
Prepublication draft of Webb, G. I. (2002). Integrating Machine Learning with
Knowledge Acquisition. In Leondes, C. T. (Ed.), Expert Systems, volume 3, pages 937-
959. San Diego, CA: Academic Press.

Techniques for integrating machine learning with knowledge acquisition

Geoffrey I. Webb

School of Computing and Mathematics

Deakin University

Geelong, Vic, 3217,

Australia

Tel: +61 3 5227 2606

Fax: +61 3 5227 2028

Email: webb@deakin.edu.au

INTRODUCTION

Knowledge acquisition is frequently cited as the greatest bottleneck in the
development of expert systems. Two primary approaches to knowledge acquisition
are elicitation of knowledge from experts (traditional knowledge acquisition) and
machine learning. Both approaches have strengths and weaknesses. Experts can draw
upon practical experience and both domain specific and general knowledge. In
addition, they often have access to well established procedures relating to the target
domain. Elicitation of knowledge from experts is limited, however, by the difficulty of
articulating knowledge; reluctance in some circumstances to share knowledge;
preconceptions and biases that might inappropriately influence an expert; and the
limits of an expert’s knowledge. In contrast, machine learning systems provide a
capacity to infer procedures from examples; can perform extensive logical analysis;
and are not subject to the same types of preconceptions and biases as an expert. They
are hampered, however, by limited access to general and domain-specific knowledge
and the difficulties of obtaining comprehensive example sets. Further, machine
learning is only possible where much of the knowledge acquisition task has already
been completed. Machine learning requires a description of the problem domain and
collection of example cases from which to learn. In attribute-value machine learning,
the domain description consists of a set of attributes and their allowable values along
with a collection of class values. These, together with the formalism used for
expressing the decision procedures, specify a space of possible solutions that the
system might ‘learn’. The learning system then explores this space of solutions seeking
one that best fits the training examples. If a suitable space of possible solutions is
specified, learning is relatively straightforward. If a poor solution space is specified,
effective learning is impossible. Thus, machine learning requires prior ontological
analysis and the specification of a suitable class of models to explore.

 1

It is clear that this pre-learning process is crucial. A domain expert will usually
provide critical input into this process. This is not the end of the domain expert’s
involvement in knowledge acquisition by machine learning, however. In practical
applications of machine learning it is often necessary for an expert to review the rules
that a machine learning system creates (see, for example, Buntine & Stirling, 1991).
These rules may require modification due to pragmatic or other considerations quite
outside the formal factors that a machine learning system is able to consider. For
example, social or ethical considerations may make unacceptable a policy to refuse
loans to a specific class of loan applicant, no matter how compelling the evidence is
that the particular class of applicant represents a poor risk. Review by the expert will
also frequently lead to the identification of deficiencies in the domain specification,
which will necessitate a cycle involving modification of the domain specification and
re-application of machine learning, followed by another domain expert review. Most
machine learning tools provide little support for these interactions with the expert.

In addition to assisting the expert in processes that must be carried out to support
machine learning, there is also a need for facilities to enable the expert to directly assist
the machine learning system during the induction process.

However, there are a number of obstacles to providing such support. The first of these
is communication. Any sophisticated interaction between an expert and a machine
learning system will require the two to communicate with one another. But, such
communication requires mechanisms beyond those normally supplied by machine
learning systems.

A second difficulty is that the machine learning system usually provides a very
shallow knowledge-base. Without any means of obtaining explanations and
justifications of the rules that are presented, an expert can find these shallow rules
difficult to assimilate into his or her more sophisticated models of the domain.

Interactions are further limited by the restricted forms of input to which most machine
learning systems are restricted. Most attribute-value systems allow only the
description of the attributes and of a set of examples. There is no provision for
background knowledge or any other suggestions or constraints with which to guide
the learning process.

A final obstacle is that machine learning systems can make quite arbitrary choices in
situations where there are alternative solutions that equally well fit the example cases.
Such situations are quite frequent in practice. These arbitrary choices may be
acceptable in such situations if no other information is available and maximisation of
predictive accuracy is the primary consideration, as is usually considered the case in
machine learning research. However, an expert will often be able to discriminate
between the alternatives on other grounds. In this context, the systems’ arbitrary
choices may reduce the comprehensibility or acceptability of the inferred rules for the
expert or may lead to less useful rules than if the expert’s judgements are utilised.

A large number of systems and techniques have been designed to tackle aspects of
interaction between a user and a machine learning system. Most of these are oriented
toward interactive use by a sophisticated knowledge engineer (Attar Software, 1989;
Davis & Lenat, 1982; De Raedt, 1992; Morik, Wrobel, Kietz & Emde, 1993; Nedellec &
Causse, 1992; O'Neil & Pearson, 1987; Schmalhofer & Tschaitschian, 1995; Shapiro,

 2

1987; Smith, Winston, Mitchell & Buchanan, 1985; Tecuci & Kodratoff, 1990; Wilkins,
1988).

This paper describes The Knowledge Factory, a computer-based environment that
allows a domain expert to directly collaborate with a machine learning system at all
stages of the knowledge acquisition process. We have endeavoured to take the above
considerations into account in designing this system. It is distinguished from previous
such systems by its orientation toward direct use by domain experts with minimal
computing sophistication.

THE KNOWLEDGE REPRESENTATION SCHEME

Sophisticated knowledge representation schemes, such as first-order logic, are not
appropriate for use by non-knowledge-engineers (see, for example, Kodratoff & Vrain,
1993). Extensive training and experience is required to master such formalisms.
Instead, The Knowledge Factory uses simple attribute-value case descriptions and
production rules. Example cases are described by simple vectors of attribute values.
Rule antecedents (conditions) are conjunctions of simple tests on attributes. The
consequents (conclusions) are simple classification statements.

Fig 1
about
here

Examples of rules are provided in Fig. 1. These examples illustrate rules learned from
data on the diagnosis of renal disease used in research with Geelong Hospital (Agar &
Webb, 1992). Attributes are either categorical or ordinal. For categorical attributes, set
membership tests are used (although set notation is avoided). All tests in the first rule
in Fig. 1 relate to categorical attributes. For ordinal attributes, tests specify a range of
allowable values. The attributes age and prodocytic_fusion_ef tested in the second rule of
Fig. 1 are both ordinal. The condition part of a rule (the tests between the keywords IF
and THEN) is satisfied for a case if all of the individual tests are satisfied. If the
condition is satisfied then the conclusion for the rule is taken to apply to that case.

One complication that must be handled by a machine learning system is missing
values in the data. The Knowledge Factory recognises two types of missing value,
unknown and unobtainable. The latter is treated as a distinct value, that may be tested in
a rule, unobtainable having the same status as a normal value. The first test in the third
rule in Fig. 1 allows unobtainable values for the attribute age. Any case with an
unobtainable value for age will fail the condition for the second rule, which does not
explicitly allow unobtainable values for this attribute. Unobtainable values should be
used where the absence of a value needs to be considered during the decision process,
for example, because different attributes should be considered if an attribute normally
used in the decision making process does not have a value. In contrast, unknown
values pass any test on an attribute. In consequence, the test for the second rule in
Fig. 1 will succeed for a case with an unknown value for age, so long as all of the tests
on other attributes succeed. The condition on hepatitus_B_antibody in the second rule of
Fig. 1 will only succeed for a case with an unknown value.

A summary line follows the consequent of each rule. This displays the number of
training examples that the rule correctly classifies (Positive), the number incorrectly
classified (Negative) and the value currently assigned to the rule by the system (used,
under some settings, when resolving between multiple rules that cover a case).

In the current version of the system, the rule sets are flat. All rules consequents relate
to the same attribute, called the decision attribute. This attribute cannot be used in the

 3

antecedent of a rule. While it might be appropriate to slightly relax these constraints, it
would not be appropriate to allow complex chaining to any great depth, as non-
knowledge-engineers are unlikely to readily master the complexities of such a rule
base. Attempts to incorporate more sophisticated knowledge representation devices,
such as model construction operators (Morik, Wrobel, Kietz, & Emde, 1993), are also
viewed as likely to impose an undesirable barrier to use for those without extensive
training in knowledge engineering.

We have conducted informal experimentation with two sets of experts—medical
practitioners and financial analysts. The former have had little computing expertise
and the latter have had substantial computing expertise but no background in
knowledge-engineering. These experiments show that these experts adapt readily to
this form of knowledge representation. They have no difficulty in interpreting existing
rules, or specifying new rules or examples.

MACHINE LEARNING TECHNIQUES

The Knowledge Factory uses the DLGref learning algorithm (Webb, 1993). This is an
attribute-value classification learning algorithm that supports refinement of existing
rules. Attribute-value classification learning algorithms take as input a training set of
pre-classified examples. Each of these examples is described by a vector of attribute-
values and is labelled with the correct class. The algorithm forms a model that relates
combinations of attribute-values to classes. Note that while this abstract description of
machine learning describes the models that it produces as classifiers, classification can
be used to model many forms of discrete decision making. Thus, classification
learning encompasses many useful learning tasks.

Generalisation, Specialisation, and Cover

The Knowledge Factory makes extensive use of two operations on rules: generalisation
and specialisation. The following provides a brief introduction to these operations.

The classification rules used by The Knowledge Factory have the form IF condition
THEN classification. If the condition of a rule is satisfied by a case then the rule is said
to cover that case.

A rule x is a generalisation of a rule y if x necessarily covers all cases that y covers. For
example, the rule IF age>20 THEN old is a generalisation of IF age>30 THEN old. A case
covered by the second rule must also be covered by the first rule. To create a
generalisation of a rule in the language used by The Knowledge Factory it is necessary
to either make a constraint on an attribute less strict, for example by lowering the
minimum value allowed as in the example above, or remove a constraint on an
attribute, as with the generalisation from IF age>20 and hair is fair THEN x to IF age>20
THEN x .

If rule x is a generalisation of rule y, then y is a specialisation of x.

Note that by these definitions, a rule is both a generalisation and a specialisation of
itself. A rule x is a proper generalisation of a rule y if x is a generalisation of y and x is
not a specialisation of y. If x is a proper generalisation of y then y is a proper
specialisation of x.

 4

A rule x is a least generalisation (Plotkin, 1970) with respect to rule y and case z, if x is a
generalisation of y and x covers z, and there is no rule r that is a proper specialisation
of x, a generalisation of y and covers z. For example, IF age>20 THEN old is a least
generalisation of IF age>30 THEN old with respect to a case with age 20.

A rule x is a least specialisation with respect to rule y and case z, if x is a specialisation of
y and x does not cover z, and there is no rule r that is a proper generalisation of x, a
specialisation of y and does not cover z. For example, IF age>30 THEN old is a least
generalisation of IF age>20 THEN old with respect to a case with age 29 (assuming that
only integer values are allowed for age).

DLGref

DLGref is a variant of the AQ (Michalski, 1993) learning algorithms. These algorithms
form a set of classification rules incrementally. For each class a rule is sought that
performs best on the remaining examples. Best performance is judged in a variety of
ways, but usually involves covering as many examples of the class and as few
examples not of the class, as possible. DLGref allows the user to specify a metric of
good performance. Within The Knowledge Factory, two metrics are supported. The
max-consistent metric does not accept any rules that cover examples of another class
and prefers of the remaining rules those which cover the most examples of the positive
class. Laplace is based on the Laplacian law of succession. It allows a trade-off between
covering greater numbers of examples and covering small numbers of counter-

examples. Using this metric, the value of a rule equals
p+1
n+2 , where p is the number of

positive examples covered by the rule and n is the total number of examples covered
by the rule. Having selected the best rule, all examples that it correctly classifies are
removed from the training set and the process is repeated. The rules so selected are
pooled together to form a set of classification rules.

The DLGref algorithm is presented in Appendix A.

Whereas most AQ-like covering algorithms search for each rule starting from very
general rules and considering successive specialisations thereof, DLGref starts from
highly specific rules and explores successive generalisations. The successive
generalisations are generated using least generalisation. This process readily supports
ordinal and continuous valued attributes, forms that cause difficulties for the
specialisation-based search of traditional AQ algorithms.

Information Utilised by the Machine Learning System

An attribute-value classification learning system utilises two major types of
information. The first is the set of attributes and their possible values. This, along with
the formalism for expressing classifiers that the system employs, defines the set of
possible classifiers that the system can form. Clearly, the system cannot form
classifiers that utilise attributes about which the learning system has not been
informed. The second type of information that is used is the training set. The learning
system searches the space of possible classifiers that it is capable of forming, seeking a
classifier that best classifies the examples in the training set. Clearly, the system is
greatly influenced by the quality of the training set with which it is provided. If there
are intricacies to classification in a domain that are not represented in the training set
then the learning system cannot learn them.

 5

TECHNIQUES

One of the primary design considerations for The Knowledge Factory was to allow
direct interaction between the knowledge acquisition system and an expert with
minimal computing expertise. This has been achieved by a number of previous
knowledge acquisition systems, notably repertory grid based tools such as ETS (Boose,
1986) and the ripple-down-rules tools of Compton, Edwards, Srinivasan, Malor,
Preston, Kang, & Lazarus (1992). However, a significant difference between The
Knowledge Factory and these previous tools is that The Knowledge Factory’s
incorporation of machine learning frees it from a reliance on the expert having all
encompassing knowledge of the domain. Previous systems have relied upon the
expert being able to specify a suitable solution for any problem that the system may
present. The expert, then, is viewed as all-knowing. All that is required is to help him
or her to develop a formal model of the domain that captures the relevant aspects of
his or her expertise. With the inclusion of machine learning, this view can change.
Now the expert is viewed as having valuable insight into the domain, but this insight
need not be all encompassing. Where the expert is unable to provide suitable models,
the machine learning system can supply models instead. But the interactions may be
more sophisticated than each simply producing part of a model, the two parts then
being assembled.

An alternative scenario is that an expert may have expertise in some aspect of a
domain but may not be able to express formal models that encode that expertise. That
is, the expert may be able to solve a particular class of problems, but may not be able to
specify a set of expert system rules to reproduce those solutions. In this case, the
machine learning system can be used to produce a ‘first draft’ of a set of rules. The
expert may then be able to critique and refine those rules. Thus, machine learning can
be used to ‘kick-start’ the model specification and refinement process.

A further scenario is that even after the use of machine learning to produce a first draft,
the expert may still be unable to specify appropriate formal models. In this case, he or
she may be able to critique the machine learning system’s models, enabling it to further
refine its own models.

Finally, the expert may be able to specify some formal models initially, but these
models may be incomplete or imprecise. The machine learning system may then refine
this initial knowledge-base. The expert can review and revise the machine learning
system’s contributions in turn, starting an ongoing sequential process of refinement.

The commonalities of all these scenarios are an underlying view of the expert and the
machine learning system as partners in the knowledge acquisition task, each of which
has differing insights into a domain. The expert’s insights are derived from training,
experience and both general and commonsense knowledge. The machine learning
system’s insights are derived from analysis of a set of training examples.

Communication Mechanisms

Such pooling of insight clearly requires communication between the partners of a form
not normally supported by machine learning systems. The Knowledge Factory uses
example cases as the primary basis for communication. This case-based
communication paradigm suits both partners in the collaboration. Experts in many
domains are familiar with the use of examples, both to have points illustrated and for

 6

illustrating points. For a machine learning system, example cases are the major source
of evidence that is considered. Many of the decisions that a machine learning system
makes can only be explained in terms of how a model relates to the provided training
examples. With The Knowledge Factory’s case-based communication, each partner
uses example cases to communicate with the other.

Example windows

The primary mechanism used by the machine learning system is to provide windows
that list the example cases that stand in a particular relationship to a rule or set of rules.
Eight of these example windows are maintained. While these windows could be
composed to answer specific queries from the user, or even to anticipate queries that
the user might wish to pose, the complexity of creating such queries, and the
difficulties of understanding system generated summaries of the queries that an ad hoc
window might address, mitigate against the use of such mechanisms with our target
users. Rather, windows that address the issues that are most likely to concern the
users are maintained at all times. This constant display allows a user to familiarise
himself with the meaning of each window, not having to devote attention to
comprehending the meaning of a window each time that it is considered, as would be
the case if windows presenting different types of information were generated
dynamically by the system. The user is then able to attend to individual windows at
his own discretion, ignoring those that do not bear upon his current concerns and
utilising those that do.

The first example window simply lists all available examples. It is perhaps stretching
the scope of the technique to include this window within the case-based
communication mechanism, as, in contrast to the other example windows, it does not
really serve a communication purpose. Rather, it provides the user with ready access
to the available example cases.

The Indistinguishable Examples Window contains all examples for which there is an
example from another class such that the system is not able to form a rule that
distinguishes the two. This will occur if there is no attribute for which the two
examples in question have different values. Unknown values do not count as distinct
for this purpose. The presence of examples in this window indicates that it is not
possible to form rules that correctly classify all examples given the current set of
attributes. This indicates to the user that it might be desirable to consider revision of
the current set of attributes.

Whenever a rule from the current knowledge base is selected, the Positive Examples
Window lists all examples that the rule correctly classifies. The Counter Examples
Window displays all examples that the current rule incorrectly classifies. The
Uncovered Examples Window lists all examples that belong to the class indicated by
the rule’s conclusion, but which are not covered by the rule. These windows indicate
to the user the evidence that led the system to select the current rule. They can be used
both to aid the user’s understanding of the underlying support for the rule and to help
the user to formulate alternatives to the rule that serve the same purpose. They also
provide a simple mechanism for the user to ask what if? and why not? questions. To
determine why the system did not select a specific alternative to a rule, the user need
only create and select the other candidate. If it was not created because it failed to
cover specific examples, this will be indicated by the contents of the Positive Examples
Window. If the failure to create it was due to the alternative rule incorrectly classifying

Fig 2
about
here

 7

specific cases, this will be indicated by the contents of the Counter Examples Window.
Finally, they provide a mechanism whereby the machine learning system can critique
rules that the user formulates. If a rule fails to cover example cases, this will be
indicated by the Uncovered Examples Window. If a rule misclassifies cases, this will
be indicated by the Counter Examples Window. Finally, if the rule performs well, this
will be indicated by the Positive Examples Window. The operation of these windows
is illustrated in Fig. 2. Here, a rule for diagnosing Immunoglobulin A Deficiency
(IGA_NX) is selected. This rule has been learned by the machine learning system. The
Positive Examples Window displays the examples that support the rule. The
Uncovered Examples Window displays the IGA_NX cases that the rule fails to cover.
The empty Counter Examples Window shows that this rule does not misclassify any
examples.

Fig 3
about
here

To illustrate the use of these windows to answer why not? questions, Fig. 3 displays the
same situation after the user deletes the first clause from the rule. This is equivalent to
asking why not develop this alternative rule? As can be seen from the Counter
Examples Window, the answer is because the alternative rule covers the two cases that
are listed.

A fifth example window also relates to the current rule. The Insufficient Information
Examples Window lists any cases for which it cannot be determined whether or not the
rule covers the example. This will occur when an example has unknown values for
some of the attributes referred to in a rule, and satisfies all clauses relating to attributes
for which it has values defined. This window alerts the user to potential problems
arising from missing values in the data.

The previous four example windows relate to the performance of a rule considered in
isolation. The remaining two example windows relate to the performance of a set of
rules as a whole. The Misclassified Examples Window lists cases that are misclassified
by the rule set. Such misclassification may occur even if the example is correctly
classified by one or more rules, if it is also misclassified by other rules. The manner in
which such conflicts between rules are handled by the system is under user control.
Rules may be ordered, so that the first rule encountered that covers a case is used.
Alternatively, rules may be assigned values. Under this treatment, of the rules that
cover a case, that with the highest value is employed. Rule values may be specified by
the learning system or by the user. A final alternative is that in cases of multiple
conflicting conclusions, the case remains unclassified.

The Unclassified Examples Window lists cases that are not classified by the rule set.
This may occur if multiple rules cover a case, as described above, or if no rule covers a
case. The system may be set so that if no rule covers a case either the case is
unclassified or a default classification is assigned.

These two windows allow the user to obtain holistic evaluation of the rule set in
addition to the rule specific evaluation provided by the majority of examples windows.

The examples windows serve another function—example set validation. It is very easy
for errors to enter into data. These may occur through errors in data entry or
transmission or even due to imprecision in measuring instruments. In the traditional
machine learning context, such errors will only rarely become apparent, as the
knowledge bases that are inferred are not usually related back to the training
examples. In contrast, The Knowledge Factory’s examples windows encourage the

 8

user to closely inspect significant examples. In particular, the Insufficient Evidence,
Counter, and Uncovered Examples Windows will often highlight cases that contain
errors.

Case-based rule critique

The example windows enable the machine learning system to justify its actions to the
user and to critique rules created by the user. The user is also able to critique rules
formed by the learning system. In our experience it is common that experts will dislike
a rule formed by the learning system but be unable to articulate appropriate
modifications thereto. In such circumstances the expert will often be able to provide
examples to support his or her disquiet. It is straightforward to add those examples to
the training set. Such examples may be complete, including values for all attributes,
and possibly derived from an actual case from the expert’s experience. Alternatively,
they might be partial, with values specified only for some attributes. Such an example
provides an abstract characterisation of types of case for which an alternative decision
is appropriate.

Case-based rule editing

Another manner of using examples to modify rules is provided by case-based rule
editing. Specification of counter-examples provides the machine learning system with
information about conditions under which a rule should not apply. This may either
cause the system to specialise a rule by adding more constraints to its application, or to
select a different set of attributes with which to condition the application of the rule.
To extend a rule to cover additional types of situation is less straightforward however.
The addition of further positive examples to the training set may result in a rule being
modified to cover those cases when learning is next applied. However, the system
may equally cover those cases through modification of other rules for the class, or the
generation of new rules. Also, depending on the metric used to evaluate the quality of
rules, the machine learning system may tolerate a small number of counter-examples
to a rule due to the quality metric evaluating them as not sufficient to warrant
specialising the rule, thus defeating the user’s objective in specifying a counter-
example.

Case based rule editing has been developed to deal with such circumstances when an
expert is unable to directly specify suitable changes to a rule, but can identify
appropriate counter-examples or uncovered positive examples. With this technique,
the expert identifies a rule and a case that the rule should or should not cover, and the
system suggests modifications to the rule that would produce the desired outcome.
The user can then evaluate and select between the proffered modifications or explore
other forms of revision.

When excluding a case from the cover of a rule, the system generates all least
specialisations of the rule with respect to the case. This is illustrated in Fig. 4. In this
example, we have removed a clause from a rule, which is highlighted in the Rules
Window. This has caused it to incorrectly cover some counter examples, which are
displayed in the Counter Examples Window. To explore how these counter examples
might be excluded from the cover of the rule we have then applied the Contract to
Exclude Case command, selecting the first case in the Counter Examples Window.
This generates a large number of alternative rules, of which the last three are displayed
in the Alternative Rules Window. Two of these add possible constraints on the

Fig 4
about
here

 9

attribute age while the last adds a constraint on the attribute gender. The effect of these
new constraints is summarised on the summary line after each rule and could be
explored further using the examples windows. Further case based editing could be
applied to one of these alternatives until a satisfactory outcome was obtained, or the
user might reach a stage where he or she is able to complete the necessary
modifications directly.

When generalising a rule to cover a case, the system generates the least generalisation
of the rule with respect to the case. For the types of attribute-value rule supported,
there will only ever be a single least generalisation of a rule with respect to a single
case. If a user specifies a new case that a rule should cover, the Expand to Cover Case
command can be used to force the system to immediately generalise that rule to cover
that case. As with the Contract to Exclude Case command, several such case-based
rule editing actions may be required before a user is satisfied with the resulting rule.

Machine generated examples are not used

It is interesting to contrast the case-based communication mechanisms utilised by The
Knowledge Factory with the techniques pioneered in MARVIN (Sammut & Banerji,
1986). When testing hypotheses, MARVIN actively generates ‘examples’ which it asks
the expert to classify. Such a mechanism has been deliberately excluded from The
Knowledge Factory in the belief that, for many domains, without access to the types of
background knowledge that we have also deliberately excluded from the system,
examples created by the computer are likely to be nonsensical. In a medical domain,
for example, the interactions between and constraints on attributes will be many and
varied. Computer generated cases are likely to violate such constraints, for example,
by hypothesising pregnant male patients. The exploration of violation of such
constraints is unlikely to be useful, as the expert will know that the possibility does not
have to be excluded from a rule as it will never arise in practice.

Our case-based communication mechanisms exclusively use cases specified by the user
or imported from outside the system. In consequence, all cases should be meaningful
to the user. The computer may present cases to the user, but only cases selected from
those provided to it.

Exploration of Alternative Rules

Case-based rule editing is able to assist in some circumstances where an expert ‘knows’
that a rule is unsuitable, but cannot identify precisely how. But, it is limited to
situations in which the user can specify or identify appropriate example cases. This
will not always be possible. Alternative rules are another mechanism that The
Knowledge Factory provides for such situations.

Machine learning systems frequently make arbitrary choices between possible tests for
inclusion in a rule. There will often be several tests, all of which cover exactly the same
set of training cases. A machine learning system must select one of these, and usually
does so in an arbitrary manner. That such a choice has been made will not usually be
flagged to the user. However, while the choice may have been arbitrary given the
information available to the system, an expert may well be able to make comparative
qualitative judgements about the alternatives. This problem could be tackled by
involving the user in the process of selecting tests during induction. However, this
would impose a large burden on the user. There are very many such tests considered

 10

in typical learning contexts. Further, in many situations the user may not have any
better basis on which to choose between alternatives than does the system.

Instead, The Knowledge Factory offers the user a facility for identifying and selecting
between alternative rules. This facility can be invoked by the user at any time at his
own discretion. The Form Alternative Rules command creates a set of alternatives to
the current rule. First, the system identifies all most general rules that cover all cases
correctly covered by the current rule. Two more rules are added. The first is the most
specific rule to cover all of the cases correctly covered by the initial rule. This provides
for the user a complete presentation of all tests that could possibly be used to cover
these cases. The second additional rule has as its antecedent the conjunction of all
antecedents of all the most general rules that were formed. This summarises for the
user the set of all tests that appear to be effective in distinguishing the current class
from others. These rules are displayed in a window within which the user may
explore them using all of the system’s rule editing and evaluation facilities. Fig 5

about
here

Figure 5 illustrates the outcome of this command. In this example, rules have been
developed from examples of diagnosis of hypothyroid disease (Quinlan, Compton,
Horn, & Lazarus, 1986). The rule highlighted in the Ruleset Window is the original
rule for which alternatives have been developed. The Alternative Rules Window lists
the four alternatives that were discovered. The last two of these rules are the most
general alternatives. The first of these is the original rule. The second is identical to
the first except that the clause psych is f is replaced by sick is f. All 43 cases covered by
the original rule satisfy both of these conditions. One or the other of these clauses is
needed if a rule is to cover all 43 cases correctly classified by the original rule and no
cases of another class. For this rule there happens to be one case of class
compensated_hypothyroid that satisfies all of the other conditions but, unlike any of the
positive cases, has values of t for both psych and sick. This is a clear illustration of a
situation in which system has no sensible basis on which to choose between
alternatives but an expert may. The first of the alternative rules is the most specific
rule to cover all 43 cases. The second alternative rule contains all clauses in either of
the most general alternatives.

Fig 6
about
here

Note that this is a very simple example of alternative rules, deliberately chosen for ease
of presentation and explanation. For contrast, Fig. 6 presents some of the 39 alternative
most general rules all of which cover the only two cases of class secondary_hypothroid
in the training set and none of which cover any cases of another class.

There is an interesting relationship between this alternative rules technique and the
example generation technique of MARVIN (Sammut & Banerji, 1986). In both
situations the system wishes to obtain advice from an expert to help it distinguish
between alternatives that are equally well supported by the training cases. However,
whereas MARVIN generates hypothetical cases in an attempt to distinguish between
the alternatives, we present the alternatives directly. As argued above, automated
generation of hypothetical cases will often be unsuccessful in real world domains, if
only because such cases are unlikely to appear realistic to an expert. We believe that
complete rules of the type that The Knowledge Factory creates will often be easier for
the expert to comprehend and manipulate.

 11

Interactive Domain Model Revision

Buntine & Stirling (1991) argue that effective real world application of machine
learning frequently requires a cyclical process in which the results of machine learning
are provided to the expert for review which may lead to the identification of relevant
information not originally provided to the machine learning system, which leads back
to another phase of application of machine learning with revised inputs. One of the
design objectives for The Knowledge Factory is to allow the expert to complete this
cycle within the system. With many machine learning systems, each time through the
cycle, machine learning must start afresh. I have already described how the system
can iterate through such a cycle when the new information is presented in the form of
new or revised example cases. Greater change is required, however, if the expert
realises that there are deficiencies in the set of attributes selected with which to
describe the examples. We have observed this circumstance in practice. The expert,
when confronted with a rule developed by the system, and the evidence it can provide
in the rule’s support, realises that a factor not included in the current case descriptions
is necessary to adequately revise the rule. Another type of change is required when it
is realised that there is a need to provide finer grade distinctions for an existing
attribute (one or more current value needs to be replaced by a number of values) or
some other transformation of an attribute is needed (conversion from ordinal to
categorical or vice versa, for example). The Knowledge Factory provides facilities for
performing such conversions. Existing rules and cases that are affected by the change
are automatically transformed, where possible, so as to retain as much as possible of
the existing knowledge base.

When a new attribute is created, all cases are initialised with the value for this attribute
set to unknown. When the attribute is only relevant in a small number of contexts, the
user need only specify values for a small number of cases, for example, the positive
and counter examples for the current rule.

Direct Expert Evaluation of Rules

While cased based communication is able to accommodate many of the interactions
between an expert and a machine learning system, there are some communication
needs that it cannot cover. One of these is the direct communication of general
qualitative rule evaluation by the expert. Case-based communication allows the expert
to inform the system about specific deficiencies of a rule. It does not allow the expert
to specify that the current form of a rule is very good, or that it is unacceptable without
specifying how.

The Knowledge Factory allows the expert to attach qualitative labels to individual
rules. The three labels currently supported are no good, revisable, and good.

The Knowledge Factory takes account of these assessments during induction. Rules
that are rated no good are discarded before rule refinement commences. This usually
results in the formation of totally new rules, although in some circumstances the
induction system may derive the same rule again. Techniques for avoiding this
outcome would be desirable, but are difficult to incorporate into traditional machine
learning systems.

Rules that are rated good are not altered during rule refinement, but rather are passed
directly into the final rule set.

 12

Revisable rules are retained, but may be altered to reduce the number of negative cases
or increase the number of positive cases covered. This is the default annotation.

These rule annotations are simple for the user to utilise, but provide useful guidance to
the rule refinement process.

Summary Ruleset Evaluation

Most machine learning systems provide facilities for summarising the performance of
inferred rules when applied to an evaluation set of cases. The primary metric used in
such evaluation is usually accuracy. But in real world applications, this will not
always be the most important measure of performance. In many domains, some errors
are more significant than others (for example, failure to diagnose a serious disease in
contrast to unnecessary but comparatively harmless treatment arising from diagnosing
a disease that is not present). We have sought to develop a simple manner in which to
capture all of the relevant summary information that is likely to be useful for a user.

Fig 7
about
here

Figure 7 presents an example of the tabular format for presenting evaluation results
that we have created. As there are four classes in this example (using the hypothyroid
diagnosis data previously mentioned), there is a 4x4 matrix which presents the number
of cases belonging to each class that have been given each classification. The first four
rows of the table relate to the class assigned to a case by the current rule set while the
first four columns relate to the correct class for a case. The fifth column relates to all
cases. The sixth column presents for each class, the percentage of those cases assigned
that class by the rule set for which that classification was correct. The fifth row
presents the total number of cases of each class for which any classification was
assigned by the rules. The sixth row summarises the percentage of those that were
correct. The seventh row indicates the number of cases for each class for which no
decision was made. The eighth row shows the proportion of all cases for the class for
which a classification was assigned. The ninth row displays the sensitivity of the rule
set for the class. This is the proportion of cases belonging to the class that were
correctly classified. The final row displays the specificity for the class. This is the
proportion of cases not belonging to the class that were not incorrectly classified as
belonging to the class.

EXPERIMENTAL EVALUATION

A major difficulty facing research in knowledge acquisition is evaluation of alternative
techniques. Real world knowledge acquisition tasks usually require large and very
expensive projects. It is not feasible to conduct controlled experiments in which
different methodologies are each applied to the same full scale knowledge acquisition
project under real-world conditions. As a result, other than case studies, there has
been little experimental investigation of the performance of different techniques. Even
the ground-breaking Sisyphus projects (Linster, 1992; Schreiber & Birmingham, 1996),
in which many different systems were all applied to common knowledge acquisition
tasks, is perhaps best thought of as a set of parallel case studies, as it was not possible
to control extraneous factors that may have affected a participant’s use of a system,
and hence comparisons are restricted.

A case study can demonstrate the ability of a technique to achieve an outcome.
Beyond this, they provide little comparative information about alternatives.

 13

We have been concerned to perform experimental evaluation of the efficacy of the
techniques embodied in The Knowledge Factory. We were encouraged by the positive
evaluations provided by participants in case studies (Webb, 1996).

We wanted to have large numbers of subjects apply differing approaches to a
knowledge acquisition task under controlled conditions. One way to achieve this was
to set appropriate assignments for students in an undergraduate course on Artificial
Intelligence and Expert Systems, and to study their performance. Subjects could be
provided software with different capabilities and their performance measured on
common tasks under controlled conditions.

An initial attempt at such evaluation (Webb & Wells, 1996) was undermined by a user
interface flaw. Many subjects seeking to use The Knowledge Factory’s machine
learning facilities to refine rules that they had created unintentionally employed
machine learning in a mode that deleted their rules and replaced them by rules learned
by the machine learning system independently from the initial rules. In consequence,
while on average outperforming both knowledge acquisition without access to
machine learning facilities and the application of machine learning alone, the
integrated application of machine learning with knowledge acquisition from experts
failed to demonstrate a statistically significant advantage over machine learning alone.
When the subjects that applied machine learning in the mode that overwrote existing
rules were excluded from consideration, the advantage over machine learning was
statistically significant, but the selection of subjects for analysis in this manner cast
doubt upon the results.

This user interface fault was rectified, and a second such experiment undertaken
(Webb, Wells, & Zheng, 1999). In this second experiment, we again used
undergraduate students performing a class assignment. This assignment was
conducted under supervised laboratory conditions. Knowledge acquisition tasks were
created using the Glass and Soybean Large data sets from the UCI Repository of
Machine Learning Databases (Merz & Murphy, 1997). The Glass data relates to
forensic analysis of glass fragments and the Soybean Large data pertains to the
diagnosis of soybean plant diseases.

Subjects were given randomly selected training sets of examples. The accuracy of their
expert systems could then be tested by evaluating their performance on withheld
evaluation sets. To simulate use by experts, the subjects were provided with rules for
these tasks learned by C4.5rules (Quinlan, 1993) from subsets of the data. As these
subsets included both training and evaluation cases provided to the subjects, the rules
could be expected to capture information about the domains that subjects could not
glean from examination of their training data either with or without the use of machine
learning tools.

Two versions of The Knowledge Factory were created. A number of facilities were
disabled that could not be usefully employed in the context of the study. This was to
minimise the chance of a repetition of the previous outcome where misapplication of
the software invalidated the study. The facilities disabled included changing the
manner in which rules were interpreted during execution of a rule set, saving and
loading sets of examples from disk, and the selection, maintenance and utilisation of
separate training and evaluation sets. All of the key knowledge acquisition facilities
were retained, except that machine learning capabilities were disabled in one version,
called KA-alone.

 14

Subjects were randomly divided into two groups. One group used KA-alone for the
Glass data and the full system for Soybean Large, and the other group used the
systems in the other order.

Seventeen subjects participated in the experiment. Table 1 presents the mean
predictive accuracy on the evaluation cases obtained using each system for each data
set, along with that of The Knowledge Factory’s machine learning system when
applied using the training and evaluation cases used by subjects using the full system.
For both data sets the integrated use of machine learning with knowledge acquisition
from experts led to higher predictive accuracy than the use of either of its constituent
approaches in isolation. With respect to KA-alone, both of these differences were
statistically significant at the 0.05 level (one-tailed two-sample t tests; Soybean
Large:t=2.1, p=0.026; Glass: t=3.35, p=0.001). With respect to learning-alone, the
difference was significant at the 0.05 level for the Glass data (one-tailed matched-pairs
t test: t=2.5, p=0.021) but the other was not (one-tailed matched-pairs t test: t=0.9,
p=0.279). Note that the power of these tests was low due to the small number of
subjects and hence that the failure to find a significant difference provides only very
weak evidence that such a difference does not actually exist. The significant
differences that were found demonstrate that for at least some knowledge acquisition
tasks, the integrated use of machine learning with knowledge acquisition from experts
can produce more accurate expert systems than either constituent method in isolation.

Table 1
about
here

The integrated approach was also faster than KA-alone. For Soybean Large the mean
and standard deviation for the integrated approach was 73±45 minutes while for KA-
alone it was 131±19. For Glass these figures were respectively 16±19 and 115±38. One-
tailed two-sample t tests reveal that both of these differences are significant at the 0.05
level (Soybean Large: t=3.3, p=0.002; Glass: t=1.9, p=0.037). In both cases the time
savings from the integrated use of machine learning with knowledge acquisition were
substantial. Of course, they were both eclipsed in this respect by the application of
machine learning alone, for which knowledge acquisition time can be measured in
seconds rather than minutes.

Questionnaire responses from participants indicated that the subjects believed the
machine learning facilities were useful, found the knowledge acquisition process easier
when machine learning facilities were available, and had greater confidence in the
expert systems developed with the aid of machine learning.

These results, presented and analysed in more detail by Webb, Wells, & Zheng (1999),
all provide support for the efficacy of the approaches that we have developed. At least
for some knowledge acquisition tasks they can lead to the more rapid development of
more accurate expert systems in which the users have greater confidence than does
knowledge acquisition without machine learning, and to more accurate expert systems
than machine learning in isolation.

CONCLUSIONS

The Knowledge Factory is a knowledge acquisition system that is designed for direct
use by domain experts. It differs from most previous systems intended for this use by
incorporating machine learning facilities. In consequence, it is not necessary for the
expert to provide solutions for every contingency that the knowledge base must cover.
The machine learning system can fill gaps in the expert’s expertise. Both the machine

 15

learning system and the expert can critique and propose refinements to the other’s
rules.

One of the distinctive features of The Knowledge Factory is the manner in which
communication with the user has been structured around the use of example cases.
Techniques have been developed that allow both the user and the system to convey
non-trivial information through this mechanism. Interestingly, however, we have
concluded that one such form of communication that has received previous use, the
construction of hypothetical cases by the system in order to test hypotheses, is actually
inappropriate in our context. Instead, we favour explicit presentation of the competing
hypotheses in this situation.

The Knowledge Factory is distinguished from previous knowledge acquisition systems
by the manner in which it supports experts with minimal computing expertise to
directly interact with a machine learning system during all phases of knowledge
acquisition. Case studies have found that such users have little difficulty in using the
system and controlled studies suggest that the integration of machine learning with
knowledge acquisition within the system can outperform either constituent approach
in isolation.

REFERENCES

Agar, J., & Webb, G. (1992) The application of machine learning to a renal biopsy
data-base. Nephrology, Dialysis and Transplantation, 7: 472-478.

Attar Software (1989). Structured decision tasks methodology for developing and integrating
knowledge base systems. Attar Software, Leigh, Lancashire.

Boose, J. H. (1986). ETS: A system for the transfer of human expertise. In J. S. Kowalik
(Ed.), Knowledge based problem solving. New York: Prentice-Hall.

Buntine, W., & Stirling, D. (1991). Interactive induction. In J. E. Hayes, D. Michie, & E.
Tyugu (Eds.) Machine Intelligence 12. Oxford: Clarendon Press, pp. 121-137.

Compton, P., Edwards, G., Srinivasan, A., Malor, R., Preston, P., Kang, B., & Lazarus,
L. (1992). Ripple down rules: Turning knowledge acquisition into knowledge
maintenance. Artificial Intelligence in Medicine, 4: 47–59.

Davis, R., & Lenat, D. B. (1982). Knowledge-based systems in artificial intelligence. New
York: McGraw-Hill.

De Raedt, L. (1992). Interactive theory revision. London: Academic Press.

Kodratoff, Y., & Vrain, C. (1993) Acquiring first-order knowledge about air traffic
control. Knowledge Acquisition, 5, 1–6.

Linster, M. (1992) A review of Sisyphus 91 and 92: Models of Problem-Solving
Knowledge. In N. Aussenac, G. Boy, B. Gaines, M. Linser, J.-G. Ganascia, &
Y. Kordratoff (Eds) Knowledge Acquisition for Knowledge-Based Systems. Berlin: Springer-
Verlag, pp. 159-182.

Merz, C. J. & Murphy, P. M. (1997) UCI Repository of Machine Learning Databases
[Machine-readable data repository]. University of California.

 16

Michalski, R. S. (1983). A theory and methodology of inductive learning. In R. S.
Michalski, J. G. Carbonell, & T. M. Mitchell (Eds.) Machine learning: An Artificial
Intelligence Approach. Berlin: Springer-Verlag.

Morik, K., Wrobel, S., Kietz, J.-U., & Emde, W. (1993). Knowledge Acquisition and
Machine Learning: Theory, Methods, and Applications. London: Academic Press.

Nedellec, C., & Causse, K. (1992). Knowledge refinement using knowledge acquisition
and machine learning methods. Proceedings EKAW'92. Berlin: Springer-Verlag, pp.
171-190.

O'Neil, J. L., & Pearson, R. A. (1987). A development environment for inductive
learning systems. In Proceedings of the 1987 Australian Joint Artificial Intelligence
Conference. Sydney, pp. 673-680.

Plotkin, Gordon D. (1970) A note on inductive generalisation. In B. Meltzer & D.
Mitchie (Eds) Machine Intelligence 5. Edinburgh University Press, Edinburgh, pp. 153-
163.

Quinlan, J. R. (1993). C4.5: Programs for Machine Learning. San Mateo, CA: Morgan
Kaufmann.

Quinlan, J. R., Compton, P., Horn, K. A., & Lazarus, L. (1986) Inductive Knowledge
Acquisition: A Case Study, New South Wales Institute of Technology School of
Computing Sciences, Technical Report 86.4, Sydney.

Sammut, C. & Banerji, R. B.(1986) Learning concepts by asking questions. In Michalski,
Ryszard S., Carbonell, Jaime G., & Mitchell, Tom M. (Eds) Machine Learning: An
Artificial Intelligence Approach Volume II. Morgan Kaufmann, Los Altos, pp. 167-191.

Schmalhofer, F., & Tschaitschian, B. (1995). Cooperative knowledge evolution for
complex domains. In G. Tecuci, & Y. Kodratoff (Eds.) Machine learning and knowledge
acquisition: Integrated approaches. London: Academic Press.

Schreiber, A. & Birmingham , W. P. (1996) The Sisyphus-VT initiative. International
Journal of Human-Computer Studies. 44.

Shapiro, A. (1987) Structured Induction in Expert Systems. Addison-Wesley, London.

Smith, R. G., Winston, H. A., Mitchell, T. M., & Buchanan, B. G. (1985). Representation
and use of explicit justifications for knowledge base refinement. In Proceedings of the
Ninth International Joint Conference on Artificial Intelligence. San Mateo, Ca: Morgan
Kaufmann, pp. 673-680.

Tecuci, G., & Kodratoff, Y. (1990). Apprenticeship learning in imperfect domain
theories. In Y. Kodratoff, & R. Michalski (Eds.) Machine learning: An Artificial
Intelligence Approach. San Mateo, CA: Morgan Kaufmann.

Webb, G. I. (1993). DLGref2: Techniques for inductive knowledge refinement. In
Proceedings of the IJCAI Workshop W16. Chambery, France, pp. 236-252.

Webb, G. I. (1996). Integrating machine learning with knowledge acquisition through
direct interaction with domain experts. Knowledge-Based Systems, 9: 253-266.

 17

Webb, G. I. & Wells, J. (1996) Experimental evaluation of integrating machine learning
with knowledge acquisition through direct interaction with domain experts. In P.
Compton, R. Mizoguchi, H. Motada, & T. Menzies (Eds) Proceedings of PKAW'96: The
Pacific Knowledge Acquisition Workshop. Sydney, pp. 170-189.

Webb, G. I., Wells, J., & Zheng, Z. (1999) An experimental evaluation of integrating
machine learning with knowledge acquisition. Machine Learning, 35(1): 5-24.

Wilkins, D. C. (1988). Knowledge base refinement using apprenticeship learning
techniques. In Proceedings of the Seventh National Conference on Artificial
Intelligence. San Mateo, CA: Morgan Kaufmann, pp. 646-651.

 18

APPENDIX A

THE DLGREF ALGORITHM

α is the most specific possible rule for the class positive, that covers no cases. The least
generalisation of α against a case results in the most specific rule that covers that case.

ζ is the most general possible rule for the class positive, that covers all cases.

Function DLGref
Parameters: rules: an initial set of rules for a single class
 POS: a set of cases belonging to that class
 NEG: a set of cases that do not belong to the class
 value(): a function from rules to numeric values such that the higher the

value the greater the preference for the rule.
Returns: rules: a revised set of rules for the class

for r is set to each rule in rules in succession
if r covers any cases in NEG

spec_rule <- generalise_rule(α, covered_cases(r, POS), NEG, value)
if spec_rule covers any cases in POS

r <- generalise_toward(spec_rule, r, NEG)
end if

end if
remove from POS all cases that r covers

end for
for r is set to each rule in rules in succession

r <- generalise_rule(r, POS, NEG, value)
remove from POS all cases that r covers

end for
while POS is not empty

r <- generalise_rule(α, POS, NEG, value)
if r covers any cases in POS

r <- generalise_toward(r, ζ, NEG)
remove from POS all cases the r covers
add r to rules

else
remove all remaining cases from POS

end if
end while

 19

Function generalise_rule
Parameters: rule an initial rule for the positive class
 POS: a set of cases belonging to that class
 NEG: a set of cases that do not belong to the class
 value(): a function from rules to numeric values such that the higher the

value the greater the preference for the rule.
Returns: result: a generalisation of rule

result <- rule
for c is set to each case in POS in succession

set r to the least generalisation of result with respect to c
if value(r, POS, NEG) > value(result, POS, NEG)

result <- r
end if

end for

Function generalise_toward
Parameters: spec an initial specific rule for the positive class
 gen: a generalisation of spec
 NEG: a set of cases that do not belong to the class
Returns: result: a rule that is a generalisation of spec and a specialisation of gen and

which covers no cases in NEG not covered by spec
while spec ≠ gen

for each clause c in the antecedent of spec
if deleting c from spec would increase the number of cases in
NEG covered by spec

add c to gen
end if

end for
for each clause c in the antecedent of spec

if c is not in the condition of gen and adding c to the condition of
gen does not decrease the number of cases in NEG covered by gen

remove c from spec
end if

end for
end while
result <- spec

DLGref makes two passes through the initial rules. In the first pass, any rules that
cover negative cases are specialised, if possible, so as to no longer cover those cases.
All positive cases covered by the resulting rules are then deleted as they do not need
further attention. In the second pass through the initial rules, they are generalised as
much as possible to cover further positive cases. Any cases so covered are also deleted.
Finally, new rules are added to the rule set to cover any remaining positive cases.

The function generalise_rule seeks to generalise an initial rule to cover as many as
possible positive cases, but without unduly increasing negative cover. The value

 20

function is used to evaluate whether an increase in negative cover, if it occurs, is
sufficiently offset by an increase in positive cover.

The function generalise_toward generalises an initial specific rule toward a more
general form as far as possible without increasing the negative cover of the initial rule.

 21

Table 1: Mean and standard deviation for predictive accuracy.

Data set Integrated KA alone Learning alone

Soybean Large 88.5±4.4 84.4±3.6 87.8±1.6

Glass 81.3±7.7 59.0±17.3 79.2±8.0

 22

 23

FIGURES

FIGURE 1: Examples of rules in The
Knowledge Factory.

 24

 25
FIGURE 2: A selected rule with displayed positive, counter and uncovered examples.

 26
FIGURE 3: Answering a why not question.

FIGURE 4: Case based editing: Rules generated by Contract to Exclude Case applied to the first case in
the Counter Examples Window.

 27

FIGURE 5: Alternative rules that cover the same 43 cases of class primary_hypothyroid.

 28

FIGURE 6: A selection of the 39 alternative most general rules that cover both cases of class
secondary_hypothyroid.

 29

FIGURE 7: The results window.

 30

