards, Webb & Craske (1988).
The approach advocated herein is the use of a description of the knowledge to be
taught for the general management of a lesson rather than a description of the
sequences of actions that must be performed. Unlike the usual approach utilized in
intelligent tutoring systems, this knowledge base is not used for the complete
generation of all aspects of a lesson. Rather, the knowledge base is used for student
evaluation and for managing flow of control within a lesson, but is not used as the
basis for generating low-level interactions with the student. These are left to whatever
means the lesson author deems appropriate, be they test and branch, artificial
intelligence based, simulation based or whatever. This approach will be referred to as
knowledge-managed CAL (KMCAL).
The reason for not using the knowledge base (in general) for the generation of low-
level interactions with the student is that current artificial intelligence and knowledge
representation techniques are not yet advanced enough to make this feasible.

Webb, G.I. (1988) A knowledge-based approach to computer-aided learning Page 4 of 29

In KMCAL the actual interactions that take place with the student are embodied in a
set of modules called tutorial specifications. Each tutorial specification is associated
with a clearly delineated aspect of the domain knowledge. It is this and only this
aspect of the domain that the tutorial specification concerns itself with. Each tutorial
specification will usually provide some form of tuition that can be related to the
indicated aspect of the domain.
A central assumption made in this approach is that most teaching will take place in
the context of the examination of specific concrete examples or problems from the
domain. This is in accord with most modern educational theory which places
emphasis on the advantages of learning in applied settings rather than in the abstract
(Piaget, 1970). As a result of this assumption, KMCAL uses courseware abstraction,
Courseware abstraction involves the development of general courseware that is
applied to many concrete examples from a domain, thus providing specific tuition in a
general abstract framework. The advantages of courseware abstraction are discussed
in Webb (1986).
As a result of the use of courseware abstraction, most tutorial specifications in a
KMCAL system will provide general treatments of some aspect of a domain which
can be applied to any appropriate example or problem from that domain. (The
qualification “appropriate” in the preceding sentence is important. Clearly a tutorial
specification concerning some aspect of the carry operation in addition should not
have a requirement that it be capable of being applied to multiplication problems!)
Each tutorial specification also has the responsibility for evaluating the student’s
performance in its restricted context. Clearly it would be ridiculous for any other part
of the system to have such responsibility. A subsystem that could observe a student’s
interaction with arbitrary CAL modules and produce a useful analysis of the student’s
performance would be little short of miraculous!
A knowledge-based lesson driver (which shall be referred to as the driver) has the
responsibility for taking each tutorial specification’s assessment of the student’s
performance and producing an integrated assessment of the student’s understanding of
the lesson as a whole. Based on this assessment, the driver manages the selection of
examples or problems for the student to examine and the selection of tutorial
specifications with which the examination is to take place.
In general, one manner in which it is possible to view the knowledge that a lesson
covers is to regard it as having three parts:

1. a set of concepts that the student must master;
2. a set of discriminations (alternatively choices or categorizations) that must

also be mastered; and
3. a set of operations that must be able to be performed.

To provide a simple illustration of these three aspects of knowledge consider a simple
problem from elementary arithmetic: the addition of 16 + 16. In terms of concepts, in
order to be able to solve this problem the student must obviously have some concept
of “a number” and of “arithmetic operations” (among others.) One of the first
discriminations that must be made is the choice of the arithmetic operation to apply -
in this case addition. The application of this operation requires the choice of what
low-level operation to apply, the appropriate selection being the single digit addition
of 6 + 6. The result of this single digit addition is 12. The next discrimination is which
part of this result to incorporate in the final solution, the answer being the digit 2.

Webb, G.I. (1988) A knowledge-based approach to computer-aided learning Page 5 of 29

Next the student must choose what to do with the remaining digit, 1. The correct
discrimination is to apply the carry operation. And so the process continues.
The claim being made is that most domains can be analysed in terms of these three
types of knowledge. The only evidence being offered is a lack of counter-examples -
domains for which this principle does not hold.
The approach to knowledge-based CAL developed in this paper covers the tuition of
discriminations and operations. A mastery of the relevant concepts is generally
assumed. This is not to be taken to imply that the tuition of concepts is not important
or theoretically interesting, merely that it is yet to be treated in this context.
The next section examines feature networks, a knowledge representation formalism
that enables the description of systems of features. When those features represent
discriminations that students must make and operations that they must apply, feature
networks serve as an ideal knowledge representation formalism for KMCAL.

4 FEATURE NETWORKS

Feature networks are a formalism for representing systems of ordered and related
features (or properties) that apply to the elements of a domain of instances. They
specify which combinations of features can be exhibited by instances from the domain
- that is, which combinations of properties can apply to instances from the domain and
how the presence or absence of a feature or property affects the possibility of other
features or properties applying to an instance
Feature networks are a variant of system networks, which were initially developed by
M. A. K. Halliday as a means of describing systemic grammars. The earliest formal
definition of system networks appears in Halliday (1973). A variant more closely
related to feature networks is described in Winograd (1983).
A domain (as the word is used herein) is an area of knowledge. The example domain
that will be used in this paper is the English Pronouns Domain. It covers the syntactic
features that English pronouns may exhibit. It is the corpus of knowledge about the
features that different English pronouns exhibit and the constraints on, and
interactions between; the occurrences of different combinations of syntactic features
for English pronouns. This domain was chosen as it provides a simple example of the
various important aspects of a feature network.
A feature network for a domain encodes that area of knowledge. For instance, a
feature network for the English Pronouns Domain describes the exact relationships
between the different features that an English pronoun may exhibit: the constraints
and interactions between the combinations in which they can occur.
Any given feature network is unlikely to be the only correct description of its domain.
Rather, it will generally reflect one view of the relevant relationships between the
features in that domain. It may be possible to describe any given domain by many
different feature networks. In such a case the author of the network must decide which
network best captures those aspects of the domain that s/he is seeking to explicate.
Feature networks are a. highly constrained form of knowledge representation. As a
result, the types of knowledge that they can represent is restricted. However, this
restriction is offset by the corresponding efficiency with which feature networks allow
access to, and manipulation of, the knowledge that they represent.

Webb, G.I. (1988) A knowledge-based approach to computer-aided learning Page 6 of 29

5 A FORMAL DESCRIPTION OF FEATURE NETWORKS

5.1 FEATURE NETWORKS

S= enters P,D,C,O,F,e, defines a feature network where:

C is an element called the network entry point;
F is a set of elements called feature choices;
O is a set of elements called simultaneous branches;
C is a set of elements called conjunctive entry conditions;
D is a set of elements called disjunctive entry conditions;
P is a set of elements called features;
{e}, F, O, C, D, and P are all disjoint;
enters is a binary function from

},{)())()(())(}({ falsetruetoPFDCOFPDCOOFe ×∪∪∪∪×∪∪∪∪∪×

Provided:

1. there is exactly one element x such that enters (e, x);
2. for every feature choice f ∈F there is exactly one element x such that

enters(x,f) and at least one p ∈P such that enters(f,p);
3. for every simultaneous branch o ∈O there is exactly one element x such that

enters(x,o); and there is more than one element y such that enters (o, y);
4. for every conjunctive entry condition c∈C there is more than one element x

such that enters(x,c); and there is exactly one element y such that enters(c,y);
5. for every disjunctive entry condition d ∈D, there is more than one element x

such that enters(x,d); and there is exactly one clement y such that enters(d,y);
6. (for every feature p∈P there is exactly one feature choice f∈F such that

enters(f,p);. and at most one element x such that enters(p,x);
7. there is no element x such that descends(x,x), where descends is a relation over

)()}({ PDCOFPDCOFe ∪∪∪∪×∪∪∪∪∪ It is defined as follows:

(a) for any two elements x and y such that enters(x,y), descends(x,y);
(b) for all elements x, y, and z, if descends(x,y) and descends(y,z) then

descends(x, z)
Informally, this defines a network with one entry point (a node that descends from no
other nodes), multiple terminal points (nodes from which no other nodes descend),
and which has five types of internal nodes such that no node descends from multiple
nodes and has multiple nodes descending from it. Only features may be terminal
nodes. The network does not loop back on itself in that it is not possible to trace a
path through the network that passes twice through any one node.

If enters(x,y) then x is referred to as y’s parent and y is referred to as x’s child. If
descends(x,y) then x is referred to as y’s ancestor and y is referred to as x’s dependent.

The next section provides an interpretation of this formalism that enables it to be used
for knowledge representation.

Webb, G.I. (1988) A knowledge-based approach to computer-aided learning Page 7 of 29

6 THE SEMANTICS OF FEATURE NETWORKS

D = P I , defines a domain where:

I is a set of instances;
P is a set of properties such that for all p ∈ P, there is at least one i ∈ I, such that p is
a property of i.
The instances may be either concrete (such as physical objects) or abstract (such as
concepts or events). The features in a feature network represent the properties in a
domain. Feature networks represent the relationships between the properties in a
domain.

A feature network S = enters P, D, C, O, F, e, is a feature network for a domain

D = P I , iff for all p ∈ P there is exactly one p ∈ P such that p represents p and for
all p∈P there is exactly one p ∈ P such that p represents p.
Here we provide a formal description of a domain and start to describe how a feature
network relates to its domain. Informally, a domain is a set of instances (either
abstract or concrete things) and a set of properties that apply to those instances. A
feature network is a feature network for a domain if and only if every feature in the
feature network represents exactly one of the properties of a domain. In the CAL
context, the instances in a domain will be the examples or problems that the student is
to examine. Each property in the domain will, be a. discrimination that the student
must be able to make with regard to those examples or problems and each feature will
represent exactly one such discrimination.
It is important to note that not all properties of all instances in a domain need he
included in a domain. For example, in a domain created for a lesson on motor mower
repair procedures, the instances may be different faulty motor mowers. Clearly, each
faulty motor mower will have many properties that are not likely to be relevant to the
lesson, for example, its colour, its owner’s great grandmother’s second name and the
number of times that it has been through 114º turns while in use. These will clearly
not be included in the domain for such a lesson. Examples of properties that are likely
to be included are the amount of fuel in the tank, how the motor behaves when the
starter cord is pulled and whether a grass catcher is fitted.
So far we have only defined how one type of element of a feature network, the
feature, relates to a domain. The broader relationship between a feature network and
its domain is defined in terms of the feature sets of the domain. These can be used to
specify the possible combinations of features that instances in the domain can exhibit.
Feature sets are defined in terms of traversals.

6.1 TRAVERSALS

Let S = enters P, D, C, O, F, e, be a feature network. Then, a subset T of
)}({ PDCOFe ∪∪∪∪∪ is a traversal of S iff:

1. e is an element of T;
2. for all feature choices f ∈ F, f ∈ T iff there is an element x such that x ∈ T

and enters (x, f);
3. for all feature choices f ∈ F and f ∈ T, there is exactly one feature p ∈ P such

that enters(f, p) and p ∈T;

Webb, G.I. (1988) A knowledge-based approach to computer-aided learning Page 8 of 29

4. for all conjunctive entry conditions c ∈ C, c ∈ T iff all elements x such that
enters(x, c) are elements of T;

5. for all disjunctive entry conditions d ∈D, d∈T iff there is an element x∈T
such that enters(x,d).

6. for all simultaneous branches o ∈O, o ∈ F iff the element x such that
enters(x,o) is an element of T.

A traversal can be considered to define a path through a feature network, where the
nodes in the traversal are the nodes in the path, starting always from e, the network
entry point. These paths represent the relationships between the nodes in a feature
network. The interpretation of such a path relies on the concept of a node applying to
an instance. Each path selects out a consistent set of nodes all of which may
simultaneously apply to an instance. This path will always be such that:

1. The network entry point is in every path - it applies to all instances in a
domain.

2. Every feature choice that has a parent in the path will also be in the path.
3. For any feature choice in the path, there will be exactly one of the features that

are its children in the path. This means that a feature choice is a choice point
from which exactly one of the descending branches must be chosen. It should
be noted that feature choices are the only non-deterministic points in a
traversal of a feature network and that they only enter features. Thus, all points
of choice in the traversal of a feature network require the selection of one from
a range of features. As features represent properties, a feature choice
represents a set of properties exactly one of which applies to any instance to
which the feature choice applies.

4. All and only those conjunctive entry conditions for which all the nodes from
which they are entered are in the path, will be in the path. This means that
conjunctive entry conditions are points at which feature networks merge and
from which a traversal only continues if all of its parents are traversed. That is,
the sections of a feature network that descend from a conjunctive entry
condition only apply to those instances to which all sections of the network
that enter the conjunctive entry condition apply.

5. All disjunctive entry conditions that are entered by nodes in the path are also
in the path. As disjunctive entry conditions are entered by multiple nodes, this
means that they are points at which multiple paths converge, and from which a
traversal will continue if any of the entering paths is being traversed. Sections
of a feature network that descend from a disjunctive entry condition will apply
to any instance to which any of those sections of the network that enter it
apply.

6. All simultaneous branches that are entered by nodes in the path will also be in
the path. As simultaneous branches enter multiple nodes, this means that
simultaneous branches are points at which traversals branch’ to traverse
multiple paths concurrently.

Webb, G.I. (1988) A knowledge-based approach to computer-aided learning Page 9 of 29

6.2 FEATURE SETS, PROPERTIES AND DOMAINS

Let S = enters P, D, C, O, F, e, be a feature network. A subset A of P is a feature set
of S iff there is a subset T of)}({ PDCOFe ∪∪∪∪∪ that is a traversal of S and
A=P ∩ T.
Informally, a feature set is any set of features that contains all and only those that are
included in the one traversal.
Feature sets are used to relate feature networks to the domains that they describe.
Each feature set for a domain defines an allowable combination of properties for
instances from the domain. The set of feature sets for a domain defines all of the
allowable combinations of properties that instances in the domain may exhibit.
A feature set A is a feature set for a set of properties P if and only if for all p∈P there
is an a ∈A such that a represents p and for all a ∈A there is exactly one p∈P such that
a represents p. That is, a, feature set represents the set of properties that its features
represent.
The set of feature sets for a feature network for a domain is complete if and only if
there is no instance from the domain that exhibits a set of properties that is not a
feature set for the feature network. If the set of feature sets for a feature network is
complete then the feature network will be considered complete. If a feature network is
not complete for a domain then it does not correctly represent the domain, For
example, the English Pronouns Domain feature network (shown in Fig, 2) would not
be complete if it did not include the feature set (Personal, Plural, Third Person,
Subjective) that is, if it did not allow for the pronoun “they”. Unless otherwise stated,
it will always be assumed, that any feature network is complete for the domain that it
describes.
The set of feature sets for a domain is exhaustive if and only if it contains no feature
set for which there is no instance from the domain that exhibits that set of properties.
If the set of feature sets for a feature network is exhaustive then the feature network
will be considered exhaustive. In general it is not assumed that feature networks are
exhaustive. This is because a feature choice may apply to a class of instances even
though not all of the features from the feature choice may apply to instances from that
class. For example, in the motor mower repair domain referred to earlier, all instances
which exhibit the property fuel tank is empty will also exhibit the property motor does
not fire from the response to pulling the starter cord feature choice. Thus, this feature
choice must apply to instances with the former property. However, no such instance
will exhibit any of the other properties at this feature choice.
The semantics of a feature network vary depending on the type of domain being
represented. However, in general, a feature network can be said to describe its domain
if it defines which combinations of properties from the domain are possible for the
instances in the domain and, the ways in which the properties from the domain
interact.

Webb, G.I. (1988) A knowledge-based approach to computer-aided learning Page 10 of 29

6.3 DESCRIBING DOMAINS OF OBJECTS
Domains of objects are domains where the set of instances contains only objects
(either abstract or concrete). These are to be contrasted with domains of processes or
events. The feature network describes the domain in that it captures the significant
relationships between the instances in the domain and the sets of properties that they
may exhibit.
Figure 1 shows just such a domain, the extremely simple domain of the syntactic
features of personal pronouns in English. Figure 2 shows a feature network for the
English Pronouns Domain. Figure 3 shows the set of feature sets for the English
Pronouns Feature Network.
If a feature network is complete and exhaustive, each possible feature set for a domain
defines a combination of properties that could possibly be exhibited by some instance
from the domain. The Pronouns Feature Network is complete and exhaustive as its set
of feature sets includes all and only the possible combinations of NUMBER,
PERSON and GENDER for English pronouns.
However, a feature network provides a far richer description of the domain that it
describes than just this simple specification of the sets of allowable properties for
instances from the domain. This deeper level of detail is provided by the structure that
the network imposes on the combina tions of features that are possible for the domain.
Relationships between features and feature choices in the network encode
relationships in the domain being described. Feature choices encode more than simply
the existence of a disjoint set of properties. They encode dimensions of categorization
in the domain. A dimension of categorization is a range of related and contrasting
categorizations that apply within a domain. For example, colour could be a dimension
of categorization which included such categories as yellow and blue. By contrast,
there is unlikely to be for any domain a dimension of categorization that included the
categories yellow and round, even for a domain in which the properties yellow and
round applied to disjoint sets of instances.

{‘he’, ‘she’, ‘I’, ‘you’, ‘you’
2
, ‘us’, ‘them’}

{Singular, Plural, First, Second, Third, Masculine, Feminine}

Note, ‘you’ and ‘you’
2
are respectively the singular and plural forms of ‘you’

Fig. 1. The English Personal Pronouns domain

Webb, G.I. (1988) A knowledge-based approach to computer-aided learning Page 11 of 29

nep,
{NUMBER, PERSON, GENDER},
{SB1},
{CE1),
(},
(Singular, Plural, First, Second, Third, Masculine, Feminine),

enters
where enters maps the following pairs to true.

nep SB1
SB1 NUMBER
SB1 PERSON
NUMBER Singular
NUMBER Plural
PERSON First
PERSON Second
PERSON Third
Third CE1
Singular CE1
CE1 GENDER
GENDER Masculine
GENDER Feminine

Fig- 2. A feature network for the English Personal Pronouns domain.

It is beyond the scope of this exposition to discuss the epistemological status of
dimensions of categorization, in particular to argue whether dimensions of
categorization encode more than simply the necessity of the disjointness of the sets of
all instantiations of the properties in them. Suffice it to say that they capture the
network designer’s intuitions as to the epistemological structure of the domain. If a
feature network is complete and all of its feature choices encode dimensions of
categorization from the domain then it is said to describe the domain. Thus, the
Pronouns Feature Network describes the Pronouns Domain.

{{Plural, First}, {Plural, Second}, {Plural, Third}, {Singular, First},
{Singular, Second}, {Singular, Third, Masculine}, {Singular. Third, Feminine}}

Fig. 3. The set of feature sets for the English Personal Pronouns feature network.

6.4 DESCRIBING DOMAINS OF PROCESSES
Feature networks can also be used to define families of processes. In order to achieve
this it is necessary that feature choices, simultaneous branches, conjunctive entry
conditions, and disjunctive entry conditions in the network be used to define states,
that features be used to define events and that descent in the network be used to define

Webb, G.I. (1988) A knowledge-based approach to computer-aided learning Page 12 of 29

temporal precedence (in that a node that enters another node precedes that node in a
sequence of events).
The network • entry point for such a network represents the initial state of the process.
Feature choices represent states at which one of the several events that are represented
by the nodes that they enter can take place. Simultaneous branches represent states
after which multiple concurrent events take place - the events being those represented
by the nodes that they enter. Disjunctive entry conditions represent states that are
reached on the conclusion of any of the several events represented by the nodes that
enter them. Conjunctive entry conditions represent states that are reached on the
conclusion of all of the several events that are represented by the nodes that enter
them.
As the enters function represents temporal relationships between events in a domain
of processes it is necessary to be able to identify temporally distinct states when
analysing any given process within a domain of processes- These are represented by
markings and firings.

6.5 MARKINGS, FIRINGS AND THE FOLLOWS FUNCTION

Let S = enters D, C, O, F, e, be a feature network.
M is a marking for S iff M ⊂)}({ PDCOFe ∪∪∪∪∪ and M = e or follows (e, M)
follows is a function from subsets of)}({ PDCOFe ∪∪∪∪∪ to subsets of

)}({ PDCOFe ∪∪∪∪∪ . follows (A, B) iff either:
1. there is an element x ∈)}({ PDCOFe ∪∪∪∪∪ such that x∉A and

B=A∪ {x} and either
a. x ∈P and there is an element y ∈ A such that enters(y, x) and there is

no element z C A such that enters(y, z);
b. x∈)(PDCOF ∪∪∪∪ and there is an element y∈A such that

enters(y, x); or
c. x∈C and for all elements y such that enters(y, x), y ∈A
(If these conditions hold then x is a firing of A); or

2. there is a marking C of S such that follows (A, C) and follows(C, B).
Markings allow the definition of sequential traversals through a feature network. A
marking can be considered to be a partially completed traversal of a feature network.
Those nodes in a marking represent the nodes that have been visited to date during the
partial traversal that the marking represents. All traversals start from the network
entry point, so all markings include the network entry point. The firings of a. marking
are the nodes that can be visited next during a traversal that has already visited those
nodes in the marking. The markings that follow a marking M are those markings that
occur subsequently to the state represented by M in a traversal of S.
For a domain of processes, each marking represents the state of a process at a
particular instant. Each firing for a marking represents a possible event (change in
state) for the process.
The initial state of a process is represented by the network entry point, so a scan
through the network always starts with a marking including only the network entry
point.’ Any of its firings can then be added to the marking, representing the enactment
of an event. This process is continued until a marking is obtained with no more
firings. The process represented is then complete.

Webb, G.I. (1988) A knowledge-based approach to computer-aided learning Page 13 of 29

nep,
{FIRST-CHECK, FUEL-TANK-STATUS, NEXT-CHECK, EMPTY-ACTION },
{ },
{ }
{ },
{Check-fuel-tank, Full, Empty. Fill, Check-fuel-pump, Check-carburetor},

enters
where enters is true for the following pairs

nep FIRST-CHECK
FIRST-CHECK Check-fuel-tank
Check-fuel-tank FUEL-TANK-STATUS
FUEL-TANK-STATUS Full
FUEL-TANK-STATUS Empty
Empty EMPTY-ACPION
EMPTY-ACTION Fill
Full NEXT-CHECK
NEXT-CHECK Check-fuel-pump
NEXT-CHECK Check-carburetor

Fig 4. A feature network for the Fuel domain.

Figure 4 shows a feature network for the Fuel Domain. This is a subdomain of the
Mowers Domain, a domain of motor mower repair procedures for which a KMCAL
lesson has been created. In the Mowers Domain, each instance is a fault with a motor
mower and its properties are the symptoms that the mower exhibits for the fault and
the set of actions that should be taken to test and, repair it. The Fuel Domain is a
subset of the Mowers Domain intended solely for illustrative purposes. It only
includes some simple problems with the fuel supply for the mower. The FIRST-
CHECK feature choice represents the first test that the repairman must make. In the
Mowers Domain this includes many different tests, each appropriate for a different
symptom that the mower is exhibiting. The only appropriate first test for the Fuel
Domain is to test if the fuel tank is empty. The FUEL-TANK-STATUS feature choice
represents the result of this test. Either the tank is empty or it is full (a state that
represents any fuel level other than empty). If it is empty then there is only one
appropriate action to pursue - fill the tank, and the mower is then fixed!
This interpretation of feature networks bears some similarities to Petri nets (Petri,
1980). However, the similarity is only superficial. Petri nets have no counterpart for
the formal distinction in feature networks between disjunctive and conjunctive entry
conditions and between feature choices and simultaneous branches. Unlike Petri nets,
feature networks are highly structured in such a way as to emphasize choice points
(the points at which only one of several options may obtain) and the consequences of
each option at such points.

Webb, G.I. (1988) A knowledge-based approach to computer-aided learning Page 14 of 29

6.6 LIMITATIONS OF FEATURE NETWORKS

6.6.1 Discrete Instances

For a domain to be represented by a feature network it is necessary for it to be
possible to identify discrete instances that belong to that domain. Instances from a
domain must be discrete in that they must be distinguishable from one another and
must each have an identifiable set of features from those incorporated in the domain.
This condition is necessary because the meaning of a feature network is given in
terms of its relationship to instances from the domain that it describes, If it is not
possible to identify instances from a domain, then it is not possible to define the
meaning of a network for that domain.
One consequence of this restriction is that it is not possible to define domains that
cover any type of continua. For instance, it would not be possible to have a feature
network that defined the features of air at varying temperature, as varying temperature
cannot be regarded as a set of discrete instances. (This excludes the possibility of
regarding it as an infinite set of instances, one each for every temperature. It is not
clear how such a set of instances would capture the essential nature of a change in air
temperature.) However, such domains can be described indirectly by resorting to a
domain that only includes a finite set of the instances that the continuum covers. For
instance, the domain of changes in air temperature could be modelled by reference to
a set of discrete changes in air temperature.

6.6.2 Discrete properties

For a domain to be represented by a feature network it is necessary for there to be
discrete properties identifiable within the domain. This is because a feature network
for a domain must explicitly contain a feature for every property from that domain. If
it is not possible to identify discrete properties in the domain then it is not possible to
relate features to properties for the domain.
It is, of course, possible to cover continua of properties. These can be simply
represented by infinite sets of features. For instance, if temperature was a relevant
property of the instances in some domain, it could be represented by a feature choice
which entered an infinite set of features, one for each possible temperature. It should
be noted that the discrete properties requirement does not prevent the definition of
feature networks for domains where the properties have vague separating boundaries.
In these cases, it is always possible to use only paradigmatic instances.
An example of a set of properties that it might be desirable to include in some
domain, but the elements of which do not have clear separating boundaries, is a set of
colours. In some cases it may not be possible to identify some instance as being
clearly blue rather than green, for example. In the case of such a set of colours being
used as properties for a domain, those hues that are clearly identifiable as a particular
colour could be selected as the paradigmatic properties that were to be used in the
domain. The domain would then only include instances that clearly exhibited those
properties that were in the domain.

6.6.3 Single feature assignment per feature choice

Feature networks do not allow instances to be assigned more than one feature at a
feature choice. This prevents the definition of feature choices from which instances
can exhibit any of several properties, For instance, in the Mower Domain there are
several instances in which several tests would be equally appropriate given the

Webb, G.I. (1988) A knowledge-based approach to computer-aided learning Page 15 of 29

information available to the repairman. In these cases it has been necessary to choose
one as being correct and to force its choice. It should be noted, however, that the
feature network formalism could be extended to allow such feature choices to be
defined. See Webb (1986).

6.6.4 No Looping

Feature networks do not allow feature choices to depend upon features which they
enter. This prevents the networks from looping back upon themselves. This is
desirable for domains of objects where the ability to loop back on themselves would
make the semantics of feature networks unworkable. It does, however, impose a
considerable restriction on domains of processes for which it is frequently desirable to
allow the one state to obtain at different temporal removes. For instance, the current
Mowers Domain does not allow for situations in which the mower to be repaired
suffers from more than one problem. Thus, if the fuel tank is initially empty and is
then filled, then the mower is considered fixed. It would be possible for this initial
problem to be but one of the problems with the mower, and once the tank was full, for
the repairman to have to return to the FIRST-CHECK feature choice in order to start
diagnosing the further problems. This limitation is discussed further in Webb (1986).

7 INSTANCE DESCRIPTIONS

So far we have described how to formalize feature networks for a domain. It is also
necessary to be able to specify formally how instances from a domain relate to the
feature network description of the domain. The formalism for doing this is called an
instance description. An instance description identifies an instance from a domain and
specifies the exact set of properties from the domain exhibited by that instance. By
doing the latter it indirectly specifies a single unique path through the feature network
for the domain.

7.1 HOW INSTANCE DESCRIPTIONS ARE SPECIFIED
An instance description has two parts. The first part uniquely identifies the instance
being described. This is called the instance identifier. The second part exhaustively
lists the properties from the domain that the instance exhibits. This is called the
instance features.

The exact form that the instance identifier takes is not important, except that it must
uniquely define the instance being described.. The reason that a general format for
specifying the instance identifier is not defined is practical rather than theoretical.
Because there are no limitations on the types of instances that problem domains can
apply to, there is no form that can be defined that can be guaranteed to identify
uniquely an instance from any domain.
In practice, instance identifiers are normally given as textural descriptions of the
instance in question. However, graphics or any other medium could be used with
equal validity. The exact form that an instance identifier takes is left up to the person
specifying the domain.
The instance features are specified by a set of properties from the domain. This set
must be a feature set for the network that describes the domain. If this condition is not
met, either the network is not complete for the domain, or the set of features for the
instance is not a possible combination of features for the domain. Figure 5 shows
some instance descriptions for the Pronouns Domain.

Webb, G.I. (1988) A knowledge-based approach to computer-aided learning Page 16 of 29

Identifier Features
‘he’ {Singular, Third, Masculine}
‘she’ {Singular, Third, Feminine}

‘I’ {Singular, First}

‘you’ 1 {Singular, Second}

‘us’ {Plural, First}

‘you’ 2 {Plural, Second}

‘them’ {Plural, Third}

Fig. 5. Some instance descriptions for the Pronouns domain

7.2 HOW FLOW INSTANCE DESCRIPTIONS RELATE TO FEATURE
NETWORKS

The instance features for an instance define a unique feature choice set for that
instance for the domain. This is the set of feature choices and the features chosen for
them that must be included in the traversal of the network for that instance. In other
words, in terms of traversing a feature network, it specifies the exact set of choices
made for the instance from those choices possible in the domain. Thus, the instance
features for an instance uniquely specify the set of choices that must be made for that
instance.
In terms of the semantics of feature networks the instance features identify the exact
set of properties that the instance exhibits from those in. the domain. Thus, the
instance features for the pronoun “she” identify that it is a Feminine Third Person
Singular pronoun.

8 HOW FEATURE NETWORKS DIFFER FROM SYSTEM NETWORKS

Other than restriction 7 from their definition, feature networks are structurally
isomorphic with system networks as defined by Winograd (1983) which are in turn a
subset of those defined by Halliday (1973). However, system networks have only one
interpretation, as a means of describing systems of choices. By comparison, feature
networks are given two interpretations. One as a means of describing possible
combinations of properties for instances from a domain, the other as a means of
describing the flow of operations in simple processes.
Further, system networks are a graphic representation of choice systems. By
comparison, feature networks are a set theoretic construct for which a graphic
representation is defined.
System network’s simple systems map directly onto feature network’s feature
choices, features, and the enters relationships that hold between feature choices and
features.
System network’s entry conditions map onto feature network’s disjunctive entry
conditions and conjunctive entry conditions and the nodes that they enter.
System network’s simultaneous systems map directly onto feature network’s
simultaneous branches and the nodes that they enter. Halliday’s unmarked features do
not map directly into any aspect of the feature network formalism However, this does
not entail any difference in representational power between the two formalisms as
unmarked features can be represented explicitly in terms of the other mechanisms of
feature networks.

Webb, G.I. (1988) A knowledge-based approach to computer-aided learning Page 17 of 29

System networks contain no restriction on networks looping back on themselves.
Restriction 7, from their definition, explicitly excludes this possibility in feature
networks.

9 LESSONS BASED ON FEATURE NETWORKS

As was argued in Section 3, most bodies of knowledge that it may be desirable to
teach can be analysed as consisting of sets of concepts, operations and
categorizations. Disregarding concepts of which the tuition is not the concern of this
paper, both operations and categorizations can be represented by feature choices from
feature networks. Categorizations are straightforward to represent each feature in the
feature choice represents one of the possible categories for a given dimension
categorization. Operations are also straightforward to represent, even though the
manner in which it is done may be less intuitive a feature choice may represent an
operation if all of its feature represent possible outcomes of that operation. In terms of
properties of instances (which all features must represent) such a feature will
represent the outcome of the operation when it is applied to an instance.
Feature networks do more than just explicitly encode the dimensions of categorization
and operations represented by the feature choices and features. The other nodes of the
network explicit ly depict how those dimensions of categorization and operations
relate to one another.
By encoding the categorizations and operations that a student is required to be able to
perform, feature networks aid the identification of the relevant aspects of an instance.
If it is known which categorizations and operations the student experiences difficulty
with under which conditions then instances that require those categorizations and
operations to be performed can be identified and selected for presentation to the
student. Because they provide an explicit representation of the relationships between
the different categorizations and operations, feature networks provide a convenient
means of determining the order and conditions under which each categorization and
operation should be presented to the student when examining an instance.
The methodology that has been developed for the use of feature networks in KMCAL
is called feature network based courseware design. By this methodology the lesson
author creates a description both of the underlying structure of the domain to be
taught and of the specific instances from the domain. A lesson presentation system
then uses these descriptions to drive detailed lessons that can interactively assess the
student’s underlying assumptions about the domain.
As outlined above, unlike most knowledge-based CAL systems, the knowledge base
is not used to generate the entire instructional sequence. Rather, it is used to analyse
the student’s understanding of the domain and to determine the flow of control within
the instructional process. Given the use of the courseware abstraction methodology,
flow of control has two aspects:

1. extra-instance flow of control - the selection and sequencing of instances to
examine; and

2. intro- instance flow of control - the selection and sequencing of instructional
activities while examining an instance.

Feature networks efficiently encode exactly the information that is required for these
two purposes.
The first stage of lesson authoring under this methodology is to create a feature
network for the domain to be taught. This, feature network describes the

Webb, G.I. (1988) A knowledge-based approach to computer-aided learning Page 18 of 29

epistemological structure of the pedagogically relevant aspects of the domain. It
specifies all of the relevant features that an instance from the domain may exhibit and
how those features are related to one another.
Associated with each node of the network are one or more tutorial specifications.
Each tutorial specification for a node encodes a method of teaching how the
knowledge encapsulated by that node and, possibly by its dependents applies to any
given concrete instance from the domain. Different tutorial specifications for the one
node encode different approaches to teaching the same knowledge.
Next, a set of individual instances from the domain is specified. This is called the
instance set. Each instance is related to the feature network for the domain by
specifying which features it exhibits, as is described in Section 7.
By referring to the feature network, the tutorial specifications, and the instance set, the
lesson presentation system can then present lessons on the domain to the student.
Automatic analysis of student performance can be used to determine whether the
student can correctly identify which features from the domain the instance exhibits. If
the student makes an error then the exact features from the domain that the student
has incorrectly ascribed to the given instance are known. Over a series of exercises,
each based on a different instance from the domain, the lesson presentation system is
able to detect regularities in the occurrence of these incorrect ascriptions. In
particular, it can detect if the student regularly substitutes particular combinations of
features for other set combinations of features, is over- or under-generalizing the
applicability of features, or simply does not understand certain aspects of the domain.
Thus, the lesson presentation system is able to construct a profile of the exact
underlying misapprehensions which the student has with regard to the domain. This is
a simple cognitive model. It describes the regularities to be found in the outputs of the
student’s cognitive system. Webb (1988) describes the form of analysis in more
detail.

This form of student model contrasts strongly with other current established
courseware methodologies. These methodologies can only, at best offer overlay
models of a student’s understanding (Goldstein & Carr, 1977). In an overlay model,
the student’s understanding of the domain can only be described as a subset of the
system’s. As is demonstrated in Webb (1988), feature-network-based courseware can
produce student models that provide a detailed analysis of how the student’s analysis
of a domain diverges from the system’s.

The use of feature-network-based CAL is necessarily limited by the power of feature
networks as a means of knowledge representation. However, it is a very efficient
means of providing highly versatile, robust, and. responsive courseware for analysing
and debugging student’s knowledge of those domains feature networks can readily
model.

10 COMPONENTS OF FEATURE NETWORK BASED COURSEWARE
DESIGN SYSTEMS

A system for authoring and presenting lessons based on the feature-network-based.
CAL methodology has five major components.

1. A feature network editor. This allows the specification and modification of
feature networks.

Webb, G.I. (1988) A knowledge-based approach to computer-aided learning Page 19 of 29

2. A tutorial specification editor. This allows the creation and modification of
tutorial specifications which are associated with the nodes of the feature
network.

3. An instance editor. This allows ins tances to be specified. It also allows these
instances to be related to the feature network for a domain and enhanced as
required by the lesson.

4. A feature network lesson presentation system. This takes the feature network,
the tutorial specifications, and the instance set and uses them to present
lessons to the student. It maintains records of the student’s performance.

5. An analysis system. This takes the student records, the feature network, and
the instance set, and generates analyses of the student’s understanding of the
domain being taught.

The domain-analysis-based instruction system (DABIS), an implementation of a
feature-network-based CAL system, is described in Webb (1986)

11 MODES OF PRESENTATION

The one feature network description of a domain can be utilized for many different
forms of lesson. The form of lesson produced depends upon the form of the tutorial
specifications utilized by the system in presenting the lesson. The following sections
describe some of the forms that such lessons can take. It should be noted, however,
that feature-network-based lessons are in no way limited to these forms of
presentation.

11.1 INTERROGATIVE MODE
A powerful pedagogical method involves the use of strategically selected questions to
establish a. profile of the student’s understanding of a domain and then the provision
of tuition in those areas in which the student demonstrates weaknesses. This pedagogy
is realised in feature-network-based CAL by interrogative mode. This mode of
operation involves the presentation of judiciously selected instances to the student so
as to both determine the student’s weaknesses with regard to the domain and provide
tuition that concentrates directly on problems that exercise those weaknesses.
To present an instance in this mode the lesson, presentation system steps through the
feature network and executes tutorial specifications that test the student’s
understanding of the instance. Feedback is given as appropriate.
To step through a. feature network S for an instance I, the system starts with a
marking of S which initially contains only the network entry point for S. This marking
is called the current marking. An initially empty set of elements of S is also
maintained. It is called the block. Each firing of the, current marking which is not also
an element of the block is added one at a time to the current marking. When a firing is
added to the current marking, if it is a feature choice then a tutorial specification is
invoked that describes the feature choice to the student and requests her/him to select
the correct feature from the feature choice for the current instance. If the student
selects the correct feature then it is also added to the current marking. If the student
selects the wrong feature, then all of the features that the feature choice enters are
added to the block. This process continues until there are no more firings of the
current marking which are not also elements of the block.
The tutorial specification may either be explicit or implicit. Explicit tutorial
specifications directly refer to the choice being made. Figure 6 shows a transcript of a

Webb, G.I. (1988) A knowledge-based approach to computer-aided learning Page 20 of 29

possible student interaction with an explicit tutorial specification for the Pronoun
feature choice from the English Pronouns domain. In this example, the student is
asked to identify explicitly the pronoun type of the instance (which is in this case the
word “he”).
By contrast, implicit tutorial specifications require the student to identify which
feature s/he is assigning to an instance without explicit reference to the feature choice
or features in questions. Figure 7 shows a transcript of a possible (simple) student
interaction with an implicit tutorial specification for the Pronoun Type choice from
the English Pronouns domain. In this case the student is given a word and a set of
sentence templates and asked to select which template the word best occupies. Each
template best takes a word with one of the features at the feature choice. Thus, the
student is specifying by her/his choice, exactly which features s/he is implicitly
identifying for the instance. This tests the student’s competence in judgments about
the feature choice rather than her/his formal knowledge as is tested in the explicit
case.
The tutorial specification may utilize any form of interaction with the student so long
as it serves both to test the student’s understanding of how the feature choice applies
to the instance and to provide suitable feedback. (It should be noted that the multiple
choice format featured in Figs 6 - 8 is only one of the possible approaches that can be
utilized. These simplistic forms of interaction should not be taken to indicate the
limits on the sophistication in student interactions that are possible under the
methodology. Rather, they should be taken as simple illustrations of the different
presentation modes. The major limitations on the form of interaction possible are
imposed by the physical capacities of the computer and the imagination and skill of
the course author.)

 ‘he’

Is ‘he’:

a. Demonstrative;
b. Personal;
c. Question; or
d. Quantified?

? c

No, a question pronoun can appear as the question element in a clause.
The pronoun ‘he’ cannot. An example of a question pronoun is ‘which’.

Have another try

Fig. 6. A simple explicit tutorial specification for the Pronoun Type feature choice

Webb, G.I. (1988) A knowledge-based approach to computer-aided learning Page 21 of 29

 ‘he’

Select which sentence slot this Word best fills.

A. ‘...is the right direction.’
B. ’…is going now.’
C. ’…of these is the answer?’
D. ‘Here are … of the answers.’

? C

No, a. pronoun like ‘which’ that is used for introducing questions fits much better
into the slot in sentence C than does the pronoun ‘he’

Have another try

Fig. 7. A simple implicit tutorial specification for the Pronoun Type feature choice

The student learns in interrogative mode in two ways. First, feedback is provided that
corrects and analyses mistakes and confirms and reinforces correct responses. Second,
the student receives practice in the analysis of the domain being examined.
Appropriate feedback is given to the student based on the system’s knowledge of the
correct response for the instance at the feature choice and the student’s response. This
feedback can either be specified by the course author or automatically generated by
the lesson presentation system. When generating this feedback the lesson presentation
system has available to it not only the details of the student’s choice and the correct
choice, but also details of the student’s performance to date while analysing the
current instance and a model of their general understanding of the domain. As a result
it is relatively simple for the lesson to provide very detailed remedial feedback.
The interrogative presentation mode ensures that the student examines each feature
choice that applies to an instance. At each feature choice the associated tutorial
specification is presented for the instance. The use of the block ensures that no feature
choice is presented until all of the relevant features which are its ancestors have been
correctly identified by the student. This is because it is likely that a feature choice is
going to appear inappropriate to a student if she/he has not yet considered or, even
worse, has failed to identify the features from which it descends. For example, in the
case of the English Pronouns domain, the student is never asked to identify the person
of a personal pronoun until they have correctly identified it as being a personal
pronoun. After all, if the student believes that a personal pronoun is a demonstrative
pronoun it is necessary to remedy this misapprehension before the task of identifying
what type of personal pronoun it is becomes appropriate.

Webb, G.I. (1988) A knowledge-based approach to computer-aided learning Page 22 of 29

11.2 TESTS
An important aspect of tuition is the ability of the teacher to evaluate the student’s
understanding of a domain. Interrogative mode allows for the evaluation of students’
deep-seated understandings of a domain. However, this evaluation is not generally
suitable for evaluation purposes as the student is given feedback that is intended to
improve her/his understanding of the domain. This means that the results of the
student’s interaction with the system after a period of tuition will not accurately
reflect the student’s understanding of the domain before the tuition.
For many purposes this is not important. Sometimes, however, it is desirable to be
able to test students in such a manner as to not allow their results to be influenced by
the testing system. An example of such an occasion is an examination for
accreditation purposes.
Due to the system’s knowledge of a domain, it is possible for a feature-network-based
courseware system to provide detailed analyses of a student’s understanding of a
domain. As a result, it can provide a very powerful testing and student evaluation
system. Test mode enables such evaluation and testing to be automatically conducted
by the lesson presentation system.
Test mode is identical to interrogative mode except that the tutorial specifications do
‘not provide feedback to the student. Thus, the results of the test are not confounded
by the student receiving corrective feedback during the testing process.
For some purposes it is desirable to have large batteries of tests on a particular subject
(see, for example, Cooper & Lockwood, 1981; Derevensky & Cartwright, 1981;
Ariew, 1982).
It is desirable to be able to both deliver and evaluate these batteries by computer.
Systems for the delivery and evaluation of test batteries, such as those discussed in the
citations above, typically require huge development efforts. However, given that an
interrogative mode lesson has been specified for a domain and sufficient numbers of
instances have been specified, test mode can be obtained simply by turning off the
responses given in interrogative mode! Given these conditions, there is no extra
overhead in authoring time for the delivery and evaluation of such tests.

11.3 DECLARATIVE MODE
Interrogative and test modes involve the evaluation of the student through close
questioning with optional feedback. Another important pedagogical method is direct
instruction, where the teacher actively provides information to the passive student.
Feature networks can be utilized to this end by the creation of declarative lessons.
As in interrogative lessons, in declarative lessons the student is stepped through the
feature network for the domain in which instruction is taking place, and a tutorial
specification is invoked for every feature choice encountered- The difference from the
interrogative mode is that a declarative tutorial specification describes the dimension
of choice represented by ‘the ‘feature choice and how the instance being presented
relates to it. These tutorial specifications do not question the student in any way. Thus
the student is given a detailed description of the overall domain in the context of
concrete examples of how individual instances relate to the domain as a whole.
This mode of operation is not envisaged for use by the student for extended periods of
time. It is viewed more as an aid to the tuition process that can be invoked as needed.
An example of when this mode may be appropriate is if a student is found to be

Webb, G.I. (1988) A knowledge-based approach to computer-aided learning Page 23 of 29

unable to analyse certain classes of instances. In this case, declarative mode can be used
to demonstrate to the student how to analyse correctly instances of that class.

11.4 IMMEDIATE MODE
A totally different mode of lesson presentation from those discussed above can also
be based on the feature network and instance set for a domain- It is called the
immediate presentation mode.
The interrogative, test, declarative, and mixed modes of presentation are all domain
decomposition modes of presentation. They analyse the instance being presented
separately in terms of each individual dimension of categorization in the domain that
is relevant to it. By contrast, the immediate presentation mode takes a holistic
approach to the analysis of instances. Rather than working through the network
selecting each of the features for an instance, this mode requires the student to make a
sing1e choice which specifies all of the features that apply to an instance.
By way of a simple example, suppose that a lesson is being presented on English verb
tenses and the domain consists only of two feature choices that descend from a
simultaneous branch the first between Past, Present and Future and the second
between Simple and Continuous. The student can then be presented with a series of
exercises such as that in Fig. 8. The form selected specifies the full set of features that
the student deems appropriate for the given situation.
A series of such exercises allows the presentation system to construct a profile of the
student’s deep-seated apprehensions and misapprehensions with regard to the domain
in exactly the same manner as is done by the modes discussed above. The difference
is that the profile is based on a holistic view of the domain, rather than the detailed but
itemized view that the other modes operate on.
As is the case with interrogative mode, lessons in immediate presentation mode can
be either implicit or explicit. However, it is difficult to envisage why it would be
desirable to present explicit lessons in this mode. It would seem more natural to
examine each feature choice explicitly, rather than explicitly choosing the whole
feature set for an instance at the one time.

I…the ball then threw it to John.

a. bounce
b. was bouncing
c. will bounce
d. will be bouncing
e. bounced
f. bouncing

Select the correct form to fill the gap in the sentence.

Fig. 8. A simple implicit tutorial specification for the Pronoun Type feature choice

Webb, G.I. (1988) A knowledge-based approach to computer-aided learning Page 24 of 29

It should be emphasized that the simple multiple choice format presented in Fig. 8 is used
solely for illustrative purposes and should not be taken as representative of the scope of the
approach.

11.5 CONSTRUCTIVE MODE
A radically different use of feature networks is provided by the constructive
presentation mode. This mode utilizes tutorial specifications which allow students to
construct feature networks to describe the domain of knowledge being explored. The
system then critiques the constructed model on grounds of simplicity of construction
and completeness. The former can be tested in terms of number and complexity of
nodes and the latter in terms of the model’s ability to account for a judiciously
selected set of example instances and counter-example instances (those with
combinations of features that should not be allowed). Both feature set and feature
choice set equivalence could, be used in evaluating the ability of a student’s feature-
network to account for a given example instance.
The sets of example and counter-example instances must be specified by the course
author. Such specification is all that the course author must do to enable the system to
present lessons in, this mode after a feature network has been specified for a domain.

11.6 REFERENCE MODE
Another presentation mode is the reference presentation mode. This mode enables the
student to query the system’s knowledge base. The types of information retrieval that
the system can readily support include:

the features that an instance exhibits;
the dimensions of categorization (feature choices) from a domain;
the allowable combinations of features from a domain;
the features that must be exhibited by an instance if it exhibits a given feature
or combination, of features;
the features that can be exhibited, by an instance if it exhibits a given feature
or combination of features; and
example instances with given features.

All that a course author must provide to enable a lesson to be presented in this mode
is a feature network description of the domain and a set of instances to use as
examples and to refer to when requested for the features of an instance. Thus, once a
lesson has been prepared for a domain in one of the other modes, no additional work
is required of a course author to enable the system to present lessons in this mode.

11.7 MIXED MODE
In some cases, of course, it is desirable to mix different modes of presentation in the
one exercise. The order in which the different modes are inter-mixed depends upon
the aims of the course author.
If it is desired simply to test the student’s understanding of a domain of knowledge
then only interrogative or test mode exercises are given.
If it is desired to use the lesson for remedial work then interrogative exercises can
initially be presented. Then once the lesson presentation system has identified
problem areas for the student, declarative exercises can be given by way of follow-up
for instances having the combinations of features with which the student had
difficulties. This process can continue through several cycles, with the system
presenting series of interrogative exercises after each series of declarative exercises in

Webb, G.I. (1988) A knowledge-based approach to computer-aided learning Page 25 of 29

order to determine how the student’s understanding of the domain has been affected.
These series of interrogative exercises can then be used to determine problem areas to
be concentrated on in further declarative exercises - and so the cycle continues.
If it is desired to use the lesson for instruction then the lesson author has several
choices. Declarative exercises can be presented, with interrogative exercises
optionally being used as a follow-up to assess the student’s understanding of the
domain. Alternatively, interrogative lessons can be written, with much emphasis
being placed on the feedback texts associated with each feature with the aim of having
the student learn from her/his mistakes.
It is, of course, possible to mix presentation modes within an exercise by associating
with different nodes tutorial specifications that utilize different modes.

12 CHOOSING INSTANCES FOR PRESENTATION

Section 11 discusses various strategies for utilizing feature networks to determine
intra- instance flow of control. This section outlines how they may be used, to manage
extra- instance flow of control. Many different strategies may be appropriate
depending upon the aims of the lesson.
An extremely simple strategy that may be used is simply to select instances from the
instance set so as to provide a broad sample of the combinations of features present.
This may be achieved by determining the available feature sets and then randomly
selecting instances that exhibit each feature set. This provides the student with a wide
coverage of the domain being taught. However, this simple strategy fails to take full
advantage of the knowledge available to the system.
Alternatively, the lesson author may favour some order in which instances from the
domain should be exposed to the students. This ordering may even be responsive to
student’s performance as the lesson progresses. Conditions could be imposed on
which different alternative streams of instances are selected
A more sophisticated strategy involves tile identification of the student’s cognitive
misapprehensions about the domain and the selection of instances that provide the
student with the opportunity to confront and resolve those misapprehensions. The first
step in such a strategy is the identification of the student’s misapprehensions. To this
end, a sequence of instances must be chosen that will enable the system to detect the
difficulties that the student is experiencing. This may either be selected by
determining the set of feature sets for the domain and randomly selecting examples of
each, or by an initial set of instances specified by the lesson author for this purpose.
Detailed analyses of the type outlined in Webb (1988) can then be performed to
determine the cognitive misapprehensions that the student holds.
Having identified the feature choices, features and feature combinations for which
misapprehensions exist, the system is able to select instances that will require the
student to perform the type of analysis with which they are experienc ing difficulty.
This provides them with the opportunity to confront the misapprehensions that they
hold and to rectify them.
However, virtually the same effect can be achieved without the computational
overhead of having to construct a detailed student model while presenting the lesson.
Rather, it is possible to use the feature sets of the instances for which the student
makes errors to select further instances for remedial examination. When the student
makes an error it is reasonable to assume that it reflects a cognitive misapprehension
on their behalf. Indeed, this assumption is central to any attempt to construct a profile

Webb, G.I. (1988) A knowledge-based approach to computer-aided learning Page 26 of 29

of the student’s comprehension of a domain from a record of their actions while
examining that domain. Given that a misapprehension exists, it is the system’s
responsibility to assist the student to remedy that misapprehension. Given Piaget’s
principle that learning is best facilitated in the context of the practical application of
the principles to be learnt, the system should provide the student with the opportunity
to apply the correct principles, and assist her/him to apply them correctly. If the
examination of an instance with one particular set of features has caused the
misapprehension to be exercised then it is probable that fur ther instances with the
same combination of features will have the same effect- Thus, the selection of
instances with the same feature set as the instance for which the erroneous analysis
was performed is likely to provide the student with opportunities to correct the
misapprehension that caused the error. This can be achieved without any significant
computational overhead.
The only forms of error for which this strategy will not select appropriate remedial
instances are over-generalizations and errors aris ing from extraneous causes. (For a
fuller discussion of these forms of error see Webb, 1988.) By definition, the latter of
these two forms of error is due to factors which the system is unable to determine and
thus cannot be adequately remedied. The former, where the error arises from the
student’s over-application of an incorrect principle rather than from the failure to
apply the correct principle, can be dealt with by selecting remedial instances that
exhibit the same feature set as the student has erroneously identified for an instance as
well as the correct feature set for that instance. This provides the student with practice
with, both cases where the principle should be applied and where it should not.

13 THE VALUE OF FEATURE NETWORKS AS A BASIS FOR COMPUTER
AIDED LEARNING

Feature networks provide a very simple model of the knowledge that they represent.
This has the disadvantage that some forms of knowledge cannot be readily
represented by the formalism. On the other hand, however, it is this very simplicity
that lends much to the power of feature networks as a basis for computer-aided
learning.
A feature network clearly does not contain all the information necessary to teach a
domain to a student. A feature network for a domain specifies how the different
aspects of a domain relate to one another, but in no way does it specify what each
aspect of the domain is. For example, the Pronoun Type feature choice from the
English Pronouns Domain specifies that all instances in the English Pronouns Domain
have one of four features, Demonstrative, Personal, Question or Quantified. However,
it does not specify what those features are or, indeed, anything about them other than
that they belong to the one dimension of categorization within the domain and relate
in certain ways to other features in the domain.
Nevertheless, although it does not contain all the information necessary to conduct the
entire process of tuition, a feature network does contain exactly the information
needed to be able to produce very powerful models of a student’s understanding of a
domain and to select which aspects of the domain the tuition process should
concentrate on. With a feature network as the underlying basis of a lesson, all that is
required to be able to conduct intelligent tutorial interactions with the student is a
means of conveying the knowledge described by each aspect of the feature network to
the student and of evaluating her/his understanding of that aspect of the network This

Webb, G.I. (1988) A knowledge-based approach to computer-aided learning Page 27 of 29

is achieved through the creation of tutorial specifications for each aspect of the
network.
A major issue in AICAL is the identification of the underlying misconception(s) that
cause a student’s error. When the model of knowledge that a system uses is highly
complex, it is not possible to determine readily how the student’s model of the
knowledge in question differs from the system’s. By the intelligent utilization of such
a simple knowledge representation medium as feature networks, it is possible for a
computer-based system to quite readily build up a complex model of a student’s
understanding of a domain (Webb, 1988). This model, unlike alternative approaches
to student modelling, provides a detailed description of how the student’s
understanding differs from the system’s without the need for prior specification by the
lesson author of the possible divergences that may occur.
Another major problem for the designer of any form of computer-aided leaning
courseware, and in particular for designers of AICAL systems, is the extreme
difficulty of specifying and validating the courseware. A rule-of-thumb figure that is
touted around the computer-aided learning community is that traditional forms of
courseware take 200 hours of specification for one hour of finished courseware. No
figures are available for comparison with most of the much more complex Al based
systems that have been designed, but given their sheer size and complexity, they must
be in orders of magnitude higher.* By contrast, feature-network-based CAL has a
very low authoring- to-student time ratio. One lesson on English word classes has
demonstrated a ratio of 12.5 to 1 (Webb, 1986). Although this lesson supports only
very limited forms of interaction with the students, it is highly responsive to their
understanding of the domain and can be used, to construct detailed student models.
The low, authoring-to-student time ratio can be attributed to three factors:
First, when specifying courseware based on feature networks, the course author is
concerned primarily with issues of fully specifying an appropriate description of the
knowledge to be taught and not with extraneous issues such as how to specify to the
computer the low-level details of how to present the information to the student and
how to respond to student errors Such extraneous issues tend to dominate authoring
time under traditional computer-aided learning methodologies. The author’s time is
not expended in such ways when using feature-network-based CAL.

Second the one specification of the knowledge to be taught can be utilized for many
different forms of lesson, with at most only a minimal need for the author to make
explicit allowance for the possibility. The manner in which this can be achieved is
discussed in Section 11. A result of this ability to use the one knowledge base for
many forms of lesson is that the one investment of authoring time pays many
dividends in the quantity and type of lesson that is generated. Traditional authoring
methodologies require explicit authoring of all material with which the student is to
he presented.

* Anderson & Skwareki (1.986) state that remedial material is being produced for their LISP tutor at
the rate of one hour of lesson for 40 hours of coding. However, as this is remedial material, presumably
each hour’s worth will be viewed by only a very small number of students, making the average student-
hour’s worth of material that is being produced per authoring hour very much lower than the ratio of
one for every 40 that this figure initially suggests.

Webb, G.I. (1988) A knowledge-based approach to computer-aided learning Page 28 of 29

Finally, with feature-network-based CAL, the bulk of authoring time is taken with the
specification of a generalized lesson that is then applied to many individual tasks. Thus, it is
abstracted courseware and has all the advantages associated with courseware abstraction that
are outlined in Webb (1986).

Another highly problematic issue for the designer of AICAL is how to respond to the
detection of a student’s misconceptions with regard to a domain of knowledge.
Feature networks provide a convenient framework for the automatic selection of
remedial tasks for the student. They also provide for the explicit description of student
misconceptions, either directly to the student, or to the course coordinator, for later
use in tailoring the student’s curriculum to suit her/his particular instructional needs.
As is described in Webb (1988) a student’s misconceptions can be well characterized
by a description of the features that instances exhibit when the student selects
particular features.
Another advantage of feature-network-based courseware is that, due to its simplicity,
the highly responsive lessons that it provides can be presented by quite small
computer programs. These can thus be realistically run on both the heavily utilized
time-shared computers and the small, highly limited micro-computers typically found
in educational institutions. This compares favorably with the gigantic systems that are
usually associated with AICAL. These monolithic systems can perform acceptably
only on lightly utilized large computers. Many require dedicated, large computers.
At a global level, feature-network-based CAL explicitly separates domain knowledge,
teaching strategy and student evaluation. The domain knowledge is represented in the
feature network. The teaching strategy is represented in the strategy used to determine
flow of control. Student evaluation is represented by the analysis subsystem. The only
level at which these three may not be explicitly separated is in tutorial specifications.
The methodology does not specify how these should be managed so any approach
may be taken. If the test and branch style of CAL is used in the tutorial specifications
then domain knowledge, teaching strategy and student evaluation are likely to be
intermixed. However, each tutorial specification addresses one small aspect of the
knowledge that is to be examined, so the domain knowledge that it represents is very
localized. Similarly, the student evaluation that it embodies has a very specific
purpose, to evaluate the student’s comprehension of one localized issue with respect
to a specific instance from the domain. Changes to these two aspects of a lesson will
be relatively simple to make. The only type of change that will require major
alterations to the lesson will be a change in the teaching strategy that is to be
employed at feature choices.
Feature-network-based CAL provides genuine individuation between students on the
grounds of initial competence and learning rate. The methodology very quickly
identifies the student’s particular difficulties with regards to the domain and focuses
its attention upon them. As the student masters an aspect of a domain, tuition rapidly
adjusts accordingly. As is demonstrated in Webb (1986) the methodology also
enables a certain degree of individuation on the basis of learning style and educational
goals. However it is the problem of providing individuation on the basis of initial
competence and learning rate that the methodology primarily addresses.

I would like to thank Tom Richards out of whose initial research on the ECCLES tutoring system grew
the research reported on herein. His assistance and encouragement have both contributed significantly
to this research.

Webb, G.I. (1988) A knowledge-based approach to computer-aided learning Page 29 of 29

References
[1] Alpert, D. (1975) The PLATO IV system use: a progress report. In Lecarme, O. and

Lewis, R. Eds., Computers in Education. Amsterdam: North-Holland.
[2] Anderson, J>R> and Skwarecki, E. (1986). The automated tutoring of introductory

computer programming. Communications of the ACM , 29, 842.
[3] Ariew, R. (1982). A management system for foreign language tests. Computers and

Educations, 6, 117.
[4] Cooper, A. and Lockwood, F. (1981). The need for provision and use of a computer-

assisted interactive tutorial system. In N. Rushby, Ed., Selected Readings in
Computer Based Learning, pp 127-131. New York: Kogan Page.

[5] Derevensky, J. and Cartwright, G. (1981). The use of a computer-assisted testing in
an introductory course of educational psychology. In N. Rushby, Ed., Selected
Readings in Computer Based Learning, pp 218-221. New York: Kogan Page

[6] Goldstein, I.P. and Carr, B (1977). The computer as a coach: an athletic paradigm for
intellectual education. Proceedings of the 1977 Annual ACM Conference,
Association for Computing Machinery, pp 227 – 233

[7] Halliday, M. (1972). Explorations in the Functions of Language. London: Edward
Arnold.

[8] Khieriaty, L. and Gerhold, G. (1980) COMMON PILOT Language Reference
Manual. Bellington WA: Western Washington University.

[9] Petri, C. (1980) Introduction to the general net theory. In W. Bauer, Ed. Net Theory
and Applications, pp 1 – 20. Berlin, Springer-Verlag.

[10] Richards, T.J. and Webb, GI.I. (1985) ECCLES: an “expert system” for CAL.
Proceedings of the 1985 Western Educational Computing Conference, pp 151 –
157. Oakland, CA

[11] Sleeman, D. and Brown, J.S. eds (1982) Intelligent Tutoring Systems. London:
Academic Press

[12] Webb, G.I. (1986) Knowledge Representation in Computer-Aided Learning: The
Theory and Practice of Knowledge-Based Student Evaluation and Flow of Control.
PhD. Thesis, La Trobe University, School of Mathematical and Information
Sciences.

[13] Webb, G.I. (1988) Attribute-based cognitive diagnosis. To be published.
[14] Winograd, T. (1983) Language as a Cognitive Process. Vol. 1: Syntax. Reading,

MA: Addison-Wesley.

