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ABSTRACT

In many applications, association rules will only be inter-
esting if they represent non-trivial correlations between all
constituent items. Numerous techniques have been devel-
oped that seek to avoid false discoveries. However, while
all provide useful solutions to aspects of this problem, none
provides a generic solution that is both flexible enough to
accommodate varying definitions of true and false discover-
ies and powerful enough to provide strict control over the
risk of false discoveries. This paper presents generic tech-
niques that allow definitions of true and false discoveries to
be specified in terms of arbitrary statistical hypothesis tests
and which provide strict control over the experimentwise
risk of false discoveries.

Categories and Subject Descriptors: H.2.8 [Database
Management] Database Applications: data mining

General Terms: Algorithms, Performance, Reliability, Ex-
perimentation

Keywords: Association rules, Rule discovery, Statistics

1. INTRODUCTION

Association rule discovery [1] finds collections of items
that co-occur frequently in data. In many applications, such
rules will only be interesting if they represent non-trivial
correlations between all constituent items. For the purposes
of this paper we will call such associations significant rules
and all remaining associations false discoveries. Many tech-
niques have been developed that seek to avoid false discov-
eries [1, 3, 4, 5, 10, 12, 16, 18, 20, 22, 25, 23, 28, 29]. This
paper builds upon this body of previous work, presenting
two generic techniques that both allow definitions of true
and false discoveries to be specified in terms of arbitrary sta-
tistical hypothesis tests, while providing strict control over
the risk of false discoveries. We show that each has relative
strengths and weaknesses and provide analyses of these. We
substantiate the need for strict control over the risk of false
discoveries, showing that on some real-world tasks there is
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potential for all ‘discoveries’ to be false unless appropriate
safeguards are employed.

2. PROBLEM STATEMENT

We consider the problem of finding rules from data D =
(t1,t2,...,tn), where each transaction or record t; C I and

= {itema,itema, . ..item.,,} is the set of items of which
transactions are composed. For market-basket data items
are atomic forms and for attribute-value data items have the
form a;=wv; ; where a; represents an attribute and v; ; a value
of a;. For attribute value data, no transaction ¢;, 1 <i<n
may contain two items a;=v;; and a;=v;, j # k. That
is, each transaction may contain at most one value for each
attribute. Rules take the form z — y wherez C I and y € I.
Note that we limit the consequent y to a single value. While
many association rule techniques allow multiple values in the
consequent y, the techniques we present generalize directly
to multiple-value consequents and a single rule with multiple
elements in the consequent can be represented by multiple
rules with single elements in the consequent.

We are potentially interested in a number of properties
of a rule x — y relative to D, and these properties vary
from application to application. In this paper we utilize
support [1], confidence [1], lift [16] and leverage [22], defined
as follows:

sup(x = y,D) = {i:x Ct;i Ny € i} (1)

conf(z —y,D) = sup(zx —y,D) /{i:z Cti} (2
lift(x —y,D) = conf(x —y,D)/([{i:y € ti}[/n)3)
lev(x — y,D) = sup(z — y,D) —

{ize Ctif x{izyets}[/n (4)

Note that the parameters * — y and D will be omitted
from these functions where they can be determined from
the context.

The original association rule task [1] was to find all rules
x — y such that sup > minsup and conf > minconf, where
minsup and minconf are user-specified constraints.

Typically, rules will only be interesting if they represent
non-trivial correlations between items. Relatively high val-
ues of minsup and minconf usually deliver rules for which
z and y are correlated when applied to the sparse data
typical of market-basket analysis [20]. However, as will
be demonstrated in the experiments below, this is not the
case for dense data such as typical attribute-value data.
Also, there is a serious problem that x may contain items
that are independent of y, and hence potentially mislead-
ing. To illustrate this problem consider a rule {pregnant} —



oedema that represents a relationship between pregnancy
and oedema. Now consider {pregnant, female} — oedema.
Assuming that all cases of pregnancy will be female, this
will represent an equally strong correlation to the first rule,
but in most contexts redundant rules such as this will not
be useful so long as the first rule together with the fur-
ther rule {pregnant} — female are known. For a different
kind of example consider another term dataminer that we
will assume is in no way related to oedema. In this case
{pregnant, dataminer’} — oedema should represent as strong
a correlation between the antecedent and consequent as the
first rule, the only difference being a reduction in support
and random differences in confidence resulting from sam-
pling effects. However, in most contexts unproductive rules
such as this will be of no interest so long as the first rule is
known.

Such redundant and unproductive rules represent rules
x — y for which there exists z € z such that P(y | z) =
P(y | z\{z}), or, in other words, for which z and y are
conditionally independent given z\{z}.

Apriori, one might expect there to be very large numbers
of unproductive rules, as from every single productive rule
x — y many unproductive rules can be generated by insert-
ing into x any arbitrary collections of unrelated items.

Note that for the rest of this paper we will assume that
the analytic task of interest is to identify positive rules and
hence we will regard as false discoveries any negative rules
such as {male} — pregnant [confidence=0.0]. This seems a
reasonable assumption in the context of rule discovery us-
ing a minimum support constraint, as strong, and hence
presumably interesting, negative associations will have low
support and hence are excluded from consideration by the
imposition of a minimum-support constraint. However, the
techniques that we advance generalize directly to different
definitions of false discoveries, requiring only the use of dif-
ferent constraints and statistical tests.

3. TECHNIQUES FOR
FALSE DISCOVERIES

Clearly it is desirable to avoid false discoveries and nu-
merous techniques have successfully tackled aspects of this
problem.

Non-redundant rule techniques [3, 28] identify and discard
rules such as {pregnant, female} — oedema. Specifically,
they discard rules z — y for which 3z€x : sup(z — y) =
sup(z\{z} — y).

A more powerful filter is provided by a minimum improve-
ment constraint [5]. The improvement of rule z — y is
defined as

PREVENTING

imp(z — y) = conf(z —y) —max(conf(z —y)) (5)

It represents the difference between the confidence of a rule
and the highest confidence of any of its generalizations. A
minimum improvement constraint is justified in contexts
where only positive associations are of interest. In that case
an association is unlikely to be of interest unless it repre-
sents a stronger correlation than any of its generalizations.
A redundant rule will have improvement no greater than 0.0,
as for it to be redundant it must have a generalization with
identical confidence. Thus, a minimum improvement con-
straint is stronger than a non-redundant rule constraint as
it rejects all redundant rules as well as many unproductive

rules. The only unproductive rules that such a minimum-
improvement constraint will fail to reject are those for which
random sampling effects happen to result in raised confi-
dence for a rule by chance. However, almost 50% of rules
may fall into this category, because confidence is as likely to
be raised as lowered through sampling effects and is unlikely
to exactly represent the true probability of the consequent
given the antecedent unless that probability is 1.0. If the
minimum improvement constraint is set high enough to ex-
clude the majority of these cases, it is also likely to exclude
many productive rules.

An even stronger filter is represented by the use of statisti-
cal hypothesis tests, either to test for independence between
z and y [10, 17, 18, 29] or to test for unproductive rules [25].
We will focus here on the test for unproductive rules, as it
most directly addresses the issue at hand, but the key points
also apply to the other approaches. For the sake of compu-
tational efficiency this test compares x — y only against the
global frequency of y and against each of its immediate gen-
eralizations x\{z} — y, where z € . We do not test against
all generalizations as there are 2#l — 1 of these, and hence
for large antecedents the computation would be infeasible.

This test rejects a rule x — y if p < « for a Fisher exact
test [2] for improvement with respect to any of the rule’s
immediate generalizations z\{z} — y and with respect to
{} — y. The p value for the test for improvement with
respect to an immediate generalization x\{z} — y can be
calculated as follows. Let a = |[{i : @ C t; Ay € t;}]| (the
support for the rule), b= |{i: z C t; Ay & ¢;}| (the number
of transactions that contain z but not y), ¢ = |[{i : (z\{z}) C
ti Nz € t; Ay € t;}| (the number of transactions that contain
y and all the x values other than z but not z) and d = |{s :
(z\{z}) Cti Nz & ti Ny & t;}| (the number of transactions
that contain all the x values other than z but neither y nor

) (a+b)!(c+d)!(a+c)!(b+d)!

P= ; (atbtetd) (@ )= e—nary O

Here, ¢! denotes the factorial of q. By convention a = 0.05
is used. Equation (6) is also used to calculate the p value
for the test for improvement with respect to {} — y, using
the same a and b, but with ¢ = [{i : « € t; Ay € t;}]
(the number of transactions that contain y but not x) and
d={i:z €t Ny & t;}| (the number of transactions that
contain neither x nor y).

The use of this statistical test avoids the problem of set-
ting an appropriate minimum improvement constraint, as it
rejects all rules for which there is insufficient evidence that
improvement is greater than zero. However, it still suffers
from a very serious problem known as the multiple compar-
isons or multiple tests problem. For each rule considered,
the risk of it being accepted if it is not productive is no
more than a. Now consider a typical market basket task for
which more than 10?2 potential rules might be considered.
If @ = 0.05 and none of these rules is productive it is still
possible that as many as 5 x 10?° rules might be accepted.
Clearly this is an undesirable state of affairs.

An alternative approach is to use shrinkage estimates, or
Bayesian smoothing, to provide conservative estimates of
the true probability of a set of items [12, 23, 26]. These ap-
proaches can be very effective at reducing the overestimates
of measures such as support or confidence that can occur for



rules with low support. Their use can reduce type-1 error
with respect to minimum support or confidence (or simi-
lar) constraints. However, they do not allow for the number
of alternative rules under consideration, and hence do not
address the multiple tests problem. Nor do they provide a
general mechanism for assessing arbitrary criteria for defin-
ing false discoveries.

One solution that has been proposed is randomization
tests [20]. Under this approach the data are randomized
to establish the null hypothesis to be tested (for example,
that = and y are independent). The rule discovery software
is run under multiple such randomizations and settings are
identified such that rules would be discovered for no more
than « proportion of the runs. If the software is subse-
quently run on the non-randomized data with these set-
tings the probability that any rule discovered satisfies the
null hypothesis is no more than «. Unfortunately, however,
this approach does not solve the problem at hand, as it re-
quires that a single randomization of the data establish all
null hypotheses that are required. Consider the example of
{pregnant, dataminer} — oedema. To be able to reject this
rule we would need to randomize the data so as to make
dataminer independent of pregnant and oedema while re-
taining the existing correlations between the latter two val-
ues. However, we also need to test whether pregnant is
conditionally independent of oedema given dataminer, and
for this purpose we need to randomize the data to make
pregnant independent of dataminer and oedema while not
altering any correlations between this second pair. Clearly
it is not possible to perform a single randomization that
satisfies both these requirements.

4. THE WITHIN-SEARCH APPROACH

The classical statistical solution to the multiple tests prob-
lem is to employ a procedure such as the well-known Bonfer-
roni adjustment that makes explicit allowance for the num-
ber of hypotheses tested and either seeks to control the ex-
perimentwise risk of false discoveries (the risk that any false
discovery will occur) [14] or the false discovery rate (the
expected proportion of discoveries that are false discover-
ies) [6]. In the current paper we address only control of
the experimentwise risk of false discoveries, but it would be
straightforward to extend the techniques to control of the
false discovery rate by simply substituting an adjustment
for the latter in place of the former.

The Bonferroni adjustment replaces a in the hypothesis
tests with o’ = a/r, where r is the number of tests per-
formed. This ensures that the experimentwise risk of false
discoveries is no more than «. This adjustment provides
strict control over the experimentwise risk of false discov-
eries, even if the hypothesis tests are correlated with one
another. This feature is important in the association rule
discovery context, as many rules considered are likely to be
closely related to one another and hence the hypothesis tests
applied are likely to be strongly correlated.

More powerful alternatives exist to the Bonferroni adjust-
ment [24], such as the Holm procedure [15]. The Holm pro-
cedure requires that all hypothesis tests be evaluated and
their p values ordered from lowest pi to highest p,. The ad-
justed a is then o’ = max(p; : V1<j<i,p; < a/(r—j+1)).
All such alternatives to the Bonferroni adjustment require
that all tests be evaluated before the adjusted significance
level is determined. Clearly this is infeasible during associa-

tion rule discovery, as exploration of the large search spaces
involved is only feasible if efficient pruning is able to avoid
explicit consideration of the majority of rules.

Before we can apply a Bonferroni adjustment we need
an upper bound on the number of hypothesis tests in the
search space. For market-basket data it is straightforward
to determine the size of the search space. Recall that m is
the total number of items and assume that z must contain
at least one item and that there is an upper bound maxx on
the number of items it may contain. There are m possible
values for y, and for each y value there are m — 1 items from
which up to maxzx x values are selected.

maxrz

s=mx ZCimfl (7
i=1

where C7" " is the number of combinations containing i out
of m — 1 items. So, for example, with the Retail dataset,
used below, the number of items is 16,470 and hence with x
limited to no more than 5 items the size of the rule space is
1.66 x 10%.

For attribute-value data the situation is a little more com-
plex, as no rule containing more than one item for a sin-
gle attribute can be productive. Examples of such rules
include {sez=male, sex=female} — occupation=dataminer
and {sez=male, occupation=dataminer} — sex=female. A
tighter bound can be calculated if all such rules are excluded
from the calculation. To calculate the total s we must first
be able to calculate the number of combinations of values
of a given subset of i attributes, atts. To do so we first or-
der the attributes in arbitrary order from 1 to ¢ and refer
to the individual attributes using this order as att; ... att;.
We use intermediate values cqyt,5,x that each represent the
total number of combinations of up to j items, where items
contain only values for attributes att; ... attg.

#atty, j=1k=1
e 1l i>1lk=1
IR TN ko1 + #alty, j=1,k>1

Catt,jk—1 + FFatty X Catt,j—1,k—1, Otherwise
(8)
where #att; is the number of values for attribute att;. An
upper bound on the number of hypothesis tests in the search
space can then be calculated as follows, where each z repre-
sents the use of an attribute in the role of consequent.

s = Z (#Z X Z Ca\{z},m,j) (9)
j=1

z€a

It is possible that the Bonferroni adjustment has been
overlooked by the association rule discovery community be-
cause it has been assumed that the required adjustments
are so large that the resulting adjusted significance levels
(for example o' = 0.05/1.66 x 10%* = 3.01 x 1072°) will
be so low that no rules will be discovered. However, as this
paper will show, this turns out not to be the case.

This approach is called a within-search approach, as sta-
tistical tests, with an appropriate Bonferroni adjustment,
are applied to rules as they are encountered during the
search process.

5. HOLDOUT EVALUATION

Before investigating the application of a within-search
Bonferroni adjustment to find significant rules, we should
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Figure 1: Holdout evaluation process

also consider another alternative. Rather than applying
statistical tests during the rule discovery process, we could
partition our data into exploratory and holdout sets, dis-
cover candidate rules using the exploratory data and then
test those rules using the holdout data, accepting only those
rules that pass relevant statistical tests for significance. This
process is illustrated in Figure 1. It will be necessary to cor-
rect for multiple tests, but only with respect to the number
of rules found in the exploratory stage, not the full size of
the search space considered. As the former is likely to be
much smaller than the latter, the adjustment will be much
smaller. Further, because only a constrained number of rules
will be tested, it becomes feasible to employ a more powerful
alternative to the Bonferroni adjustment, such as the Holm
procedure. Note that, unlike most similar procedures, the
Holm procedure is also safe in the face of correlated hypoth-
esis tests. If it were desired to control the false discovery rate
rather than the experimentwise risk of error, the Benjamini-
Yekutieli procedure [7], which is likewise safe, could also be
used.

The use of holdout evaluation in this way is similar to es-
tablished holdout evaluation methodology in machine learn-
ing, except that whereas it is used there to obtain unbiased
estimates of properties of a single model, such as its error,
here it is being used to perform unbiased hypothesis tests
on multiple models.

There are a number of reasons to believe apriori that hold-
out evaluation might be more powerful than applying a Bon-
ferroni adjustment during rule discovery. First, more power-
ful adjustments such as the Holm procedure can be applied.
Second, the scale of the adjustments should be far smaller,
as there should be far fewer rules discovered than there are
rules in the search space. For example, if 10,000 rules are
found then the adjusted significance level for a Bonferroni
adjustment would be 5.00 x 1078, irrespective of the size of
the search space from which the 10,000 rules were discov-
ered. On the other hand, however, the power of the tests
must be reduced by the use of less data both for the initial
rule discovery and also for the statistical tests.

6. EXPERIMENTS

These experiments seek to answer the following questions:

1. Is there a need for significance tests during association
rule discovery?

2. Do the within-search and holdout-evaluation processes
successfully limit false discoveries in practice?

3. How powerful are the within-search and holdout-
evaluation processes? That is, what is the risk that
they will fail to find true rules?

4. How do the techniques perform on real-world data?

A pre-release of version 3.1 of the well-known Magnum Opus
rule discovery software was employed [26]. This software
implements k-optimal rule discovery [27], whereby the user
specifies a maximum number of rules to be discovered k to-
gether with a measure to optimize such as support, confi-
dence, lift or leverage and any other constraints to impose,
such as that the rules must be non-redundant or produc-
tive. It also supports the application of a Fisher exact test
as described in Section 4 and holdout-evaluation. Using this
software the within-search technique can be evaluated sim-
ply by calculating and imposing the appropriate adjusted
significance level.

6.1 Experiment 1

The first experiment sought to investigate questions 1 and
2. Random data were generated containing 10,000 transac-
tions, each containing values for 100 binary variables, with
each value being equiprobable. As each value was gener-
ated randomly without reference to any other variable, all
variables are independent of one another and all rules are
false discoveries. 100 such data sets were generated. Mag-
num Opus was applied to each data set using each of the
following set of parameters.

Non-redundant: find the 1000 non-redundant rules with
the highest leverage.

Productive: find the 1000 productive rules with the high-
est leverage.

Significance=0.05: find the 1000 rules with the highest
leverage that pass a significance test at the 0.05 significance
level.

Bonferroni: find the 1000 rules that pass a significance
test at the 1.77 x 107° significance level that results from
applying a Bonferroni correction to a raw significance level
of 0.05 with a search space of 2.82 x 10° rules.
Non-redundant+holdout: find the 1000 non-redundant
rules with the highest leverage from half the data and then
validate the rules using the remaining holdout data.
Productive+holdout: find the 1000 productive rules with
the highest leverage from half the data and then validate the
rules using the remaining holdout data.

For all settings the maximum antecedent (z) size was set to
the default value of 4.

The non-redundant, productive and significance=0.05
treatments all resulted in discovery of 1000 rules for every
dataset. Table 1 shows the minimum, mean and maximum
support, confidence and leverage for each of these treat-
ments. As can be seen, some rules had substantial support,
confidence and leverage. For this task there were almost
no differences in the rules discovered by the non-redundant



Table 1: Support, confidence and leverage of rules found from random data

— support —
Treatment min mean max
Non-redundant 320 950 2,688
Productive 320 950 2,688
Significance=0.05 320 860 2,688

and productive approaches because almost all rules with the
highest leverage were productive.

These results appear to support an affirmative answer to
question 1. It seems clear that there is a strong risk of
false discoveries unless appropriate allowance is made for
the multiple-tests problem.

No rules were found for any dataset under the Bonferroni
or either holdout treatment. It might come as a surprise
that no rules were found under any of these treatments,
whereas the adjustments are supposed to restrict the num-
ber of analyses for which any false discoveries are made to
no more than 5% and hence one might have expected rules
to have been found for up to 5 of the datasets under each
of these treatments. With the Bonferroni adjustment this is
possibly not so surprising as it is much more strict than the
Holm procedure which also guarantees strict control over
the experimentwise risk of false discoveries, and hence must
be less likely to make false discoveries. The reason the
Holm procedure makes no false discoveries may relate to
the inter-dependencies between the rules. Both the Holm
and Bonferroni procedures control against the most disad-
vantageous form of relationship between the hypothesis tests
which occurs when the null hypotheses are mutually exclu-
sive. In practice, however, many of the hypothesis tests for
this rule discovery task will be closely related to one an-
other, and may even be equivalent, as for example for the
rules pregnant — oedema and oedema — pregnant. In this
circumstance the probability of any false discovery occurring
is greatly reduced, although if one occurs it is likely several
will occur.

These results provide support for an affirmative answer for
question 2. Both the within-search and holdout approaches
can control the risks of false discoveries.

6.2 Experiment 2

The second experiment sought to investigate question 3.
Random data were generated comprising 10,000 transac-
tions each containing values for 20 binary variables X55,
Y55, X60, Y60, X65, Y65, X70, Y70, X75, Y75, X80, Y80,
X85, Y85, X90, Y90, X95, Y95, X100, Y100. Each of the
X values was randomly generated with each value being
equiprobable. The probability of Yv=1 was v% if Xv=1,
otherwise 100-v% and the probability of Yv=0 was v% if
Xv=0, otherwise 100-v%. For example, the probability of
Y55=1 was 55% if X55=1, otherwise 45%. These data give
rise to 40 true discoveries, X55 =0 — Y55 =0, X55 =1 —
Y55=1,Y55=0— X55=0,Y55=1— X55=1 and so
on. Any other rules found represent false discoveries. The
varying confidence levels of the rules (from 0.55 through to
1.00) represent different levels of challenge to a discovery
system. 100 such random datasets were generated and all
six treatments used in the previous experiment were applied
to each.

All treatments found all true rules relating to X and
Y65 and higher for all data sets. Only significance=0.05

— confidence — — leverage —
min mean max min mean max
0.490 0.537 0.618 0.0044 0.0050 0.0116
0.490 0.537 0.618 0.0044 0.0050 0.0116
0.489 0.537 0.618 0.0042 0.0050 0.0116

and Bonferroni found the remaining 8 rules for any dataset
and they consistently did so for all datasets. All of non-
redundant, productive and significance=0.05 found as many
false discoveries as required to fill a quota of 1000 rules. The
reason that non-redundant and productive failed to find the
55 and 60 level rules was that they found so many higher
leverage rules that these true rules did not fit within the
quota of 1000.

Neither the Bonferroni nor either of the holdout treat-
ments made any false discoveries. The reason the holdout
treatments did not find the 55 or 60 level rules was that those
rules were not found during the exploratory rule discovery
stage. The highest p-value for any of the rules found un-
der the Bonferroni treatment was 6.19 x 102, This would
have been rejected if the search space had contained more
than 8.095 x 10?® rules, which would occur, for example, if
there were 100 pairs of variables and = were allowed to con-
tain up to 15 values (rule space size = 5.79 X 1027, adjusted
p=1.73 %1030,

These results show that the relative power of the within-
search and holdout approaches will vary depending upon
the size of the search space and on the capacity under hold-
out evaluation of the search technique applied during the
exploratory stage to find the true discoveries.

6.3 Experiment 3

The final experiment investigates question 4, how do the
techniques perform on real-world data. The same six treat-
ments were used as for the previous experiments. Experi-
ments were conducted using eight of the largest attribute-
value datasets from the UCI machine learning [21] and KDD
[13] repositories together with the BMS-WebView-1 [30] and
Retail [9] datasets. These datasets are described in Table 2.
We first found for each dataset the minimum even value
for minimum-support that results in fewer than 10,000 non-
redundant rules given a minimum-confidence of 0.75. This is
listed in the minsup column of Table 2. Each treatment was
then applied to each dataset five times, once with each max-
imum limit mazz on the size of x from 1 to 5. All runs used
minimum-confidence=0.75 and the appropriate minimum-
support, except for the holdout treatments which only use
half the data for rule discovery and for which the minimum-
support was therefore halved.

Table 3 presents the number of rules found by each tech-
nique for each data set and setting of maxx. The meanings
of the columns are as follows:

Dataset: The dataset.

maxx: The maximum number of items allowed in z.

NR: The number of non-redundant rules ‘discovered.’
Prod: The number of productive rules ‘discovered.’

0.05: The number of rules ‘discovered’ that passed an un-
adjusted significance test at the 0.05 level.
Within-Search Rule Space: The number of rules in the
search space. The within-search technique used a signifi-
cance level of 0.05 divided by this value.



Table 2: Data sets

Dataset Transactions/Records Items Minsup Description

BMS-WebView-1 59,602 497 50 E-commerce clickstream data
Covtype 581,012 125 577,684 Geographic forest vegetation data
IPUMS LA 99 88,443 1,883 54,660 Census data

KDDCup98 52,256 4,244 47,748 Mailing list profitability data
Letter Recognition 20,000 74 1,186 Image recognition data

Mush 8,124 127 1,730 Biological data

Retail 88,162 16,470 28 Retail market-basket data
Shuttle 58,000 34 1,418 Space shuttle mission data

Splice Junction 3,177 243 152  Gene sequence data

TICDATA 2000 5,822 709 5,730 Insurance policy holder data proc

Table 3: Number of rules found under each treatment
Within-Search Holdout-NR  Holdout-Prod

1281
1175
1176
1263

o o

Ju—
N O OO

421
452

28
59

134
28

51
53
54

10
23
32
42

14
45
66
e
16
24
26
26

Dataset x| NR Prod 0.05 RuleSpace Disc Cand Disc Cand Disc WSHP WSHP
BMS-WebView-1 1 3 3 3 2.47x10° 3 3 3 3 3 0
BMS-WebView-1 2 1075 1075 1068 6.13x107 941 2398 2076 2397 2076 146
BMS-WebView-1 3 4530 4496 4084 1.01x1010 841 12873 1839 12550 1846 170
BMS-WebView-1 4 6600 6210 4885 1.25x1012 721 20877 1755 17840 1781 116
BMS-WebView-1 5 7173 6414 4915 1.23x1014 594 22135 1747 18179 1780 7
Covtype 1 234 0 0 1.78x10% 0 236 0 0 0 0
Covtype 2 1380 0 0 1.17x106 0 1379 0 0 0 0
Covtype 3 4096 0 0 4.98x107 0 4103 0 0 0 0
Covtype 4 7576 0 0 1.55x109 0 7588 0 0 0 0
Covtype 5 9988 0 0 3.80x1010 0 10018 0 0 0 0
IPUMS LA 99 1 329 156 143 3.08x 108 133 329 136 157 136 1
IPUMS LA 99 2 1992 401 323 2.23x10° 263 1962 261 412 266 3
IPUMS LA 99 3 5312 542 377 9.60x 10! 288 5209 290 586 297 3
IPUMS LA 99 4 8447 581 383 2.77x 104 286 8315 290 655 297 3
IPUMS LA 99 5 9990 582 383 5.73x 1016 282 9857 288 668 297 3
KDDCup98 1 265 138 50 1.50x 108 32 269 34 128 34 0
KDDCup98 2 1580 399 80 4.39x 10! 33 1582 38 363 41 0
KDDCup98 3 4646 715 105 7.49x 1014 30 4608 40 641 42 0
KDDCup98 4 8157 906 120 8.76x 1017 30 8037 40 795 40 0
KDDCup98 5 9984 958 124 7.66x 1020 30 9863 40 854 40 0
Letter Recognition 1 20 20 20 4.66x103 20 17 17 17 17 4
Letter Recognition 2 693 554 509 1.34x10° 416 595 359 473 366 126
Letter Recognition 3 3696 2265 1810 2.30x10° 939 3285 828 2055 852 390
Letter Recognition 4 7826 3861 2739 2.68x107 1029 6607 958 3454 998 452
Letter Recognition 5 9950 4455 2981 2.27x108 975 7978 952 3842 1005 422
Mush 1 223 142 135 1.52x10* 126 223 126 137 127 1
Mush 2 1674 630 601 8.74x10° 516 1674 494 630 519 25
Mush 3 4885 1292 1224 3.12x107 1041 4832 963 1261 1027 73
Mush 4 7751 1665 1581 7.85x108 1302 7657 1221 1611 1303 95
Mush 5 9070 1750 1662 1.48x1010 1317 8957 1266 1682 1351 100
Retail 1 263 263 263 2.71x108 65 447 85 447 85 8
Retail 2 4722 4538 2613 2.23x10'2 62 6052 107 5853 107 5
Retail 3 8808 7688 3280 1.23x1016 55 10641 98 9220 102 4
Retail 4 9723 8149 3315 5.05% 1019 52 11556 98 9653 101 4
Retail 5 9887 8199 3315 1.66x 1023 51 11656 97 9675 101 4
Shuttle 1 49 44 44 1.03x103 43 48 43 44 43 1
Shuttle 2 745 529 479 1.46x10% 407 750 396 530 403 14
Shuttle 3 3910 1823 1322 1.19x10° 878 3895 795 1809 819 82
Shuttle 4 8260 2529 1713 6.29x10° 985 8138 877 2457 923 94
Shuttle 5 9999 2630 1771 2.28x 106 964 9760 876 2555 929 7
Splice Junction 1 17 17 17 5.81x10* 17 16 16 16 16 1
Splice Junction 2 1545 1045 394 6.88x 106 62 1535 62 763 70 6
Splice Junction 3 7354 4524 1894 5.33x108 120 7067 134 4220 145 20
Splice Junction 4 9261 5399 2241 3.04x 1010 92 8758 133 5135 148 10
Splice Junction 5 9463 5465 2251 1.36x 1012 75 8937 132 5208 148 4
TICDATA 2000 1 368 160 136 4.67x10° 32 366 30 110 46 2
TICDATA 2000 2 2200 328 248 1.56x108 24 2246 30 166 46 2
TICDATA 2000 3 5736 392 280 3.42x10%0 22 6150 30 166 46 2
TICDATA 2000 4 8584 392 280 5.53x 1012 22 9478 30 166 46 2
TICDATA 2000 5 9384 392 280 7.02x 1014 22 10438 30 166 46 2
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Within-Search Disc: The number of rules ‘discovered’
that passed the adjusted significance test. This is abbrevi-
ated as WS, below.

Holdout-NR Cand: The number of non-redundant can-
didate rules generated from the exploratory data under the
holdout approach.

Holdout-NR Disc: The number of those candidate rules
that passed the subsequent holdout evaluation. This is ab-
breviated as HN, below.

Holdout-Prod Cand: The number of productive candi-
date rules generated from the exploratory data under the
holdout approach.

Holdout-Prod Disc: The number of those candidate rules
that passed the subsequent holdout evaluation. This is ab-
breviated as HP, below.

WSHP: The number of rules ‘discovered’ by the within-
search technique but not passed by holdout evaluation on
productive rules.

WSHP: The number of rules passed by holdout evaluation
on productive rules but not ‘discovered’ by the within-search
technique.

The relative numbers of rules discovered for each dataset
and mazx by within-search adjusted significance tests and
by each of the holdout evaluation techniques are plotted in
Figure 2.

6.3.1 Observations

A number of points are worth highlighting. First, the
number of non-redundant rules that are not productive and
the number of productive rules that do not pass an unad-
justed significance test is in many cases extremely high. In
the most extreme case, Covtype, none of the non-redundant
rules is productive. This is due to a peculiarity of this par-
ticular dataset which uses 40 mutually exclusive binary vari-
ables ST01 to ST40 to represent which one of 40 soil types
predominates in an area. Thus, the most frequent attribute-
values are values of 0 for individual ST?? variables and the
most frequent itemsets are sets of these values. Because
they are mutually exclusive, for any two of these variables
w and z, P(w=0 | z=1) = 1.0. It follows that, so long as
P(z=1) > 0.0, P(w=0 | z=0) < P(w=0). Hence, all associ-
ations between these variables must be unproductive. The
fact that all the top 9,988 non-redundant associations for
this dataset represent negative associations highlights the
dangers of data mining without both a clear definition of
what constitutes a false discovery and sound mechanisms
for detecting and rejecting such false discoveries. (Indeed, it
turns out that all of the 197,183,686 highest support associ-
ations for this data are associations between these variables
and hence negative associations.)

Holdout evaluation with productive rules usually finds
slightly more rules than Holdout evaluation with non-
redundant rules. This is because the size of the correction
for multiple tests that is performed during holdout evalu-
ation is smaller, as there are fewer productive than non-
redundant rules. The only circumstance in which the use
of non-redundant rules could result in more discoveries is if
some rules that were unproductive on the exploratory data
turned out to be significantly productive on the holdout
data. This rarely occurred in the experiments, a total of
four rules being discovered by holdout with non-redundant
but not holdout with productive. Only one of these rules is
productive with respect to the full data, having by chance

proved unproductive with respect to the exploratory sam-
ple. The remaining three rules were unproductive with re-
spect to both the full data and the exploratory data, but
by chance turned out to be productive on the holdout data.
This illustrates a potential flaw in the holdout method. Con-
sider random data such as that used in Experiment 1, above,
where a dataset is divided into exploratory and holdout sets.
If one were to take the rules that represented the strongest
negative correlations with respect to the exploratory data,
the probability of those rules representing positive correla-
tions on the holdout data would be increased, as one would
be actively selecting for rules for which, by chance, more of
the transactions containing both the antecedent and conse-
quent were selected into the holdout data than the training
data. It is clearly necessary to avoid any such confounding
selection process under the holdout evaluation strategy.

Overall, holdout evaluation with productive rules found
more rules than within-search significance testing, with the
relative performance being more favorable to within-search
when the size of the rule space was smaller (small mazz or
fewer items) and more favorable to holdout evaluation as
the size of the search space increased. This is because of the
extremely small significance levels that are employed with
large search spaces. The total number of rules discovered
by WS often decreased as the search space increased. Such
decreases occurred less for holdout evaluation and when they
did, the decreases were smaller. Note, however, that these
relative results are in part an artifact of the experimental
design. If minimum support had been set lower, then WS
would have found more rules, as the rules found under the
current setting would not have been affected and further
rules with lower support could have potentially passed the
adjusted significance test. However, increasing minimum
support could have reduced the number of rules found by
holdout evaluation as it would have increased the number of
candidate rules and hence lowered the adjusted significance
level that rules had to pass.

It is interesting to consider the causes of holdout evalu-
ation failing to find a rule that a within-search correction
finds. WS made 16,238 discoveries, where this is the sum
of the WS column of Table 3, and multiply counts some
rules because a single rule may be discovered repeatedly at
different settings of maxz. Of these, 2,554 were not dis-
covered by HP, as shown in column WSHP of Table 3. In
533 cases the rule was found during the exploratory stage
but failed holdout evaluation. In the remaining 2,021 cases
the rule was not found during the exploratory stage. This
latter case occurred primarily because rules failed to attain
the required minimum support with respect to the smaller
sample of data available for the initial rule discovery stage
when holdout evaluation is performed.

It is also interesting to observe that in some cases huge
numbers of additional rules were found during the ex-
ploratory stage relative to those found from the full data set,
the most extreme case being BMS-Webview-1, for which ap-
proximately three times the number of candidate rules were
found relative to discovery from the full dataset. This illus-
trates the disadvantage of working with the smaller samples
inherent in the holdout approach.

7. FUTURE RESEARCH

The effectiveness of holdout evaluation with produc-
tive rules relative to that of holdout evaluation with non-
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redundant rules demonstrates the value of excluding from
holdout evaluation rules that are unlikely to pass. On the
other hand, however, the small number of rules that were
found using non-redundant rather than productive rules
demonstrates the danger of performing too strong a filter on
the rules to be subjected to holdout evaluation. The devel-
opment of effective techniques for performing such filtering
provides a promising direction for future investigation.

In the current within-search approach, the adjustment to
the significance level takes account of the size of the en-
tire rule space under consideration. It takes no account of
the fact that the number of candidates must vary as user
specified constraints such as minimum-support are varied.
It seems credible that the adjustment should get smaller as
minimum-support gets higher, as fewer significance tests will
be applied. However, it would be incorrect to simply adjust
for the number of rules that pass a minimum support con-
straint. To understand why this is so, consider the example
of random data in Experiment 1, above, which consists of
10,000 transactions each containing values for 100 binary
variables with each value being equiprobable. For one such
random dataset, 12 non-redundant rules were found with
support greater than 2600. If a significance level of 0.05
were adjusted to allow for 12 tests, the resulting adjusted
significance level would be 0.00417. Two of the twelve rules
would pass a Fisher exact test at this significance level, both
obtaining p-values of 0.00112. The reason that it is not ap-
propriate to adjust the significance test only for the rules
that pass a minimum-support constraint is that sampling
effects will exaggerate the support of some rules and the
number of such exaggerated support counts experienced re-
lates to the total number of rules in the global rule space,
not just to the number that pass the minimum support con-
straint. It would be valuable if sound techniques could be
developed for modifying adjustments in line with relaxation
or strengthening of constraints.

It is possible to vary the size of the rule space for the
within search strategy by varying constraints such as mazxx,
or by deleting items from consideration. It is clear that
doing so will alter the number of discoveries that are made,
and that in some circumstances increasing the size of the
rule space will decrease the number of discoveries. It would
be valuable to develop techniques for selecting constraints
that will maximize the expected number of discoveries. One
approach might be to explore a variety of constraints and
then select the one that delivers the most discoveries, but
care would need to be taken that the selection criteria were
in no way selecting the settings that were most likely to have
resulted in false discoveries, because doing so could defeat
the current strict control over the risk of false discoveries. It
is possible that selecting the settings that deliver the most
rules might favor settings that produce false discoveries, as
any false discoveries produced will increase the number of
discoveries.

The current research has adopted the association rules
support-confidence framework. The ability to assess signifi-
cance during search holds open the prospect of a new form
of rule discovery, in which all statistically significant rules
are discovered without the need to specify any arbitrary pa-
rameter other than the risk of false discoveries (the global
significance level). As search through the massive search
spaces involved in rule discovery relies upon efficient pruning
from consideration of the majority of the search space, the

development of such techniques will depend critically upon
whether effective techniques can be developed for identifying
sections of the search space that cannot contain rules that
could pass a significance test. This is a further intriguing
direction for future research.

A somewhat related line of research to that pursued herein
involves the discovery of condensed representations [19, 8,
11] for datamining. Like the current research, this is con-
cerned with reducing the number of discoveries. However,
while we seek here to limit discoveries to those that rep-
resent non-trivial interactions between variables, condensed
representations seek to limit discoveries to a limited set from
which all other discoveries can be inferred. It would be use-
ful to develop condensed representations for significant rules,
thereby coupling the representational power of condensed
representations with the ability to avoid false discoveries.

8. CONCLUSIONS

This research has demonstrated the effectiveness of two
alternative techniques for controlling the risk of false discov-
eries during association rule discovery. Within-search signif-
icance tests adjust the significance level to allow for the size
of the search space from which rules have been drawn. De-
spite the resulting use of extremely low significance levels
(in our experiments as low as 3 x 1072°), in some cases large
numbers of rules can be discovered while providing strict
control over the risk of false discoveries. Holdout evaluation
can also provide strict control over the risk of false discover-
ies by first discovering candidate rules from an exploratory
dataset and then testing those rules on different holdout
data.

Our experimental evaluation has demonstrated that nei-
ther of these approaches clearly dominates the other. While
in our experiments the holdout approach made substantially
more discoveries overall, it is clear that the within-search ap-
proach holds an advantage when the the size of the search-
space is small or when the number of candidate rules is large.

Both techniques provide considerable flexibility. Most im-
portantly, while we have examined in this paper only tech-
niques for discarding unproductive rules, the techniques are
directly applicable to any statistical hypothesis test, allow-
ing users to identify and discard false discoveries using what-
ever definition of false discovery is applicable to their specific
application.

The problem of false discoveries appears to be a serious
one, as evidenced by the large numbers of non-redundant
rules that are not even productive on the sample data, let
alone in the domain from which the data have been sam-
pled. The Covtype dataset is real-world data for which all
of the 197,183,686 highest support rules are unproductive.
Experiment 1 demonstrated that it is possible to ‘discover’
large numbers of association rules from totally random data.
These examples starkly illustrate that there is a serious risk
of discovering large numbers of spurious rules if we do not
perform appropriate statistical evaluation during association
rule discovery that takes account of the size of the search
space that is explored. We, the members of the data mining
community, are doing a serious disservice to ourselves, as
well as to the communities we seek to serve, if we present
sets of ‘discoveries’ to our clients of which the majority are
spurious.
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