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riterion.Keywords: ma
hine learning1 Introdu
tionNaive Bayes [4℄ is a simple and eÆ
ient approa
h to 
lassi�
ation learning thathas 
lear theoreti
al motivation and support. It has been demonstrated to pro-vide 
ompetitive predi
tion error to more 
omplex learning algorithms [8, 11℄,espe
ially when training set sizes are small [17℄.Lazy Bayesian Rules (LBR) [17, 18℄ modi�es naive Bayes, seeking to retainits simpli
ity, eÆ
ien
y, and 
lear theoreti
al foundations, while weakening theattribute independen
e assumption that 
an redu
e naive Bayes' predi
tion a
-
ura
y. LBR has been demonstrated to provide predi
tion a

ura
y 
omparableto boosting de
ision trees [18℄.This paper des
ribes naive Bayes and LBR. It then examines one of the 
om-ponents of LBR, the 
andidate elimination 
riterion by whi
h LBR determineswhether an attribute should be a 
andidate for fa
toring out of the attribute in-dependen
e assumption. Experiments demonstrate that improvements over naiveBayes are 
onsistent so long as the 
andidate elimination 
riterion ensures thereis suÆ
ient data for a

urate probability estimation. The original 
andidate elim-ination 
riterion is demonstrated to be better at determining when to stop thanthe use of a minimum data subset size 
riterion.



2 Naive BayesNaive Bayes is motivated as follows.When 
lassifying an instan
eX = x1; x2; : : : xn,whose 
lass y is unknown, 
lassi�
ation error will be minimized by sele
tingargmaxy(P (y jX)) (1)the 
lass that is most probable given X . A problem arises where P (y jX) is to beestimated from the frequen
ies of X and y in a set of data D = hX1; y1i; hX2; y2i;: : : hXk; yki. In the limit, when the dataset 
ontains the entire domain withrespe
t to whi
h probabilities are to be determined,P (W ) = F (W ) (2)where F (W ) is the frequen
y with whi
h W o

urs in D. As P (W jZ) = P (W ^Z)=P (Z), P (y jX) might be estimated by the approximationP (y jX) � F (y ^X)F (X) : (3)However, in many 
ases X and y ^ X will not o

ur frequently enough in thedata for a

urate estimation of the probabilities from the frequen
ies. In fa
t,unless the set of data is very 
omprehensive, X and y ^X may not o

ur at all.In this 
ontext, Bayes rule P (y jX) = P (y)P (X j y)P (X) (4)may be used to derive alternative probabilities, by estimation of whi
h the targetprobability 
an be estimated. As P(X) is invariant a
ross di�erent values of y,P (y jX) / P (y)P (X j y) (5)and hen
e we need not estimate the denominator. However, this still leaves theproblem of estimating P (X j y) when y ^ X does not o

ur frequently in thedata. By making the 
onditional independen
e assumptionP (x1; x2; : : : xn j y) = nYi=1P (xi j y) (6)P (X j y) 
an be estimated by estimation of ea
h P (xi j y), latter estimates beingmore reliable as ea
h 
onjun
t is likely to o

ur with relatively high frequen
y.Naive Bayes is 
lassi�
ation using (1), estimating P (y jX) by (4) and (6).As (1) minimizes predi
tion error, naive Bayes will minimize predi
tion errorex
ept in so far as the 
onditional independen
e assumption is violated and theestimation from data of probabilities P (y) and P (xi j y) is ina

urate.However, while the 
onditional independen
e assumption makes the estima-tion of P (X j y) feasible, and naive Bayes delivers 
ompetitive 
lassi�
ation per-forman
e for small data sets, the independen
e assumption is likely to be violated



for many real world 
lassi�
ation tasks. Notwithstanding Domingos & Pazzani's[3℄ observation the su
h violations are harmless so long as they do not a�e
tthe relative rank of ea
h estimate of P (y jX), resear
h into semi-naive Bayesianlearning has demonstrated that su
h violations are frequent and that expli
ita
tions to alleviate their e�e
t 
an redu
e error [6, 7, 9{14, 16℄.3 Lazy Bayesian RulesLBR utilizes an alternative to Bayes theorem (4),P (y jZ1 ^ Z2) = P (y jZ2)P (Z1 j y ^ Z2)P (Z1 jZ2) : (7)The derivation of this equality is given in Zheng & Webb [17℄. Given thatP (Z1 jZ2) is invariant a
ross values of y,P (y jZ1 ^ Z2) / P (y jZ2)P (Z1 j y ^ Z2) : (8)Where Z1 is a 
onjun
tion of terms, Z1 = z1^z2^ : : : zm, a 
onditional attributeindpenden
e assumptionP (Z1 j y ^ Z2) � mYi=1P (zi j y ^ Z � 2) (9)
an be used to estimate P (Z1 j y ^ Z2).Like naive Bayes, LBR estimates P (y jX) for ea
h y, sele
ting the y thatmaximizes the estimate. LBR di�ers from naive Bayes by segmenting the 
on-jun
ts of X into two groups, Z1 and Z2, and then using (7) in pla
e of (4) and (9)in pla
e of (6). Like naive Bayes, LBR will minimize 
lassi�
ation error ex
eptin so far as its independe
e assumption is violated and the estimation of therequired probabilities is in
orre
t.A prin
ipal advantage of LBR over naive Bayes is that its independen
eassumption is weaker. Whereas naive Bayes assumes independen
e between all
onjun
ts given the 
lass, LBR assumes independen
e only between the 
onjun
tsin Z1 given both the 
lass and the 
onjun
ts in Z2.The assumption of independen
e between fewer attributes is an advantageas fewer attribute interdependen
ies will be assumed in
orre
tly.The assumption of independen
e under stronger 
onditions is also a majoradvantage. Consider the 
onditions age > 70, senile, and no
turia. Ea
h ofthese three 
onditions will be highly interdependent with the others, as senilityand no
turia are both 
orrelated with age. However, given age > 70, senile andno
turia may be independent, as the interdependen
e of senility and no
turiamay solely result from the respe
tive interdependen
ies with age. That is, whileP (senile^no
turia) 6= P (senile)P (no
turia), P (senile^no
turia j age > 70) =P (senile j age > 70)P (no
turia j age > 70). If this is the 
ase (and 
onditioning



on y does not produ
e independen
e between these attributes),P (y j age > 70 ^ senile ^ no
turia) 6=P (y)P (age > 70 j y)P (senile j y)P (no
turia j y)P (age > 70 ^ senile^ no
turia) (10)so naive Bayes will be ina

urate. However, LBR may be a

urate be
auseP (y j age > 70 ^ senile ^ no
turia) =P (y j age > 70)P (senile j age > 70 ^ y)P (no
turia j age > 70 ^ y)P (senile^ no
turia j age > 70) : (11)If these two advantages were the only 
onsideration, it would be advantageousto fa
tor out all 
onditional interdependen
ies by pla
ing all attributes in Z2.However, pla
ing an attribute in Z2 
arries one disadvantage in addition to itsadvantages. Ea
h 
onditional probability P (Z1 j y^Z2) will be estimated by theapproximation P (zi j y ^ Z2) � F (zi ^ y ^ Z2)=F (y ^ Z2). The more attributesin Z2 the lower the frequen
y in D of both zi ^ y ^ Z2 and y ^ Z2 and hen
ethe lower the expe
ted a

ura
y of the approximation. Hen
e, LBR engages ina pro
ess of seeking to balan
e gains in expe
ted a

ura
y due to fa
toring outharmful attribute interdependen
ies against losses in expe
ted a

ura
y due tode
reased expe
ted a

ura
y of estimation of the required parameters.LBRmanages this trade-o� by performing leave-one-out 
ross-validation on
efor ea
h attribute-value using the 
onditional formula that results from in
ludingthat value in Z2. An attribute-value v is only 
onsidered as a 
andidate if thenumber of examples mis
lassi�ed by in
luding v in Z2 but 
orre
tly 
lassi�edby ex
luding it is signi�
antly lower than the number 
orre
tly 
lassi�ed byin
luding it but mis
lassi�ed by ex
luding it. A mat
hed-pair binomial sign testwith signi�
an
e level 0.05 is used to assess signi�
an
e. The 
andidate with thelowest error is sele
ted and the pro
ess repeated until no 
andidates remain.LBR uses lazy learning. Cal
ulation is performed when an obje
t is to be
lassi�ed. Only the attribute-values of that obje
t are 
onsidered for in
lusionin Z2. The algorithm is presented in Table 1. Note that this algorithm does notexpli
itly maintain Z2. Ea
h Abest found is added to Z2. Z1 is the values of theattributes in Att for Etest. Z2 is the remaining attribute values for Etest. Thee�e
t of fa
toring out Z2 is a
hieved by sele
ting for Dtraining the subset ofinstan
es that satisfy the 
onditions in Z2. When the probability of an attributevalue 
onditional on a 
lass is estimated from a training set, the m-estimate [2℄with m = 2 is used. When the probability of a 
lass is estimated, the Lapla
eestimate [2℄ is used. When applying naive Bayesian 
lassi�
ation, if two or more
lasses obtain equal highest probability estimates, one is sele
ted at random.4 Alternative 
andidate elimination strategiesLBR eliminates from 
onsideration as 
andidates for Abest attribute values thatfail to redu
e error by a statisti
ally signi�
ant amount using leave-one-out 
ross-



Table 1. The Lazy Bayesian Rule learning algorithmLBR(Att ;Dtraining ;Etest)INPUT: Att : a set of attributes,Dtraining : a set of training examples des
ribed using Att and 
lasses,Etest : a test example des
ribed using Att .OUTPUT: a predi
ted 
lass for Etest .Lo
alNB = a naive Bayesian 
lassi�er trained using Att on DtrainingErrors = errors of Lo
alNB estimated using N -CV on DtrainingCond = trueREPEATTempErrorsbest = the number of examples in Dtraining + 1FOR ea
h attribute A in Att whose value vA on Etest is not missing DODsubset = examples in Dtraining with A = vATempNB = a naive Bayesian 
lassi�er trained using Att � fAg on DsubsetTempErrors = errors of TempNB estimated using N -CV on Dsubset +errors from Errors for examples in Dtraining �DsubsetIF ((TempErrors < TempErrorsbest ) AND(TempErrorsTempErrors is signi�
antly lower than ErrorsErrors))THENTempNBbest = TempNBTempErrorsbest = TempErrorsAbest = AIF (an Abest is found)THENCond = Cond ^ (Abest = vAbest )Lo
alNB = TempNBbestDtraining = Dsubset 
orresponding to AbestAtt = Att � fAbestgErrors = errors of Lo
alNB estimated using N -CV on DtrainingELSEEXIT from the REPEAT loop
lassify Etest using Lo
alNBRETURN the 
lassvalidation on the training data. The 
ondition that enfor
es this strategy is setin bold type in Table 1.This approa
h was motivated by the desire to eliminate from 
onsiderationattribute values for whi
h fa
toring out appears to redu
e error only by 
han
e.Inevitably di�erent formulae will result in variability in predi
tion performan
e,and by 
han
e some will perform better than others. By eliminating 
andidatesfor whi
h the di�eren
e in performan
e was not signi�
antly greater than thebaseline performan
e, we redu
e the risk of sele
ting an attribute value thatappears to improve performan
e only by 
han
e. By using leave-one-out 
ross-validation 
lassi�
ation performan
e as the sele
tion 
riterion we aimed to mea-sure the e�e
t of both the improvement brought about by weakening the at-



tribute independen
e assumptions and the de
rease in a

ura
y of estimationbrought about by de
reased data.Our previous experiments indi
ate that this strategy is very e�e
tive at man-aging this trade-o� and results in very strong 
lassi�
ation performan
e [17, 18℄.However, an alternative argument 
an be 
onstru
ted that as the only harm inmoving an attribute-value to Z2 lies in the redu
tion in a

ura
y of estimation ofthe parameters, the 
andidate elimination strategy should be aimed dire
tly at
ombating this problem. In other words, an attribute-value should remain a 
an-didate for in
lusion in Z2 so long as there is suÆ
ient data to reliably estimatethe required parameters.This paper tests this proposal by substituting for the LBR 
andidate elimi-nation test (set in bold type in Table 1) an alternative test that is based solelyon the number of examples in Dtraining that have the relevant value. This ispredi
ated on the assumption that if there are suÆ
ient examples of a givenvalue, estimation of the frequen
y of that value and the probability of ea
h 
lassgiven that value will be suÆ
iently a

urate for a

urate 
lassi�
ation. Threevalues are 
onsidered, 30, 100, and 500. The �rst value, 30, was sele
ted as 30 is
ommonly held to be the minimum sample from whi
h one should draw statis-ti
al inferen
es. The last value, 500, was sele
ted as a suÆ
iently large numberthat a

urate estimation of parameters should be possible. 100 was sele
ted asan intermediate value. This new strategy was implemented by substituting the
ondition jDsubsetj � MinSize for the 
andidate elimination 
ondition set inbold type in Table 1, where MinSize was set respe
tively to 30, 100, and 500.This approa
h will default to naive Bayes when the dataset size is less thanMinSize as all 
andidates will be eliminated.5 ExperimentsFor the �rst experiment, naive Bayes and the four variants of LBR (the original
andidate elimination 
riterion, 
alled hereafter LBR, and 
andidate eliminationusing MinSize set to ea
h of 30, 100, and 500, 
alled hereafter MinSize = 30,MinSize = 100, and MinSize = 500, respe
tively). The 29 datasets from theUCI repository [1℄ were used that have been used in previous LBR experiments[17, 18℄ (a sele
tion based on those used in prior semi-naive Bayesian learningresear
h). These datasets are des
ribed in Table 2. The experimental method of[18℄ was repli
ated, ten repetitions of three-fold 
ross-validation, with di�erentrandom sele
tion of folds during ea
h repetition. Numeri
 attributes were dis-
retized using Fayyad & Irani's [5℄ MDL dis
retization algorithm on the trainingdata for a given fold. Ea
h algorithm was evaluated with the same sequen
e ofthirty training and test set pairs formed in this manner.The average error rates of ea
h algorithm for ea
h data set are presentedin Table 3. Also presented for ea
h algorithm is the mean error a
ross all datasets, the geometri
 mean error ratio 
ompared with naive Bayes, the win/lossre
ord between the algorithm and naive Bayes, and the win/loss re
ord betweenthe algorithm and LBR. The mean error is a very gross measure of performan
e



Table 2. Des
ription of data setsDomain Size No. of No. of AttributesClasses Numeri
 NominalLung 
an
er 32 3 0 56Labor negotiations 57 2 8 8Postoperative patient 90 3 1 7Zoology 101 7 0 16Promoter gene sequen
es 106 2 0 57E
ho
ardiogram 131 2 6 1Lymphography 148 4 0 18Iris 
lassi�
ation 150 3 4 0Hepatitis prognosis 155 2 6 13Wine re
ognition 178 3 13 0Sonar 
lassi�
ation 208 2 60 0Glass identi�
ation 214 6 9 0Audiology 226 24 0 69Heart disease (Cleveland) 303 2 13 0Soybean large 307 19 0 35Primary tumor 339 22 0 17Liver disorders 345 2 6 0Horse 
oli
 368 2 7 15House votes 84 435 2 0 16Credit s
reening (Australia) 690 2 6 9Breast 
an
er (Wis
onsin) 699 2 9 0Pima Indians diabetes 768 2 8 0Annealing pro
esses 898 6 6 32Ti
-Ta
-Toe end game 958 2 0 9LED 24 (noise level = 10%) 1000 10 0 24Solar 
are 1389 2 0 10Hypothyroid diagnosis 3163 2 7 18Spli
e jun
tion gene sequen
es 3177 3 0 60Chess (King-rook-vs-king-pawn) 3196 2 0 36as error rates on di�erent domains are in
ommensurable, but provides an ap-proximate indi
ation of relative performan
e. The geometri
 mean error ratio isthe geometri
 mean of the value for ea
h data set of the error of the algorithmdivided by the error of naive Bayes. The geometri
 mean is more appropriatethan the mean as an aggregate measure of ratio values [15℄. The win/loss re
ordswith respe
t to naive Bayes and LBR list the number of domains for whi
h theerror of the algorithm is lower than the error of, respe
tively, naive Bayes andLBR.The �rst point of interest is that LBR has s
ored slightly fewer wins andslightly more losses with respe
t to naive Bayes than in previous experiments[17, 18℄. However, it is notable that all of LBR's losses to naive Bayes o

ur withsmaller data sets. The largest is 
redit s
reening, 
ontaining 690 examples, andfor whi
h the training set size in three-fold 
ross-validation will be 430. It is also



Table 3. Error rates MinSizeNB LBR 30 100 500Lung 
an
er 0.534 0.544 0.534 0.534 0.534Labor negotiations 0.098 0.098 0.105 0.098 0.098Postoperative patient 0.378 0.386 0.383 0.378 0.378Zoology 0.059 0.059 0.063 0.059 0.059Promoter gene sequen
es 0.109 0.112 0.170 0.109 0.109E
ho
ardiogram 0.296 0.297 0.306 0.296 0.296Lymphography 0.182 0.182 0.196 0.182 0.182Iris 
lassi�
ation 0.066 0.066 0.065 0.066 0.066Hepatitis prognosis 0.144 0.144 0.175 0.144 0.144Wine re
ognition 0.023 0.023 0.030 0.023 0.023Sonar 
lassi�
ation 0.245 0.245 0.240 0.248 0.245Glass identi�
ation 0.238 0.237 0.240 0.246 0.238Audiology 0.277 0.277 0.290 { 0.278Heart disease (Cleveland) 0.171 0.171 0.200 0.177 0.171Soybean large 0.143 0.101 0.149 0.115 0.143Primary tumor 0.534 0.535 0.568 0.551 0.534Liver disorders 0.361 0.363 0.359 0.355 0.361Horse 
oli
 0.208 0.199 0.197 0.192 0.208House votes 84 0.100 0.067 0.086 0.057 0.100Credit s
reening (Australia) 0.146 0.147 0.166 0.154 0.146Breast 
an
er (Wis
onsin) 0.026 0.026 0.041 0.034 0.026Pima Indians diabetes 0.252 0.251 0.267 0.253 0.252Annealing pro
esses 0.030 0.028 0.030 0.026 0.030Ti
-Ta
-Toe end game 0.295 0.185 0.145 0.220 0.295LED 24 (noise level = 10%) 0.261 0.260 0.265 0.263 0.259Solar 
are 0.039 0.015 0.020 0.017 0.031Hypothyroid diagnosis 0.018 0.015 0.020 0.017 0.018Spli
e jun
tion gene sequen
es 0.046 0.044 0.077 0.057 0.043Chess (King-rook-vs-king-pawn) 0.124 0.028 0.021 0.021 0.032Mean 0.185 0.174 0.186 0.178 0.183Geo mean vs NB 0.930 1.081 0.960 0.975W/L vs NB 12/7 8/19 10/9 4/1W/L vs LBR 8/21 10/13 9/11notable that of the seven losses to naive Bayes, only three are by more than0.002, a very small margin. While the win loss re
ord is not signi�
ant at the0.05 level using a one-tailed binomial sign test (p=0.1796), the mean a
ross alldata sets is substantially lower, and, more signi�
antly, the geometri
 mean errorratio strongly favours LBR. It is notable that for the largest data sets LBR is
onsistently winning, halving naive Bayes' error with respe
t to solar 
are andquartering it with respe
t to 
hess.These results suggest that the LBR's 
andidate elimination strategy mightbe suboptimal for small numbers of examples. In other words, it is 
redible thatthe 
andidate elimination strategy does not take adequate a

ount of whether



there is suÆ
ient data for reliable estimation of the required parameters. It wasthis supposition, derived from previous experiments, that motivated the 
urrentstudy.Of the three minimum example settings, it seems 
lear that MinSize = 30provides the worst performan
e. On all metri
s it performs worse than naiveBayes. The geometri
 mean error ratio strongly favours naive Bayes as doesthe win/loss re
ord (signi�
antly at the 0.05 level, one-tailed binomial sign testp=0.0261). The win/loss re
ord against LBR strongly and signi�
antly favoursLBR (p=0.0120).The situation with respe
t toMinSize = 100 is less 
lear 
ut. It wins as oftenas it loses against naive Bayes. The mean, and more signi�
antly, the geometri
mean error ratio, both favour MinSize = 100 over naive Bayes, indi
ating thatthe magnitude of its wins tends to be greater than the magnitude of its losses.The win/loss re
ord with respe
t to LBR favours the latter, but not signi�
antlyso (p=0.3388).The results with respe
t to MinSize = 500 appear mu
h more straight-forward, however. First, it is ne
essary to 
onsider the out
ome for audiology.It might initially appear anomalous that MinSize = 500 a
hieves a di�erentout
ome to naive Bayes for a dataset with fewer than 500 examples. The expla-nation, however, is straightforward. For this dataset there is one 
lassi�
ationduring the ten sets of three-fold 
ross-validation for whi
h naive Bayes s
ores two
lasses as equi-probable and for whi
h the random resolution of this draw sele
teddi�erent 
lasses for naive Bayes and MinSize = 500. In this 
ase the randomout
ome favoured naive Bayes. Of the larger datasets, for whi
hMinSize = 500had the opportunity to move attribute-values to Z2, MinSize = 500 
onsis-tently wins over naive Bayes. Restri
ting the analysis to datasets for whi
hMinSize = 500 modi�es the behaviour of naive Bayes, the win/loss re
ordis 4/0, whi
h approa
hes signi�
an
e at the 0.05 level (p=0.0625).Table 4 presents the average size of Z2 (jZ2j) and the average number ofexamples from whi
h the probabilities are estimated (jDj) for ea
h dataset forLBR and its three variants. It is striking that when there is suÆ
ient data forthe 
onstraint on minimum numbers of examples to be satis�ed, this alterna-tive approa
h tends to add many more values to Z2. Consider, for example,MinSize = 500 on the King-rook-vs-king-pawn data. More than three times thenumber of attribute values are added to Z2 even though there is not a large dif-feren
e in the average number of examples sele
ted by ea
h Z2. This is be
auseMinSize = 500 
an keep sele
ting additional attribute values so long as they
over suÆ
ient 
ases while LBR requires that the sele
tion results in a signi�
antredu
tion in error.Of the six datasets for whi
h MinSize = 500 is able to sele
t attributevalues for Z2, LBR obtains lower error for four and higher for two. However, forthe two for whi
h LBR obtains higher error, the magnitude of the di�eren
e isvery small whereas the magnitude is relatively high for those datasets for whi
hLBR a
hieves lower error. These results suggest that the signi�
an
e test inLBR's 
andidate elimination strategy does 
onfer an advantage. Further support



Table 4. Mean jZ2j and examples available for estimation of parametersLBR MinSize=30 MinSize=100 MinSize=500jZ2j jDj jZ2j jDj jZ2j jDj jZ2j jDjLung 
an
er 0.07 20.7 0.00 21.3 0.00 21.3 0.00 21.3Labor negotiations 0.00 38.0 0.24 36.4 0.00 38.0 0.00 38.0Postoperative patient 0.05 58.9 1.25 40.9 0.00 60.0 0.00 60.0Zoology 0.00 67.3 4.13 35.0 0.00 67.3 0.00 67.3Promoter gene sequen
es 0.01 70.2 0.47 53.5 0.00 70.7 0.00 70.7E
ho
ardiogram 0.02 87.1 1.85 49.7 0.00 88.0 0.00 88.0Lymphography 0.05 97.8 4.31 43.0 0.00 98.7 0.00 98.7Iris 
lassi�
ation 0.00 100.0 0.84 48.9 0.00 100.0 0.00 100.0Hepatitis prognosis 0.02 102.2 4.28 36.4 0.00 103.3 0.00 103.3Wine re
ognition 0.00 118.7 0.74 86.2 0.00 118.7 0.00 118.7Sonar 
lassi�
ation 0.27 126.3 12.39 40.0 5.91 102.4 0.00 138.7Glass identi�
ation 0.12 135.3 3.41 58.1 1.01 118.8 0.00 142.7Audiology 0.18 145.6 43.33 48.5 26.24 103.0 0.00 150.7Heart disease (Cleveland) 0.05 175.5 3.31 47.2 1.66 128.1 0.00 180.0Soybean large 0.99 161.0 13.38 47.6 8.37 109.9 0.00 204.7Primary tumor 0.10 221.3 3.30 136.8 2.51 161.9 0.00 226.0Liver disorders 0.28 217.5 4.60 61.3 2.97 138.8 0.00 230.0Horse 
oli
 0.47 192.4 3.59 54.1 2.01 130.5 0.00 245.3House votes 84 0.67 188.5 5.44 54.8 2.43 115.7 0.00 290.0Credit s
reening (Australia) 0.20 425.2 4.51 84.9 3.06 160.6 0.00 460.0Breast 
an
er (Wis
onsin) 0.00 466.0 2.38 150.6 1.82 269.9 0.00 466.0Pima Indians diabetes 0.23 455.3 2.83 100.0 1.76 187.2 0.00 512.0Annealing pro
esses 0.09 570.0 5.05 121.4 4.76 208.1 2.52 545.0Ti
-Ta
-Toe end game 1.65 165.1 2.86 45.3 1.85 121.0 0.00 638.7LED 24 (noise level = 10%) 0.50 571.1 5.11 129.8 3.54 197.8 0.50 603.9Solar 
are 0.80 534.6 4.71 235.1 4.35 267.4 3.01 695.0Hypothyroid diagnosis 0.28 1923.7 14.92 532.5 14.61 616.7 14.04 832.6Spli
e jun
tion gene sequen
es 0.39 1686.8 1.98 413.3 1.75 448.4 1.14 878.1Chess (King-rook-vs-king-pawn) 3.67 572.5 15.62 136.2 15.30 169.2 11.28 551.7for this 
on
lusion is provided by a se
ond study that 
ompared naive Bayes,LBR, and MinSize = 500 in �ve larger datasets: phoneme (5438 examples),mush (8124), pendigits (10992), adult (48842), and shuttle (58000). As ten runsof three-fold 
ross-validation was infeasible for su
h large data sets, leave-one-out 
ross-validation was performed for 1000 randomly sele
ted examples fromea
h data set. For ea
h of these examples, ea
h algorithm was presented all theremaining examples in the dataset as a training set and the withheld examplewas then 
lassi�ed. The resulting error rates are presented in Table 5. As 
an beseen, both LBR and MinSize = 500 
onsistently a
hieve lower error than naiveBayes for these larger datasets. The win loss re
ords of 5/0 are in both 
asesstatisti
ally signi�
ant at the 0.05 level using a one-tailed sign test (p=0.0313).While MinSize = 500 obtains marginally lower error than LBR on one dataset,LBR obtains substantially lower error on one and slightly lower on two.



Table 5. Error for large datasetsDataset NB LBR MinSize=500phoneme 0.265 0.215 0.244mush 0.014 0.000 0.000pendigits 0.123 0.028 0.025adult 0.163 0.132 0.137shuttle 0.002 0.000 0.0016 Con
lusionsThis paper makes two 
ontributions to the literature on lazy Bayesian rules.First, it presents empiri
al results on mu
h larger datasets than previously ex-plored, providing statisti
ally signi�
ant support for the hypothesis previouslyadvan
ed [17℄ that LBR provides 
onsistent advantage over naive Bayes for largedatasets.The primary motivation for the paper, however, was to investigate alter-natives to the 
andidate elimination 
riteria employed in LBR, exploring thehypothesis that it will never be harmful to sele
t 
andidate attribute values forin
lusion in Z2 that retain suÆ
ient examples for reliable estimation of the re-quired parameters. While some support for this hypothesis was obtained by the
onsistent 
apa
ity of MinSize = 500 to redu
e error relative to naive Bayes,the error redu
tion 
apa
ity of LBR remains higher. This suggests that the sig-ni�
an
e test serves a useful fun
tion in impli
itly assessing the relative gainsfrom fa
toring out a harmful attribute interdependen
e against the losses fromredu
ing the amount of data from whi
h parameters are estimated.Nonetheless, the MinSize = 500 strategy may o�er 
omputational advan-tages in some appli
ations. This is be
ause the overheads of assessing how manytraining 
ases are sele
ted by a 
andidate attribute value are very low in 
ompar-ison to the 
omputational overheads asso
iated with performing a mat
hed-pairbinomial sign test. For the extremely large datasets employed in some onlinedatamining appli
ations these 
omputational 
onsiderations may outweigh theerror redu
tion 
apa
ity of the signi�
an
e test strategy.A
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