
Webb, G.I. (1986) “Knowledge Based Flow of Control in Computer-Aided Learning” Page 1 of 6

Knowledge-Based Flow of Control in Computer-Aided Learning

Geoffrey I. Webb

Department of Computer Science, La Trobe University, Bundoora, 3083

Abstract

In this paper I examine the utilisation of knowledge representation in Computer-Aided Learning
(CAL) with the aim of establishing knowledge-based CAL techniques that are best suited to
current technology. Most existing knowledge-based CAL systems attempt to generate the entire
instructional sequence directly from a domain knowledge base. Such systems suffer from several
limitations. These limitations include:

1. It is questionable whether the techniques exist to produce such systems for any but a
highly restricted set of domains.

2. Even for those domains in which such systems can be produced the overheads are
prohibitive for most purposes.

Given these limitations, I argue that knowledge representation should be utilised in CAL only for
those aspects of the instructional process for which it results in substantial gains without
prohibitive overheads. I demonstrate that one aspect of CAL for which this holds is for managing
flow of control within instructional material.

I provide a detailed description of feature networks. These are a variant of M.A.K. Halliday’s
system network formalism. Feature networks are a knowledge representation formalism that
efficiently encodes exactly the knowledge that is required for knowledge-based flow of control.

It is shown that computer based lessons that utilise feature networks for control flow of control are
extremely economic in terms of both authoring time and computer resources while providing
highly responsive tuition.

DABIS, a system that embodies the methodology outlined above, has been implemented and is
described.

DABIS demonstrates the feasibility of this methodology. There are no fundamental restrictions to
the domains to which it can be applied. A lesson created under the DABIS system has been found
to have an authoring to student time ration of approximately 12:1. Lessons created by the system
also demonstrate the sensitivity to a student’s knowledge and abilities within a domain that results
from the intelligent use of knowledge-based CAL.

1 INTRODUCTION
The predominant approach that has been adopted in Artificial Intelligence based Computer-Aided
Learning (AICAL) has been to generate entire instructional sequences directly from a domain
knowledge base. That is to say, most AICAL systems use Artificial Intelligence (Al) techniques
for all aspects of instruction.

Pre-publication draft of a paper which appeared in the Proceedings of the First Australian Artificial
Intelligence Congress (1AAIC'86), Section B pp 1-7.

Webb, G.I. (1986) “Knowledge Based Flow of Control in Computer-Aided Learning” Page 2 of 6

Almost all of these systems use a pedagogical strategy which I call monitor-remediate tutoring.
This strategy entails several stages in the instructional process. First, the student is set a task to
perform. The student’s performance is monitored and aberrations from optimal performance
receive remediation. Depending upon the sophistication of the tutor, such remediation may vary
from such actions as demonstrating what the optimal action would have been to analysing the
underlying cognitive causes of the student’s non-optimal behaviour. I provide a detailed discussion
of the monitor-remediate tutorial strategy in Webb (1986a).

The monitor-remediate strategy has several fundamental problems. This approach to CAL has
tremendous overheads, both computationally and in terms of development time create. More
fundamentally, it relies upon the tutorial system having complete knowledge of optimal
performance in the domain which is to be taught. This means that the system must be able to
generate and recognise not only one but all optimal solution paths in every task that it sets for the
student. Inability to do this means that the system is unable to detect when the student’s
performance is non-optimal and thus is unable to correctly determine when to interrupt the
student’s activity.

Any attempt to pursue a monitor-remediate tutorial strategy utilising a system that does not have
complete knowledge of the domain is bound to lead to disaster. Quite simply, sooner or later a
student will take an optimal action that the system does not recognise as optimal. As a result the
system will provide remediation and ‘teach’ the student that their optimal action was not optimal.
Webb (1986a) provides an example where this has happened in practice with the Carnegie -Mellon
GREATERP tutor (Anderson, Boyle and Reiser, 1985; Reiser, Anderson and Farrell, 1985).

It may be thought that providing complete knowledge of expertise in a domain is a restriction that
AICAL can live with; that it only requires that designers of AICAL systems work a little harder
than might otherwise be necessary. However, this is not the case. The implementation of an expert
system for a non-trivial domain is an extremely difficult task. Such implementation only requires
the codification of one optimal solution path for each problem that the system will handle. Most
non-triv ial domains contain many significant variations on the solution paths that may be followed
to produce optimal results. For many of these domains there is no means available by which to
determine whether any particular characterisation of optimal performance is complete. The
exceptions to these limitations appear to be domains that operate according to readily formalised
principles. The prime example of an AICAL system that successfully exploits these properties of a
domain is the SOPHIE system for teaching electronic circuit analysis (Brown, Burton and deKleer,
1982). However, not many domains can be completely characterised in the same manner as
SOPHIE’s electronic circuit.

It may be thought that it is possible to avoid these problems by adopting an approach to AICAL
other than monitor-remediate tutoring. However, no other such approach has emerged.

Perhaps an obvious alternative would be to monitor the student’s progress for performance that the
system can identify as non-optimal rather than assuming that any action that the system cannot
identify as optimal was non-optimal. The obvious means in which to do this may appear to be to
incorporate in the system a library of buggy rules in the style of Burton’s (1982) DEBUGGY
system. Such a system stores not only a knowledge-base containing correct knowledge for the
domain, but also a knowledge-base of incorrect or buggy ‘knowledge’ for the domain. From the
student’s performance it is possible to deduce the buggy rules that the student has adopted.

However, this implies that it is possible to induce that a rule or other element of knowledge has
been used in formulating an action without recourse to the entire body of knowledge that is being
utilised. This is simply not possible in many cases. An individual rule will only be valid in the
context of the rest of a body of knowledge to which it belongs. Unless the system already knows
the rest of the student’s knowledge base in many cases it will have no sound basis for deducing
that any particular set of rules have contributed in the production of a particular action. Most
actions could be produced by any of an infinite number of possible combinations of rules.

Webb, G.I. (1986) “Knowledge Based Flow of Control in Computer-Aided Learning” Page 3 of 6

Similarly, an element of knowledge can only be considered buggy in the context of a particular
body of knowledge. For example, the operation ‘multiply the dividend by 10 divided by the
divisor’ will be erroneous in most codifications of expertise in division. However, if it is coupled
with a rule that ensures that the result is shifted right by one decimal place, then it can form part of
an extremely efficient method of solving some division problems. (If in doubt about this try
solving 126583/1.25 first by the standard mode of division and then by the method outlined
above!) Indeed, in the example that I provide in Webb (1986a) of GREATERP preventing the
student from producing an optimal solution, GREATERP identifies the student’s action (which is
actually optimal) as resulting from the application of a buggy rule. In short, a buggy knowledge-
base is not the solution to the dilemma.

Even for those domains for which the monitor-remediate tutoring strategy is feasible, it is
extremely dubious whether the enormous developmental costs are repaid by courseware that is in
any way superior to that which will be developed by alternative means for similar outlays.
Programmed learning may be an impoverished paradigm in which to operate but, with sufficient
development expenditure, very sophisticated courseware can be produced.

The monitor-remediate strategy has grown out of the generative CAL paradigm. As I argue in
Webb (1986b) generative CAL is a particular form of a more general paradigm, courseware
abstraction. Courseware abstraction involves the creation of courseware that operates by applying
a general treatment of a domain to successive examples from that domain. In generative CAL,
these examples are generated by the CAL system and thus the system must be able to analyse the
examples from general principles. Courseware abstraction does not require that the system should
generate the examples. An alternative is for the course author to explicitly list the examples that
the system is to use. In this case, it is also possible to list with each example a description of how it
is to be treated. As a result it is not necessary for the system to be able to analyse the examples
from general principles. Rather, the system need only embody the knowledge necessary to treat an
example given that a basic analysis of the example has already been provided by the lesson author.

As a result, the knowledge-base can be far less sophisticated. This makes its development far less
onerous.

It also becomes practical to utilise the AI component of the system only for some aspects of the
lesson. The entire instructional sequence need not be directly generated from the knowledge-base.

Much of the power and intuitive appeal of AICAL arises from its ability to respond to the students
understanding of a domain and general cognitive needs and to adapt its instruction accordingly.
This attribute of AICAL does not directly arise from the use of monitor-remediate tutoring or from
the generation of the instructional sequence directly from the knowledge-base.

Why then not utilise AI techniques only for this aspect of the instructional process and use the
more traditional and less expensive techniques of programmed learning for all other aspects of
instruction? By developing a simple knowledge-base that describes only those aspects of a domain
that are required to enable instruction to be adapted to the student’s understanding of a domain and
general cognitive needs, most of the problems associated with the monitor - remediate strategy can
be avoided.

Consider, if you will, an arbitrary computer-based lesson as a set (possibly infinite) of possible
instructional actions. By instructional actions I mean low level input and output operations such as
“display the string ‘WHILE is not the name of a recursive function in LISP’ in the top left hand
corner of the screen”. The problem at hand is to select the best sequence of instructional actions for
a particular student’s knowledge, aptitude and inclination. This involves at any point in time
selecting, on the basis of the past history of the student’s actions, the best instructional action from
the set of those available. Viewed in this manner, the problem becomes one of flow of control
within the set of possible instructional actions.

As has been discussed above, the monitor-remediate strategy is not suitable for generating
instructional actions except in domains which can be fully formalised. No other methodology has
been proposed for utilising AI to generate instructional activities, so what I wish to propose is that
we should return to the tried and true methods of test and branch CAL for the provision of
instructional actions.

Webb, G.I. (1986) “Knowledge Based Flow of Control in Computer-Aided Learning” Page 4 of 6

The use of AI should be reserved for the aspect at which it excels, adapting the instructional
sequence to fit the student’s needs. In the context that I am proposing, this entails using AI to
manage flow of control within a collection of test and branch instructional sequences. That is, an
AI based global manager should determine flow of control.

Several requirements are indicated if this is to be achieved. First, if an intelligent system is to
select instructional actions on the basis of a student’s cognitive needs then it must have a means of
determining what cognitive needs a particular low level instructional action will satisfy. Second,
the system must have a means of determining what the student’s cognitive needs are.

The only satisfactory means of evaluating the student’s cognitive needs is by analysing the
student’s performance as a lesson progresses. A stance in favour of student evaluation from
outside a lesson being used to manage flow of control within a lesson would be quite untenable.

Within the architecture that I am proposing, the only sensible locus of evaluation of a student’s
performance at a particular task is by the test and branch instructional sequence that directly
supervises that task. In other words, each test and branch instructional action must return to the AI
based global manager an evaluation of the student’s performance.

For its part, the global AI manager must understand the domain of knowledge to be taught and
how each instructional interaction relates to that domain. The system s knowledge of the domain
must be sufficient to be able to evaluate the student’s understanding of the domain and to
determine how the different aspects of the domain relate to one another. This requires far less
complexity in the knowledge-base than if it is to be used to directly generate the instructional
sequences.

Feature networks, a variant of Halliday’s (1973) system networks, provide exactly the form of
knowledge representation that such an AI manager requires. The key elements of feature networks
are features and feature choices. A feature represents a property that instances of the domain can
exhibit, or alternatively, a predicate that can be applied to instances of the lesson. Every feature
belongs to exactly one feature choice. A feature choice describes a dimension of categorisation in a
domain. The features in a dimension of categorisation must be both necessarily disjoint and
exhaustive. That is, it must necessarily be true that for all instances from the domain to which a
dimension of categorisation applies exactly one feature from the future choice applies. Further, a
dimension of categorisation represents the epistemological relatedness of the features that it
contains. Thus, whereas Red and Blue may be features in a dimension of categorisation for a
domain, Red and Square are unlikely to be, even if they are necessarily disjoint and exhaustive for
the domain.

Feature networks also contain several mechanisms for specifying how feature choices relate to one
another. Webb (1985b) contains a formal description of feature networks and their semantics.

Instances from a domain may be related to the feature network for the domain by a feature set. A
feature set contains the features from the domain that the instance exhibits.

Standard test and branch CAL routines can be associated with each aspect of the feature network
for a lesson. Such a routine is called a tutorial specification.

A tutorial specification provides an abstract treatment of the aspect of the domain with which it is
associated. When a tutorial specification is applied to a particular instance from the domain it
generates a concrete treatment of how the aspect of the domain applies to that instance. A tutorial
interface at a feature choice has the responsibility of identifying whether the student believes one
of the features from that feature choice applies to the instance and if so which one.

Following the courseware abstraction paradigm, the author creates separately the general CAL
treatment of the domain and the set of instances from the domain to which it is to be applied. In
this case, the general CAL treatment of the domain includes both a feature network that describes
the domain and tutorial specifications for each aspect of that network.

Webb, G.I. (1986) “Knowledge Based Flow of Control in Computer-Aided Learning” Page 5 of 6

The supervisory component of the system manages flow of control at two levels. When examining
an instance from a domain it must determine which tutorial specification to invoke and the order in
which they are to be invoked. At a higher level, it must determine which instances to examine and
the order in which to examine them.

Given that the features for an instance have been specified, the feature network formalism encodes
all information necessary to determine which aspects of the general treatment of the domain apply
to that instance. Thus, the system is able to determine which aspects of the network are relevant to
an examination of the instance and thus which tutorial specifications to invoke in CAL treatment
of it. The other manner in which feature networks serve to aid the management of flow of control
at the lower level is by specifying epistemological relationships between aspects of the domain.
This enables the system to judge which aspects of the domain should be regarded as pre-requisites
for which other aspects of the domain. In this way the system is able to ensure that the student is
not asked to examine aspects of the domain for which s/he is not likely to have requisite
understanding.

At the higher level of flow of control, feature networks enable the system to identify in general
which aspects of the domain the student experiences difficulty in examining. This enables the
system to produce an abstract description of the types of properties that the student requires more
tuition in examining. The system is able to use this abstract description to select concrete instances
the examination of which will be of greatest benefit to the student.

By these three mechanisms the system is able to provide adaptive instruction that is directly
focussed on the student’s individual cognitive needs.

The other major advantage of AICAL is the manner in which it is able to produce cognitive
analyses of the student’s understanding of the domain. In most AICAL systems these analyses take
the form of attributing a subset of the system’s knowledge-base to the student. Some systems
incorporate incorrect as well as correct ‘knowledge’ in their knowledge-base thus extending the
possible beliefs, skills and other elements of knowledge that can be attributed to the student. The
fundamental flaw with such an approach is that the CAL system’s knowledge-base must include
every aspect of knowledge that it can be relevant to attribute to the student.

By contrast, feature networks characterise properties from a domain and their relationships. The
student model is created by recording the instances of the domain and thus the exact combinations
of properties for which the student experiences difficulty in analysing. Further, for each time a
property is not correctly identified, the property that is attributed to the instance in its place is
known to the system. From this record the system is able to produce by statistical analysis a model
of how the student’s comprehension of the domain differs from its own. This model can include
details such as the dimensions of categorisation that the student has not mastered; properties that
the student does not understand; instances with which the student is not familiar; and properties
that the student cannot identify.

The use of the feature network knowledge representation formalism to manage flow of control is
able to produce the adaptive instruction and cognitive models that characterise other AICAL
systems. However, they enable this to be done without the tremendous developmental and
computational overheads associated with other such systems. The Domain-Analysis Based
Instruction System (Webb, 1986c) is an implementation of the methodology spelt out above that
has been developed to demonstrate this point.

The largest lesson that has been developed using this system examines the English word class
system for Linguistics students. This lesson took six hours to develop. The average terminal time
that students have spent on the system is in excess of thirty minutes. This means that there is better
than a 12:1 ratio between teacher development time and student terminal time. This compares very
favourably with ratios of between 100:1 and 200:1 which are frequently quoted for the
development of programmed learning CAL material, let alone the usual costs of AICAL material
which can only be guessed at.

Webb, G.I. (1986) “Knowledge Based Flow of Control in Computer-Aided Learning” Page 6 of 6

2 CONCLUSION
Existing AICAL has that advantage over other approaches that the lessons adapt to the student’s
cognitive needs and produce cognitive evaluations of the student’s performance. However, they
are developmentally and computationally expensive and, more fundamentally, require complete
expertise in the domain.

As a result, I have argued for eliminating the direct generation of instructional interactions from
the knowledge base and instead using it to manage flow of control and student evaluation. This
leads to the elimination of most of the developmental and computational overheads of the
approach. Further, the approach does not require complete expertise in the domain. These
overheads are removed without losing either of the major advantages of the original approach.

References

[1] Anderson, John R., Boyle, Franklin and Reiser, Brian J. (1985). Intelligent Tutoring
Systems . Science, 228:456-462.

[2] Brown, John Seely , Burton, Richard R. and deKleer, Johan. (1982). Pedagogical, natural
language and knowledge engineering techniques in SOPHIE I, II and III. In Sleeman, D.
and Brown, J. S. (eds) lntelligent Tutoring Systems. Academic Press, London, 227-307.

[3] Burton, Richard R. (1982). Diagnosing Bugs in a Simple Procedural Skill. In Sleeman, D.
and Brown, J. S. (eds) Intelligent Tutoring Systems. Academic Press, London, 1982, 157-
183.

[4] Halliday, M.A.K. (1973). Explorations in the Functions of Language. Edward Arnold,
London.

[5] Reiser, Brian J, Anderson, John R. and Farrell, Robert G. (1985). Dynamic student
modelling in an intelligent tutor for LISP programming. In Proceedings of the Ninth
International Joint Conference on Artificial Intelligence, Los Angeles, CA, 8-14.

[6] Webb, Geoffrey I. (1986a). Artificial Intelligence Based Computer Aided Learning
Systems . To be published.

[7] Webb, Geoffrey I. (1986b). Courseware Abstraction. To be published.

[8] Webb, Geoffrey I. (1986c). Feature Networks as a Basis for Computer-Aided Learning.
To be published.

[9] Webb, Geoffrey I. (1986d). The Domain-Analysis Based Instruction System. To be
published in the Proceedings of the 1986 CALITE Conference, Adelaide.

