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INTRODUCTION 

Knowledge acquisition is frequently cited as the greatest bottleneck in the 
development of expert systems.  Two primary approaches to knowledge acquisition 
are elicitation of knowledge from experts (traditional knowledge acquisition) and 
machine learning.  Both approaches have strengths and weaknesses.  Experts can draw 
upon practical experience and both domain specific and general knowledge.  In 
addition, they often have access to well established procedures relating to the target 
domain.  Elicitation of knowledge from experts is limited, however, by the difficulty of 
articulating knowledge; reluctance in some circumstances to share knowledge; 
preconceptions and biases that might inappropriately influence an expert; and the 
limits of an expert’s knowledge.  In contrast, machine learning systems provide a 
capacity to infer procedures from examples; can perform extensive logical analysis; 
and are not subject to the same types of preconceptions and biases as an expert.  They 
are hampered, however, by limited access to general and domain-specific knowledge 
and the difficulties of obtaining comprehensive example sets.  Further, machine 
learning is only possible where much of the knowledge acquisition task has already 
been completed.  Machine learning requires a description of the problem domain and 
collection of example cases from which to learn.  In attribute-value machine learning, 
the domain description consists of a set of attributes and their allowable values along 
with a collection of class values.  These, together with the formalism used for 
expressing the decision procedures, specify a space of possible solutions that the 
system might ‘learn’.  The learning system then explores this space of solutions seeking 
one that best fits the training examples.  If a suitable space of possible solutions is 
specified, learning is relatively straightforward.  If a poor solution space is specified, 
effective learning is impossible.  Thus, machine learning requires prior ontological 
analysis and the specification of a suitable class of models to explore. 
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It is clear that this pre-learning process is crucial.  A domain expert will usually 
provide critical input into this process.  This is not the end of the domain expert’s 
involvement in knowledge acquisition by machine learning, however.  In practical 
applications of machine learning it is often necessary for an expert to review the rules 
that a machine learning system creates (see, for example, Buntine & Stirling, 1991).  
These rules may require modification due to pragmatic or other considerations quite 
outside the formal factors that a machine learning system is able to consider.  For 
example, social or ethical considerations may make unacceptable a policy to refuse 
loans to a specific class of loan applicant, no matter how compelling the evidence is 
that the particular class of applicant represents a poor risk.  Review by the expert will 
also frequently lead to the identification of deficiencies in the domain specification, 
which will necessitate a cycle involving modification of the domain specification and 
re-application of machine learning, followed by another domain expert review.  Most 
machine learning tools provide little support for these interactions with the expert.   

In addition to assisting the expert in processes that must be carried out to support 
machine learning, there is also a need for facilities to enable the expert to directly assist 
the machine learning system during the induction process. 

However, there are a number of obstacles to providing such support.  The first of these 
is communication.  Any sophisticated interaction between an expert and a machine 
learning system will require the two to communicate with one another.  But, such 
communication requires mechanisms beyond those normally supplied by machine 
learning systems. 

A second difficulty is that the machine learning system usually provides a very 
shallow knowledge-base.  Without any means of obtaining explanations and 
justifications of the rules that are presented, an expert can find these shallow rules 
difficult to assimilate into his or her more sophisticated models of the domain.   

Interactions are further limited by the restricted forms of input to which most machine 
learning systems are restricted.  Most attribute-value systems allow only the 
description of the attributes and of a set of examples.  There is no provision for 
background knowledge or any other suggestions or constraints with which to guide 
the learning process. 

A final obstacle is that machine learning systems can make quite arbitrary choices in 
situations where there are alternative solutions that equally well fit the example cases.  
Such situations are quite frequent in practice.  These arbitrary choices may be 
acceptable in such situations if no other information is available and maximisation of 
predictive accuracy is the primary consideration, as is usually considered the case in 
machine learning research. However, an expert will often be able to discriminate 
between the alternatives on other grounds.  In this context, the systems’ arbitrary 
choices may reduce the comprehensibility or acceptability of the inferred rules for the 
expert or may lead to less useful rules than if the expert’s judgements are utilised. 

A large number of systems and techniques have been designed to tackle aspects of 
interaction between a user and a machine learning system.  Most of these are oriented 
toward interactive use by a sophisticated knowledge engineer (Attar Software, 1989; 
Davis & Lenat, 1982; De Raedt, 1992; Morik, Wrobel, Kietz & Emde, 1993; Nedellec & 
Causse, 1992; O'Neil & Pearson, 1987; Schmalhofer & Tschaitschian, 1995; Shapiro, 
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1987; Smith, Winston, Mitchell & Buchanan, 1985; Tecuci & Kodratoff, 1990; Wilkins, 
1988).   

This paper describes The Knowledge Factory, a computer-based environment that 
allows a domain expert to directly collaborate with a machine learning system at all 
stages of the knowledge acquisition process.  We have endeavoured to take the above 
considerations into account in designing this system.  It is distinguished from previous 
such systems by its orientation toward direct use by domain experts with minimal 
computing sophistication. 

THE KNOWLEDGE REPRESENTATION SCHEME 

Sophisticated knowledge representation schemes, such as first-order logic, are not 
appropriate for use by non-knowledge-engineers (see, for example, Kodratoff & Vrain, 
1993).  Extensive training and experience is required to master such formalisms.  
Instead, The Knowledge Factory uses simple attribute-value case descriptions and 
production rules.  Example cases are described by simple vectors of attribute values.  
Rule antecedents (conditions) are conjunctions of simple tests on attributes.  The 
consequents (conclusions) are simple classification statements.   

Fig 1 
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Examples of rules are provided in Fig. 1.  These examples illustrate rules learned from 
data on the diagnosis of renal disease used in research with Geelong Hospital (Agar & 
Webb, 1992).  Attributes are either categorical or ordinal.  For categorical attributes, set 
membership tests are used (although set notation is avoided).  All tests in the first rule 
in Fig. 1 relate to categorical attributes.  For ordinal attributes, tests specify a range of 
allowable values.  The attributes age and prodocytic_fusion_ef tested in the second rule of 
Fig. 1 are both ordinal.   The condition part of a rule (the tests between the keywords IF 
and THEN) is satisfied for a case if all of the individual tests are satisfied.  If the 
condition is satisfied then the conclusion for the rule is taken to apply to that case. 

One complication that must be handled by a machine learning system is missing 
values in the data.  The Knowledge Factory recognises two types of missing value, 
unknown and unobtainable.  The latter is treated as a distinct value, that may be tested in 
a rule, unobtainable having the same status as a normal value.  The first test in the third 
rule in Fig. 1 allows unobtainable values for the attribute age.  Any case with an 
unobtainable value for age will fail the condition for the second rule, which does not 
explicitly allow unobtainable values for this attribute.  Unobtainable values should be 
used where the absence of a value needs to be considered during the decision process, 
for example, because different attributes should be considered if an attribute normally 
used in the decision making process does not have a value.  In contrast, unknown 
values pass any test on an attribute.  In consequence, the test for the second rule in 
Fig. 1 will succeed for a case with an unknown value for age, so long as all of the tests 
on other attributes succeed.  The condition on hepatitus_B_antibody in the second rule of 
Fig. 1 will only succeed for a case with an unknown value. 

A summary line follows the consequent of each rule.  This displays the number of 
training examples that the rule correctly classifies (Positive), the number incorrectly 
classified (Negative) and the value currently assigned to the rule by the system (used, 
under some settings, when resolving between multiple rules that cover a case). 

In the current version of the system, the rule sets are flat.  All rules consequents relate 
to the same attribute, called the decision attribute.  This attribute cannot be used in the 
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antecedent of a rule.  While it might be appropriate to slightly relax these constraints, it 
would not be appropriate to allow complex chaining to any great depth, as non-
knowledge-engineers are unlikely to readily master the complexities of such a rule 
base.  Attempts to incorporate more sophisticated knowledge representation devices, 
such as model construction operators (Morik, Wrobel, Kietz, & Emde, 1993), are also 
viewed as likely to impose an undesirable barrier to use for those without extensive 
training in knowledge engineering. 

We have conducted informal experimentation with two sets of experts—medical 
practitioners and financial analysts.  The former have had little computing expertise 
and the latter have had substantial computing expertise but no background in 
knowledge-engineering.  These experiments show that these experts adapt readily to 
this form of knowledge representation.  They have no difficulty in interpreting existing 
rules, or specifying new rules or examples. 

MACHINE LEARNING TECHNIQUES 

The Knowledge Factory uses the DLGref learning algorithm (Webb, 1993).  This is an 
attribute-value classification learning algorithm that supports refinement of existing 
rules.  Attribute-value classification learning algorithms take as input a training set of 
pre-classified examples.  Each of these examples is described by a vector of attribute-
values and is labelled with the correct class.  The algorithm forms a model that relates 
combinations of attribute-values to classes.  Note that while this abstract description of 
machine learning describes the models that it produces as classifiers, classification can 
be used to model many forms of discrete decision making.  Thus, classification 
learning encompasses many useful learning tasks. 

Generalisation, Specialisation, and Cover 

The Knowledge Factory makes extensive use of two operations on rules: generalisation 
and specialisation.  The following provides a brief introduction to these operations. 

The classification rules used by The Knowledge Factory have the form IF condition 
THEN classification.  If the condition of a rule is satisfied by a case then the rule is said 
to cover that case. 

A rule x is a generalisation of a rule y if x necessarily covers all cases that y covers.  For 
example, the rule IF age>20 THEN old is a generalisation of IF age>30 THEN old.  A case 
covered by the second rule must also be covered by the first rule.  To create a 
generalisation of a rule in the language used by The Knowledge Factory it is necessary 
to either make a constraint on an attribute less strict, for example by lowering the 
minimum value allowed as in the example above, or remove a constraint on an 
attribute, as with the generalisation from IF age>20  and hair is fair THEN  x  to IF age>20  
THEN  x . 

If rule x is a generalisation of rule y, then y is a specialisation of x. 

Note that by these definitions, a rule is both a generalisation and a specialisation of 
itself.  A rule x is a proper generalisation of a rule y if x is a generalisation of y and x is 
not a specialisation of y.  If x is a proper generalisation of y then y is a proper 
specialisation of x. 
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A rule x is a least generalisation  (Plotkin, 1970) with respect to rule y and case z, if x is a 
generalisation of y and x covers z, and there is no rule r that is a proper specialisation 
of x, a generalisation of y and covers z.  For example, IF age>20 THEN old is a least 
generalisation of IF age>30 THEN old with respect to a case with age 20. 

A rule x is a least specialisation with respect to rule y and case z, if x is a specialisation of 
y and x does not cover z, and there is no rule r that is a proper generalisation of x, a 
specialisation of y and does not cover z.  For example, IF age>30 THEN old is a least 
generalisation of IF age>20 THEN old with respect to a case with age 29 (assuming that 
only integer values are allowed for age). 

DLGref 

DLGref is a variant of the AQ (Michalski, 1993) learning algorithms.  These algorithms 
form a set of classification rules incrementally.  For each class a rule is sought that 
performs best on the remaining examples.  Best performance is judged in a variety of 
ways, but usually involves covering as many examples of the class and as few 
examples not of the class, as possible.  DLGref allows the user to specify a metric of 
good performance.  Within The Knowledge Factory, two metrics are supported.  The 
max-consistent metric does not accept any rules that cover examples of another class 
and prefers of the remaining rules those which cover the most examples of the positive 
class.  Laplace is based on the Laplacian law of succession.  It allows a trade-off between 
covering greater numbers of examples and covering small numbers of counter-

examples.  Using this metric, the value of a rule equals 
p+1
n+2 , where p is the number of 

positive examples covered by the rule and n is the total number of examples covered 
by the rule.  Having selected the best rule, all examples that it correctly classifies are 
removed from the training set and the process is repeated.  The rules so selected are 
pooled together to form a set of classification rules. 

The DLGref algorithm is presented in Appendix A. 

Whereas most AQ-like covering algorithms search for each rule starting from very 
general rules and considering successive specialisations thereof, DLGref starts from 
highly specific rules and explores successive generalisations.  The successive 
generalisations are generated using least generalisation.  This process readily supports 
ordinal and continuous valued attributes, forms that cause difficulties for the 
specialisation-based search of traditional AQ algorithms. 

Information Utilised by the Machine Learning System 

An attribute-value classification learning system utilises two major types of 
information.  The first is the set of attributes and their possible values.  This, along with 
the formalism for expressing classifiers that the system employs, defines the set of 
possible classifiers that the system can form.  Clearly, the system cannot form 
classifiers that utilise attributes about which the learning system has not been 
informed.  The second type of information that is used is the training set.  The learning 
system searches the space of possible classifiers that it is capable of forming, seeking a 
classifier that best classifies the examples in the training set.  Clearly, the system is 
greatly influenced by the quality of the training set with which it is provided.  If there 
are intricacies to classification in a domain that are not represented in the training set 
then the learning system cannot learn them. 
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TECHNIQUES 

One of the primary design considerations for The Knowledge Factory was to allow 
direct interaction between the knowledge acquisition system and an expert with 
minimal computing expertise.  This has been achieved by a number of previous 
knowledge acquisition systems, notably repertory grid based tools such as ETS (Boose, 
1986) and the ripple-down-rules tools of Compton, Edwards, Srinivasan, Malor, 
Preston, Kang, & Lazarus (1992).  However, a significant difference between The 
Knowledge Factory and these previous tools is that The Knowledge Factory’s 
incorporation of machine learning frees it from a reliance on the expert having all 
encompassing knowledge of the domain.  Previous systems have relied upon the 
expert being able to specify a suitable solution for any problem that the system may 
present.  The expert, then, is viewed as all-knowing.  All that is required is to help him 
or her to develop a formal model of the domain that captures the relevant aspects of 
his or her expertise.  With the inclusion of machine learning, this view can change.  
Now the expert is viewed as having valuable insight into the domain, but this insight 
need not be all encompassing.  Where the expert is unable to provide suitable models, 
the machine learning system can supply models instead.  But the interactions may be 
more sophisticated than each simply producing part of a model, the two parts then 
being assembled. 

An alternative scenario is that an expert may have expertise in some aspect of a 
domain but may not be able to express formal models that encode that expertise.  That 
is, the expert may be able to solve a particular class of problems, but may not be able to 
specify a set of expert system rules to reproduce those solutions.  In this case, the 
machine learning system can be used to produce a ‘first draft’ of a set of rules.  The 
expert may then be able to critique and refine those rules.  Thus, machine learning can 
be used to ‘kick-start’ the model specification and refinement process. 

A further scenario is that even after the use of machine learning to produce a first draft, 
the expert may still be unable to specify appropriate formal models.  In this case, he or 
she may be able to critique the machine learning system’s models, enabling it to further 
refine its own models. 

Finally, the expert may be able to specify some formal models initially, but these 
models may be incomplete or imprecise.  The machine learning system may then refine 
this initial knowledge-base.  The expert can review and revise the machine learning 
system’s contributions in turn, starting an ongoing sequential process of refinement. 

The commonalities of all these scenarios are an underlying view of the expert and the 
machine learning system as partners in the knowledge acquisition task, each of which 
has differing insights into a domain.  The expert’s insights are derived from training, 
experience and both general and commonsense knowledge.  The machine learning 
system’s insights are derived from analysis of a set of training examples. 

Communication Mechanisms 

Such pooling of insight clearly requires communication between the partners of a form 
not normally supported by machine learning systems.  The Knowledge Factory uses 
example cases as the primary basis for communication.  This case-based 
communication paradigm suits both partners in the collaboration.  Experts in many 
domains are familiar with the use of examples, both to have points illustrated and for 
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illustrating points.  For a machine learning system, example cases are the major source 
of evidence that is considered.  Many of the decisions that a machine learning system 
makes can only be explained in terms of how a model relates to the provided training 
examples.  With The Knowledge Factory’s case-based communication, each partner 
uses example cases to communicate with the other. 

Example windows 

The primary mechanism used by the machine learning system is to provide windows 
that list the example cases that stand in a particular relationship to a rule or set of rules.  
Eight of these example windows are maintained.  While these windows could be 
composed to answer specific queries from the user, or even to anticipate queries that 
the user might wish to pose, the complexity of creating such queries, and the 
difficulties of understanding system generated summaries of the queries that an ad hoc 
window might address, mitigate against the use of such mechanisms with our target 
users.  Rather, windows that address the issues that are most likely to concern the 
users are maintained at all times.  This constant display allows a user to familiarise 
himself with the meaning of each window, not having to devote attention to 
comprehending the meaning of a window each time that it is considered, as would be 
the case if windows presenting different types of information were generated 
dynamically by the system.  The user is then able to attend to individual windows at 
his own discretion, ignoring those that do not bear upon his current concerns and 
utilising those that do. 

The first example window simply lists all available examples.  It is perhaps stretching 
the scope of the technique to include this window within the case-based 
communication mechanism, as, in contrast to the other example windows, it does not 
really serve a communication purpose.  Rather, it provides the user with ready access 
to the available example cases. 

The Indistinguishable Examples Window contains all examples for which there is an 
example from another class such that the system is not able to form a rule that 
distinguishes the two.  This will occur if there is no attribute for which the two 
examples in question have different values.  Unknown values do not count as distinct 
for this purpose.  The presence of examples in this window indicates that it is not 
possible to form rules that correctly classify all examples given the current set of 
attributes.  This indicates to the user that it might be desirable to consider revision of 
the current set of attributes. 

Whenever a rule from the current knowledge base is selected, the Positive Examples 
Window lists all examples that the rule correctly classifies.  The Counter Examples 
Window displays all examples that the current rule incorrectly classifies.  The 
Uncovered Examples Window lists all examples that belong to the class indicated by 
the rule’s conclusion, but which are not covered by the rule.  These windows indicate 
to the user the evidence that led the system to select the current rule.  They can be used 
both to aid the user’s understanding of the underlying support for the rule and to help 
the user to formulate alternatives to the rule that serve the same purpose.  They also 
provide a simple mechanism for the user to ask what if? and why not? questions.  To 
determine why the system did not select a specific alternative to a rule, the user need 
only create and select the other candidate.  If it was not created because it failed to 
cover specific examples, this will be indicated by the contents of the Positive Examples 
Window.  If the failure to create it was due to the alternative rule incorrectly classifying 

Fig 2 
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specific cases, this will be indicated by the contents of the Counter Examples Window.  
Finally, they provide a mechanism whereby the machine learning system can critique 
rules that the user formulates.  If a rule fails to cover example cases, this will be 
indicated by the Uncovered Examples Window.  If a rule misclassifies cases, this will 
be indicated by the Counter Examples Window.  Finally, if the rule performs well, this 
will be indicated by the Positive Examples Window.  The operation of these windows 
is illustrated in Fig. 2.  Here, a rule for diagnosing Immunoglobulin A Deficiency 
(IGA_NX) is selected.  This rule has been learned by the machine learning system.  The 
Positive Examples Window displays the examples that support the rule.  The 
Uncovered Examples Window displays the IGA_NX cases that the rule fails to cover.  
The empty Counter Examples Window shows that this rule does not misclassify any 
examples. 

Fig 3 
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To illustrate the use of these windows to answer why not? questions, Fig. 3 displays the 
same situation after the user deletes the first clause from the rule.  This is equivalent to 
asking why not develop this alternative rule?  As can be seen from the Counter 
Examples Window, the answer is because the alternative rule covers the two cases that 
are listed. 

A fifth example window also relates to the current rule.  The Insufficient Information 
Examples Window lists any cases for which it cannot be determined whether or not the 
rule covers the example.  This will occur when an example has unknown values for 
some of the attributes referred to in a rule, and satisfies all clauses relating to attributes 
for which it has values defined.  This window alerts the user to potential problems 
arising from missing values in the data. 

The previous four example windows relate to the performance of a rule considered in 
isolation.  The remaining two example windows relate to the performance of a set of 
rules as a whole.  The Misclassified Examples Window lists cases that are misclassified 
by the rule set.  Such misclassification may occur even if the example is correctly 
classified by one or more rules, if it is also misclassified by other rules.  The manner in 
which such conflicts between rules are handled by the system is under user control.  
Rules may be ordered, so that the first rule encountered that covers a case is used.  
Alternatively, rules may be assigned values.  Under this treatment, of the rules that 
cover a case, that with the highest value is employed.  Rule values may be specified by 
the learning system or by the user.  A final alternative is that in cases of multiple 
conflicting conclusions, the case remains unclassified. 

The Unclassified Examples Window lists cases that are not classified by the rule set.  
This may occur if multiple rules cover a case, as described above, or if no rule covers a 
case.  The system may be set so that if no rule covers a case either the case is 
unclassified or a default classification is assigned. 

These two windows allow the user to obtain holistic evaluation of the rule set in 
addition to the rule specific evaluation provided by the majority of examples windows. 

The examples windows serve another function—example set validation.  It is very easy 
for errors to enter into data.  These may occur through errors in data entry or 
transmission or even due to imprecision in measuring instruments.  In the traditional 
machine learning context, such errors will only rarely become apparent, as the 
knowledge bases that are inferred are not usually related back to the training 
examples.  In contrast, The Knowledge Factory’s examples windows encourage the 
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user to closely inspect significant examples.  In particular, the Insufficient Evidence, 
Counter, and Uncovered Examples Windows will often highlight cases that contain 
errors. 

Case-based rule critique 

The example windows enable the machine learning system to justify its actions to the 
user and to critique rules created by the user.  The user is also able to critique rules 
formed by the learning system.  In our experience it is common that experts will dislike 
a rule formed by the learning system but be unable to articulate appropriate 
modifications thereto.  In such circumstances the expert will often be able to provide 
examples to support his or her disquiet.  It is straightforward to add those examples to 
the training set.  Such examples may be complete, including values for all attributes, 
and possibly derived from an actual case from the expert’s experience.  Alternatively, 
they might be partial, with values specified only for some attributes.  Such an example 
provides an abstract characterisation of types of case for which an alternative decision 
is appropriate. 

Case-based rule editing 

Another manner of using examples to modify rules is provided by case-based rule 
editing.  Specification of counter-examples provides the machine learning system with 
information about conditions under which a rule should not apply.  This may either 
cause the system to specialise a rule by adding more constraints to its application, or to 
select a different set of attributes with which to condition the application of the rule.  
To extend a rule to cover additional types of situation is less straightforward however.  
The addition of further positive examples to the training set may result in a rule being 
modified to cover those cases when learning is next applied.  However, the system 
may equally cover those cases through modification of other rules for the class, or the 
generation of new rules.  Also, depending on the metric used to evaluate the quality of 
rules, the machine learning system may tolerate a small number of counter-examples 
to a rule due to the quality metric evaluating them as not sufficient to warrant 
specialising the rule, thus defeating the user’s objective in specifying a counter-
example. 

Case based rule editing has been developed to deal with such circumstances when an 
expert is unable to directly specify suitable changes to a rule, but can identify 
appropriate counter-examples or uncovered positive examples.  With this technique, 
the expert identifies a rule and a case that the rule should or should not cover, and the 
system suggests modifications to the rule that would produce the desired outcome.  
The user can then evaluate and select between the proffered modifications or explore 
other forms of revision.   

When excluding a case from the cover of a rule, the system generates all least 
specialisations of the rule with respect to the case.  This is illustrated in Fig. 4.  In this 
example, we have removed a clause from a rule, which is highlighted in the Rules 
Window.  This has caused it to incorrectly cover some counter examples, which are 
displayed in the Counter Examples Window.  To explore how these counter examples 
might be excluded from the cover of the rule we have then applied the Contract to 
Exclude Case command, selecting the first case in the Counter Examples Window.  
This generates a large number of alternative rules, of which the last three are displayed 
in the Alternative Rules Window.  Two of these add possible constraints on the 
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attribute age while the last adds a constraint on the attribute gender.  The effect of these 
new constraints is summarised on the summary line after each rule and could be 
explored further using the examples windows.  Further case based editing could be 
applied to one of these alternatives until a satisfactory outcome was obtained, or the 
user might reach a stage where he or she is able to complete the necessary 
modifications directly. 

When generalising a rule to cover a case, the system generates the least generalisation 
of the rule with respect to the case.  For the types of attribute-value rule supported, 
there will only ever be a single least generalisation of a rule with respect to a single 
case.  If a user specifies a new case that a rule should cover, the Expand to Cover Case 
command can be used to force the system to immediately generalise that rule to cover 
that case.  As with the Contract to Exclude Case command, several such case-based 
rule editing actions may be required before a user is satisfied with the resulting rule. 

Machine generated examples are not used 

It is interesting to contrast the case-based communication mechanisms utilised by The 
Knowledge Factory with the techniques pioneered in MARVIN (Sammut & Banerji, 
1986).  When testing hypotheses, MARVIN actively generates ‘examples’ which it asks 
the expert to classify.  Such a mechanism has been deliberately excluded from The 
Knowledge Factory in the belief that, for many domains, without access to the types of 
background knowledge that we have also deliberately excluded from the system, 
examples created by the computer are likely to be nonsensical.  In a medical domain, 
for example, the interactions between and constraints on attributes will be many and 
varied.  Computer generated cases are likely to violate such constraints, for example, 
by hypothesising pregnant male patients.  The exploration of violation of such 
constraints is unlikely to be useful, as the expert will know that the possibility does not 
have to be excluded from a rule as it will never arise in practice.   

Our case-based communication mechanisms exclusively use cases specified by the user 
or imported from outside the system.  In consequence, all cases should be meaningful 
to the user.  The computer may present cases to the user, but only cases selected from 
those provided to it. 

Exploration of Alternative Rules 

Case-based rule editing is able to assist in some circumstances where an expert ‘knows’ 
that a rule is unsuitable, but cannot identify precisely how.  But, it is limited to 
situations in which the user can specify or identify appropriate example cases.  This 
will not always be possible.  Alternative rules are another mechanism that The 
Knowledge Factory provides for such situations. 

Machine learning systems frequently make arbitrary choices between possible tests for 
inclusion in a rule.  There will often be several tests, all of which cover exactly the same 
set of training cases.  A machine learning system must select one of these, and usually 
does so in an arbitrary manner.  That such a choice has been made will not usually be 
flagged to the user.  However, while the choice may have been arbitrary given the 
information available to the system, an expert may well be able to make comparative 
qualitative judgements about the alternatives.  This problem could be tackled by 
involving the user in the process of selecting tests during induction.  However, this 
would impose a large burden on the user.  There are very many such tests considered 
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in typical learning contexts.  Further, in many situations the user may not have any 
better basis on which to choose between alternatives than does the system. 

Instead, The Knowledge Factory offers the user a facility for identifying and selecting 
between alternative rules.  This facility can be invoked by the user at any time at his 
own discretion.  The Form Alternative Rules command creates a set of alternatives to 
the current rule.  First, the system identifies all most general rules that cover all cases 
correctly covered by the current rule.  Two more rules are added.  The first is the most 
specific rule to cover all of the cases correctly covered by the initial rule.  This provides 
for the user a complete presentation of all tests that could possibly be used to cover 
these cases.  The second additional rule has as its antecedent the conjunction of all 
antecedents of all the most general rules that were formed.  This summarises for the 
user the set of all tests that appear to be effective in distinguishing the current class 
from others.  These rules are displayed in a window within which the user may 
explore them using all of the system’s rule editing and evaluation facilities. Fig 5 
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Figure 5 illustrates the outcome of this command.  In this example, rules have been 
developed from examples of diagnosis of hypothyroid disease (Quinlan, Compton, 
Horn, & Lazarus, 1986).  The rule highlighted in the Ruleset Window is the original 
rule for which alternatives have been developed.  The Alternative Rules Window lists 
the four alternatives that were discovered.  The last two of these rules are the most 
general alternatives.  The first of these is the original rule.  The second is identical to 
the first except that the clause psych is f is replaced by sick is f.  All 43 cases covered by 
the original rule satisfy both of these conditions.  One or the other of these clauses is 
needed if a rule is to cover all 43 cases correctly classified by the original rule and no 
cases of another class.  For this rule there happens to be one case of class 
compensated_hypothyroid that satisfies all of the other conditions but, unlike any of the 
positive cases, has values of t for both psych and sick.  This is a clear illustration of a 
situation in which system has no sensible basis on which to choose between 
alternatives but an expert may.  The first of the alternative rules is the most specific 
rule to cover all 43 cases.  The second alternative rule contains all clauses in either of 
the most general alternatives.   

Fig 6 
about 
here 

 

Note that this is a very simple example of alternative rules, deliberately chosen for ease 
of presentation and explanation.  For contrast, Fig. 6 presents some of the 39 alternative 
most general rules all of which cover the only two cases of class secondary_hypothroid 
in the training set and none of which cover any cases of another class. 

There is an interesting relationship between this alternative rules technique and the 
example generation technique of MARVIN (Sammut & Banerji, 1986).  In both 
situations the system wishes to obtain advice from an expert to help it distinguish 
between alternatives that are equally well supported by the training cases.  However, 
whereas MARVIN generates hypothetical cases in an attempt to distinguish between 
the alternatives, we present the alternatives directly.  As argued above, automated 
generation of hypothetical cases will often be unsuccessful in real world domains, if 
only because such cases are unlikely to appear realistic to an expert.  We believe that 
complete rules of the type that The Knowledge Factory creates will often be easier for 
the expert to comprehend and manipulate. 

 11 



Interactive Domain Model Revision 

Buntine & Stirling (1991) argue that effective real world application of machine 
learning frequently requires a cyclical process in which the results of machine learning 
are provided to the expert for review which may lead to the identification of relevant 
information not originally provided to the machine learning system, which leads back 
to another phase of application of machine learning with revised inputs.  One of the 
design objectives for The Knowledge Factory is to allow the expert to complete this 
cycle within the system.  With many machine learning systems, each time through the 
cycle, machine learning must start afresh.  I have already described how the system 
can iterate through such a cycle when the new information is presented in the form of 
new or revised example cases.  Greater change is required, however, if the expert 
realises that there are deficiencies in the set of attributes selected with which to 
describe the examples.  We have observed this circumstance in practice.  The expert, 
when confronted with a rule developed by the system, and the evidence it can provide 
in the rule’s support, realises that a factor not included in the current case descriptions 
is necessary to adequately revise the rule.  Another type of change is required when it 
is realised that there is a need to provide finer grade distinctions for an existing 
attribute (one or more current value needs to be replaced by a number of values) or 
some other transformation of an attribute is needed (conversion from ordinal to 
categorical or vice versa, for example).  The Knowledge Factory provides facilities for 
performing such conversions.  Existing rules and cases that are affected by the change 
are automatically transformed, where possible, so as to retain as much as possible of 
the existing knowledge base.   

When a new attribute is created, all cases are initialised with the value for this attribute 
set to unknown.  When the attribute is only relevant in a small number of contexts, the 
user need only specify values for a small number of cases, for example, the positive 
and counter examples for the current rule. 

Direct Expert Evaluation of Rules 

While cased based communication is able to accommodate many of the interactions 
between an expert and a machine learning system, there are some communication 
needs that it cannot cover.  One of these is the direct communication of general 
qualitative rule evaluation by the expert.  Case-based communication allows the expert 
to inform the system about specific deficiencies of a rule.  It does not allow the expert 
to specify that the current form of a rule is very good, or that it is unacceptable without 
specifying how. 

The Knowledge Factory allows the expert to attach qualitative labels to individual 
rules.  The three labels currently supported are no good, revisable, and good.   

The Knowledge Factory takes account of these assessments during induction.  Rules 
that are rated no good are discarded before rule refinement commences.  This usually 
results in the formation of totally new rules, although in some circumstances the 
induction system may derive the same rule again.  Techniques for avoiding this 
outcome would be desirable, but are difficult to incorporate into traditional machine 
learning systems. 

Rules that are rated good are not altered during rule refinement, but rather are passed 
directly into the final rule set.   
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Revisable  rules are retained, but may be altered to reduce the number of negative cases 
or increase the number of positive cases covered.  This is the default annotation. 

These rule annotations are simple for the user to utilise, but provide useful guidance to 
the rule refinement process. 

Summary Ruleset Evaluation 

Most machine learning systems provide facilities for summarising the performance of 
inferred rules when applied to an evaluation set of cases.  The primary metric used in 
such evaluation is usually accuracy.  But in real world applications, this will not 
always be the most important measure of performance.  In many domains, some errors 
are more significant than others (for example, failure to diagnose a serious disease in 
contrast to unnecessary but comparatively harmless treatment arising from diagnosing 
a disease that is not present).  We have sought to develop a simple manner in which to 
capture all of the relevant summary information that is likely to be useful for a user. 

Fig 7 
about 
here 

 

Figure 7 presents an example of the tabular format for presenting evaluation results 
that we have created. As there are four classes in this example (using the hypothyroid 
diagnosis data previously mentioned), there is a 4x4 matrix which presents the number 
of cases belonging to each class that have been given each classification.    The first four 
rows of the table relate to the class assigned to a case by the current rule set while the 
first four columns relate to the correct class for a case. The fifth column relates to all 
cases.  The sixth column presents for each class, the percentage of those cases assigned 
that class by the rule set for which that classification was correct.  The fifth row 
presents the total number of cases of each class for which any classification was 
assigned by the rules.  The sixth row summarises the percentage of those that were 
correct.  The seventh row indicates the number of cases for each class for which no 
decision was made.  The eighth row shows the proportion of all cases for the class for 
which a classification was assigned.  The ninth row displays the sensitivity of the rule 
set for the class.  This is the proportion of cases belonging to the class that were 
correctly classified.  The final row displays the specificity for the class.  This is the 
proportion of cases not belonging to the class that were not incorrectly classified as 
belonging to the class. 

EXPERIMENTAL EVALUATION 

A major difficulty facing research in knowledge acquisition is evaluation of alternative 
techniques.  Real world knowledge acquisition tasks usually require large and very 
expensive projects.  It is not feasible to conduct controlled experiments in which 
different methodologies are each applied to the same full scale knowledge acquisition 
project under real-world conditions.  As a result, other than case studies, there has 
been little experimental investigation of the performance of different techniques.  Even 
the ground-breaking Sisyphus projects (Linster, 1992; Schreiber & Birmingham, 1996), 
in which many different systems were all applied to common knowledge acquisition 
tasks, is perhaps best thought of as a set of parallel case studies, as it was not possible 
to control extraneous factors that may have affected a participant’s use of a system, 
and hence comparisons are restricted. 

A case study can demonstrate the ability of a technique to achieve an outcome.  
Beyond this, they provide little comparative information about alternatives. 
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We have been concerned to perform experimental evaluation of the efficacy of the 
techniques embodied in The Knowledge Factory.  We were encouraged by the positive 
evaluations provided by participants in case studies (Webb, 1996).   

We wanted to have large numbers of subjects apply differing approaches to a 
knowledge acquisition task under controlled conditions.  One way to achieve this was 
to set appropriate assignments for students in an undergraduate course on Artificial 
Intelligence and Expert Systems, and to study their performance.  Subjects could be 
provided software with different capabilities and their performance measured on 
common tasks under controlled conditions. 

An initial attempt at such evaluation (Webb & Wells, 1996) was undermined by a user 
interface flaw.  Many subjects seeking to use The Knowledge Factory’s machine 
learning facilities to refine rules that they had created unintentionally employed 
machine learning in a mode that deleted their rules and replaced them by rules learned 
by the machine learning system independently from the initial rules.  In consequence, 
while on average outperforming both knowledge acquisition without access to 
machine learning facilities and the application of machine learning alone, the 
integrated application of machine learning with knowledge acquisition from experts 
failed to demonstrate a statistically significant advantage over machine learning alone.  
When the subjects that applied machine learning in the mode that overwrote existing 
rules were excluded from consideration, the advantage over machine learning was 
statistically significant, but the selection of subjects for analysis in this manner cast 
doubt upon the results. 

This user interface fault was rectified, and a second such experiment undertaken 
(Webb, Wells, & Zheng, 1999).  In this second experiment, we again used 
undergraduate students performing a class assignment.  This assignment was 
conducted under supervised laboratory conditions.  Knowledge acquisition tasks were 
created using the Glass and Soybean Large data sets from the UCI Repository of 
Machine Learning Databases (Merz & Murphy, 1997).  The Glass data relates to 
forensic analysis of glass fragments and the Soybean Large data pertains to the 
diagnosis of soybean plant diseases. 

Subjects were given randomly selected training sets of examples.  The accuracy of their 
expert systems could then be tested by evaluating their performance on withheld 
evaluation sets.  To simulate use by experts, the subjects were provided with rules for 
these tasks learned by C4.5rules (Quinlan, 1993) from subsets of the data.  As these 
subsets included both training and evaluation cases provided to the subjects, the rules 
could be expected to capture information about the domains that subjects could not 
glean from examination of their training data either with or without the use of machine 
learning tools. 

Two versions of The Knowledge Factory were created.  A number of facilities were 
disabled that could not be usefully employed in the context of the study.  This was to 
minimise the chance of a repetition of the previous outcome where misapplication of 
the software invalidated the study.  The facilities disabled included changing the 
manner in which rules were interpreted during execution of a rule set, saving and 
loading sets of examples from disk, and the selection, maintenance and utilisation of 
separate training and evaluation sets.  All of the key knowledge acquisition facilities 
were retained, except that machine learning capabilities were disabled in one version, 
called KA-alone.   
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Subjects were randomly divided into two groups.  One group used KA-alone for the 
Glass data and the full system for Soybean Large, and the other group used the 
systems in the other order.   

Seventeen subjects participated in the experiment.  Table 1 presents the mean 
predictive accuracy on the evaluation cases obtained using each system for each data 
set, along with that of The Knowledge Factory’s machine learning system when 
applied using the training and evaluation cases used by subjects using the full system.  
For both data sets the integrated use of machine learning with knowledge acquisition 
from experts led to higher predictive accuracy than the use of either of its constituent 
approaches in isolation.   With respect to KA-alone, both of these differences were 
statistically significant at the 0.05 level (one-tailed two-sample t tests; Soybean 
Large:t=2.1, p=0.026; Glass: t=3.35, p=0.001).  With respect to learning-alone, the 
difference was significant at the 0.05 level for the Glass data (one-tailed matched-pairs 
t test: t=2.5, p=0.021) but the other was not (one-tailed matched-pairs t test: t=0.9, 
p=0.279).  Note that the power of these tests was low due to the small number of 
subjects and hence that the failure to find a significant difference provides only very 
weak evidence that such a difference does not actually exist.  The significant 
differences that were found demonstrate that for at least some knowledge acquisition 
tasks, the integrated use of machine learning with knowledge acquisition from experts 
can produce more accurate expert systems than either constituent method in isolation. 

Table 1 
about 
here 

 

The integrated approach was also faster than KA-alone.  For Soybean Large the mean 
and standard deviation for the integrated approach was 73±45 minutes while for KA-
alone it was 131±19.  For Glass these figures were respectively 16±19 and 115±38.  One-
tailed two-sample t tests reveal that both of these differences are significant at the 0.05 
level (Soybean Large: t=3.3, p=0.002; Glass: t=1.9, p=0.037).    In both cases the time 
savings from the integrated use of machine learning with knowledge acquisition were 
substantial.  Of course, they were both eclipsed in this respect by the application of 
machine learning alone, for which knowledge acquisition time can be measured in 
seconds rather than minutes. 

Questionnaire responses from participants indicated that the subjects believed the 
machine learning facilities were useful, found the knowledge acquisition process easier 
when machine learning facilities were available, and had greater confidence in the 
expert systems developed with the aid of machine learning.  

These results, presented and analysed in more detail by Webb, Wells, & Zheng (1999), 
all provide support for the efficacy of the approaches that we have developed.  At least 
for some knowledge acquisition tasks they can lead to the more rapid development of 
more accurate expert systems in which the users have greater confidence than does 
knowledge acquisition without machine learning, and to more accurate expert systems 
than machine learning in isolation. 

CONCLUSIONS 

The Knowledge Factory is a knowledge acquisition system that is designed for direct 
use by domain experts.  It differs from most previous systems intended for this use by 
incorporating machine learning facilities.  In consequence, it is not necessary for the 
expert to provide solutions for every contingency that the knowledge base must cover.  
The machine learning system can fill gaps in the expert’s expertise.  Both the machine 
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learning system and the expert can critique and propose refinements to the other’s 
rules. 

One of the distinctive features of The Knowledge Factory is the manner in which 
communication with the user has been structured around the use of example cases.  
Techniques have been developed that allow both the user and the system to convey 
non-trivial information through this mechanism.  Interestingly, however, we have 
concluded that one such form of communication that has received previous use, the 
construction of hypothetical cases by the system in order to test hypotheses, is actually 
inappropriate in our context.  Instead, we favour explicit presentation of the competing 
hypotheses in this situation. 

The Knowledge Factory is distinguished from previous knowledge acquisition systems 
by the manner in which it supports experts with minimal computing expertise to 
directly interact with a machine learning system during all phases of knowledge 
acquisition.  Case studies have found that such users have little difficulty in using the 
system and controlled studies suggest that the integration of machine learning with 
knowledge acquisition within the system can outperform either constituent approach 
in isolation. 

REFERENCES 

Agar, J., & Webb, G.  (1992)   The application of machine learning to a renal biopsy 
data-base.   Nephrology, Dialysis and Transplantation, 7: 472-478. 

Attar Software (1989). Structured decision tasks methodology for developing and integrating 
knowledge base systems.  Attar Software, Leigh, Lancashire. 

Boose, J. H. (1986). ETS: A system for the transfer of human expertise.  In J. S. Kowalik 
(Ed.),  Knowledge based problem solving. New York:  Prentice-Hall. 

Buntine, W., & Stirling, D. (1991). Interactive induction.  In J. E. Hayes, D. Michie, & E. 
Tyugu (Eds.)  Machine Intelligence 12. Oxford: Clarendon Press, pp. 121-137. 

Compton, P., Edwards, G., Srinivasan, A., Malor, R., Preston, P., Kang, B., & Lazarus, 
L. (1992). Ripple down rules: Turning knowledge acquisition into knowledge 
maintenance.  Artificial Intelligence in Medicine,  4: 47–59. 

Davis, R., & Lenat, D. B. (1982).  Knowledge-based systems in artificial intelligence. New 
York: McGraw-Hill. 

De Raedt, L. (1992). Interactive theory revision. London: Academic Press. 

Kodratoff, Y., & Vrain, C.  (1993)  Acquiring first-order knowledge about air traffic 
control.  Knowledge Acquisition, 5, 1–6. 

Linster, M. (1992)  A review of Sisyphus 91 and 92: Models of Problem-Solving 
Knowledge.  In N. Aussenac, G. Boy, B. Gaines, M. Linser, J.-G. Ganascia, & 
Y. Kordratoff (Eds) Knowledge Acquisition for Knowledge-Based Systems.  Berlin: Springer-
Verlag, pp. 159-182. 

Merz, C. J. & Murphy, P. M. (1997) UCI Repository of Machine Learning Databases 
[Machine-readable data repository].  University of California. 

 16 



Michalski, R. S. (1983). A theory and methodology of inductive learning.  In R. S. 
Michalski, J. G. Carbonell, & T. M. Mitchell (Eds.) Machine learning: An Artificial 
Intelligence Approach. Berlin: Springer-Verlag. 

Morik, K., Wrobel, S., Kietz, J.-U., & Emde, W. (1993). Knowledge Acquisition and 
Machine Learning: Theory, Methods, and Applications. London: Academic Press. 

Nedellec, C., & Causse, K. (1992). Knowledge refinement using knowledge acquisition 
and machine learning methods.  Proceedings EKAW'92. Berlin: Springer-Verlag, pp. 
171-190.  

O'Neil, J. L., & Pearson, R. A. (1987). A development environment for inductive 
learning systems.  In Proceedings of the 1987 Australian Joint Artificial Intelligence 
Conference. Sydney, pp. 673-680. 

Plotkin, Gordon D.  (1970)  A note on inductive generalisation.  In B. Meltzer & D. 
Mitchie (Eds) Machine Intelligence 5.  Edinburgh University Press, Edinburgh, pp. 153-
163. 

Quinlan, J. R. (1993). C4.5: Programs for Machine Learning. San Mateo, CA: Morgan 
Kaufmann. 

Quinlan, J. R., Compton, P., Horn, K. A., & Lazarus, L. (1986) Inductive Knowledge 
Acquisition: A Case Study,  New South Wales Institute of Technology School of 
Computing Sciences, Technical Report 86.4, Sydney. 

Sammut, C. & Banerji, R. B.(1986) Learning concepts by asking questions.  In Michalski, 
Ryszard S., Carbonell, Jaime G., & Mitchell, Tom M. (Eds) Machine Learning: An 
Artificial Intelligence Approach Volume II. Morgan Kaufmann, Los Altos, pp. 167-191. 

Schmalhofer, F., & Tschaitschian, B. (1995). Cooperative knowledge evolution for 
complex domains. In G. Tecuci, & Y. Kodratoff (Eds.) Machine learning and knowledge 
acquisition: Integrated approaches. London: Academic Press. 

Schreiber, A. & Birmingham , W. P. (1996) The Sisyphus-VT initiative.  International 
Journal of Human-Computer Studies. 44. 

Shapiro, A.  (1987)  Structured Induction in Expert Systems.  Addison-Wesley, London. 

Smith, R. G., Winston, H. A., Mitchell, T. M., & Buchanan, B. G. (1985). Representation 
and use of explicit justifications for knowledge base refinement.  In Proceedings of the 
Ninth International Joint Conference on Artificial Intelligence.  San Mateo, Ca: Morgan 
Kaufmann, pp. 673-680.  

Tecuci, G., & Kodratoff, Y. (1990). Apprenticeship learning in imperfect domain 
theories. In Y. Kodratoff, & R. Michalski (Eds.) Machine learning: An Artificial 
Intelligence Approach. San Mateo, CA: Morgan Kaufmann. 

Webb, G. I. (1993). DLGref2: Techniques for inductive knowledge refinement.  In 
Proceedings of the IJCAI Workshop W16.  Chambery, France,  pp. 236-252.  

Webb, G. I. (1996). Integrating machine learning with knowledge acquisition through 
direct interaction with domain experts.  Knowledge-Based Systems, 9: 253-266. 

 17 



Webb, G. I. & Wells, J.  (1996)  Experimental evaluation of integrating machine learning 
with knowledge acquisition through direct interaction with domain experts.  In P. 
Compton, R. Mizoguchi, H. Motada, & T. Menzies (Eds) Proceedings of PKAW'96: The 
Pacific Knowledge Acquisition Workshop.  Sydney, pp. 170-189. 

Webb, G. I., Wells, J., & Zheng, Z. (1999)  An experimental evaluation of integrating 
machine learning with knowledge acquisition. Machine Learning, 35(1): 5-24. 

Wilkins, D. C. (1988). Knowledge base refinement using apprenticeship learning 
techniques.  In Proceedings of the Seventh National Conference on Artificial 
Intelligence.  San Mateo, CA: Morgan Kaufmann, pp. 646-651.  

 18 



 
APPENDIX A 

THE DLGREF ALGORITHM 

α is the most specific possible rule for the class positive, that covers no cases.  The least 
generalisation of α against a case results in the most specific rule that covers that case. 

ζ is the most general possible rule for the class positive, that covers all cases. 

Function DLGref 
Parameters: rules: an initial set of rules for a single class 
 POS: a set of cases belonging to that class 
 NEG: a set of cases that do not belong to the class 
 value(): a function from rules to numeric values such that the higher the 

value the greater the preference for the rule. 
Returns: rules: a revised set of rules for the class 

for r is set to each rule in rules in succession 
if r covers any cases in NEG 

spec_rule <- generalise_rule(α, covered_cases(r, POS), NEG, value) 
if spec_rule covers any cases in POS 

r <- generalise_toward(spec_rule, r, NEG) 
end if 

end if 
remove from POS all cases that r covers 

end for 
for r is set to each rule in rules in succession 

r <- generalise_rule(r, POS, NEG, value) 
remove from POS all cases that r covers 

end for 
while POS is not empty 

r <- generalise_rule(α, POS, NEG, value) 
if r covers any cases in POS 

r <- generalise_toward(r, ζ, NEG) 
remove from POS all cases the r covers 
add r to rules 

else 
remove all remaining cases from POS 

end if 
end while  
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Function generalise_rule 
Parameters: rule  an initial rule for the positive class 
 POS: a set of cases belonging to that class 
 NEG: a set of cases that do not belong to the class 
 value(): a function from rules to numeric values such that the higher the 

value the greater the preference for the rule. 
Returns: result: a generalisation of rule 

result <- rule 
for c is set to each case in POS in succession 

set r  to the least generalisation of result with respect to c 
if value(r, POS, NEG) > value(result, POS, NEG) 

result <- r 
end if 

end for 
 

Function generalise_toward 
Parameters: spec  an initial specific rule for the positive class 
 gen: a generalisation of spec 
 NEG: a set of cases that do not belong to the class 
Returns: result: a rule that is a generalisation of spec and a specialisation of gen and 

which covers no cases in  NEG not covered by spec 
while spec ≠ gen  

for each clause c in the antecedent of spec 
if deleting c from spec would increase the number of cases in 
NEG covered by spec 

add c to gen 
end if 

end for 
for each clause c in the antecedent of spec 

if c is not in the condition of gen and adding c to the condition of 
gen does not decrease the number of cases in NEG covered by gen 

remove c from spec 
end if 

end for 
end while 
result <- spec 

DLGref makes two passes through the initial rules.  In the first pass, any rules that 
cover negative cases are specialised, if possible, so as to no longer cover those cases.  
All positive cases covered by the resulting rules are then deleted as they do not need 
further attention.  In the second pass through the initial rules, they are generalised as 
much as possible to cover further positive cases.  Any cases so covered are also deleted.  
Finally, new rules are added to the rule set to cover any remaining positive cases.  

The function generalise_rule seeks to generalise an initial rule to cover as many as 
possible positive cases, but without unduly increasing negative cover.  The value 
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function is used to evaluate whether an increase in negative cover, if it occurs, is 
sufficiently offset by an increase in positive cover. 

The function generalise_toward generalises an initial specific rule toward a more 
general form as far as possible without increasing the negative cover of the initial rule. 
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Table 1: Mean and standard deviation for predictive accuracy. 

                         

Data set Integrated KA alone Learning alone 

Soybean Large 88.5±4.4 84.4±3.6 87.8±1.6 

Glass 81.3±7.7 59.0±17.3 79.2±8.0 
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FIGURES 

 
 
FIGURE 1:  Examples of rules in The 
Knowledge Factory. 
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 25  
FIGURE 2:  A selected rule with displayed positive, counter and uncovered examples. 



 26  
FIGURE 3:  Answering a why not  question. 



 
FIGURE 4:  Case based editing: Rules generated by Contract to Exclude Case applied to the first case in 
the Counter Examples Window. 
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FIGURE 5:  Alternative rules that cover the same 43 cases of class primary_hypothyroid. 
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FIGURE 6:  A selection of the 39 alternative most general rules that cover both cases of class 
secondary_hypothyroid. 
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FIGURE 7:  The results window. 
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