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Abstract. Lazy Bayesian Rules modifies naive Bayesian classification
to undo elements of the harmful attribute independence assumption. It
has been shown to provide classification error comparable to boosting
decision trees. This paper explores alternatives to the candidate elim-
ination criterion employed within Lazy Bayesian Rules. Improvements
over naive Bayes are consistent so long as the candidate elimination cri-
teria ensures there is sufficient data for accurate probability estimation.
However, the original candidate elimination criterion is demonstrated to
provide better overall error reduction than the use of a minimum data
subset size criterion.
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1 Introduction

Naive Bayes [4] is a simple and efficient approach to classification learning that
has clear theoretical motivation and support. It has been demonstrated to pro-
vide competitive prediction error to more complex learning algorithms [8,11],
especially when training set sizes are small [17].

Lazy Bayesian Rules (LBR) [17, 18] modifies naive Bayes, seeking to retain
its simplicity, efficiency, and clear theoretical foundations, while weakening the
attribute independence assumption that can reduce naive Bayes’ prediction ac-
curacy. LBR has been demonstrated to provide prediction accuracy comparable
to boosting decision trees [18].

This paper describes naive Bayes and LBR. It then examines one of the com-
ponents of LBR, the candidate elimination criterion by which LBR determines
whether an attribute should be a candidate for factoring out of the attribute in-
dependence assumption. Experiments demonstrate that improvements over naive
Bayes are consistent so long as the candidate elimination criterion ensures there
is sufficient data for accurate probability estimation. The original candidate elim-
ination criterion is demonstrated to be better at determining when to stop than
the use of a minimum data subset size criterion.



2 Naive Bayes

Naive Bayes is motivated as follows. When classifying an instance X = x1, 2, ...,
whose class y is unknown, classification error will be minimized by selecting

argmazy(P(y | X)) (1)

the class that is most probable given X. A problem arises where P(y | X) is to be
estimated from the frequencies of X and y in a set of data D = (X1, y1), (Xa, y2),
... {(Xg,yr). In the limit, when the dataset contains the entire domain with
respect to which probabilities are to be determined,

P(W) = F(W) (2)

where F(W) is the frequency with which W occurs in D. As P(W | Z) = P(W A
Z)/P(Z), P(y|X) might be estimated by the approximation
FlynX)
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However, in many cases X and y A X will not occur frequently enough in the
data for accurate estimation of the probabilities from the frequencies. In fact,
unless the set of data is very comprehensive, X and y A X may not occur at all.
In this context, Bayes rule

Py)P(X |y)

P(y|X) = =5 @)

may be used to derive alternative probabilities, by estimation of which the target
probability can be estimated. As P(X) is invariant across different values of y,

P(y|X) o< P(y)P(X | y) (5)

and hence we need not estimate the denominator. However, this still leaves the
problem of estimating P(X |y) when y A X does not occur frequently in the
data. By making the conditional independence assumption

n

P(a1, 23,2 |y) = [] Pla:|y) (6)

i=1

P(X |y) can be estimated by estimation of each P(z; |y), latter estimates being
more reliable as each conjunct is likely to occur with relatively high frequency.
Nuaive Bayes is classification using (1), estimating P(y | X) by (4) and (6).
As (1) minimizes prediction error, naive Bayes will minimize prediction error
except in so far as the conditional independence assumption is violated and the
estimation from data of probabilities P(y) and P(z;|y) is inaccurate.
However, while the conditional independence assumption makes the estima-
tion of P(X |y) feasible, and naive Bayes delivers competitive classification per-
formance for small data sets, the independence assumption is likely to be violated



for many real world classification tasks. Notwithstanding Domingos & Pazzani’s
[3] observation the such violations are harmless so long as they do not affect
the relative rank of each estimate of P(y| X), research into semi-naive Bayesian
learning has demonstrated that such violations are frequent and that explicit
actions to alleviate their effect can reduce error [6,7,9-14,16].

3 Lazy Bayesian Rules

LBR utilizes an alternative to Bayes theorem (4),

P(y|Z2)P(Z1 |y N\ Z>)
Py %) @)

P(y|ZiNZy) =

The derivation of this equality is given in Zheng & Webb [17]. Given that
P(Z, | Z,) is invariant across values of y,

P(y|Zi N Zy) < P(y| Z2)P(Z1 |y A Z2) . (8)

Where Z; is a conjunction of terms, Z1 = z1 Aza A. ..z, a conditional attribute
indpendence assumption

P(Zy |y Zs) = [[ P(zily A Z - 2) (9)

i=1

can be used to estimate P(Z; |y A Z3).

Like naive Bayes, LBR estimates P(y|X) for each y, selecting the y that
maximizes the estimate. LBR differs from naive Bayes by segmenting the con-
juncts of X into two groups, Z; and Z», and then using (7) in place of (4) and (9)
in place of (6). Like naive Bayes, LBR will minimize classification error except
in so far as its independece assumption is violated and the estimation of the
required probabilities is incorrect.

A principal advantage of LBR over naive Bayes is that its independence
assumption is weaker. Whereas naive Bayes assumes independence between all
conjuncts given the class, LBR assumes independence only between the conjuncts
in Z; given both the class and the conjuncts in Zs.

The assumption of independence between fewer attributes is an advantage
as fewer attribute interdependencies will be assumed incorrectly.

The assumption of independence under stronger conditions is also a major
advantage. Consider the conditions age > 70, senile, and nocturia. Each of
these three conditions will be highly interdependent with the others, as senility
and nocturia are both correlated with age. However, given age > 70, senile and
nocturia may be independent, as the interdependence of senility and nocturia
may solely result from the respective interdependencies with age. That is, while
P(senile Anocturia) # P(senile) P(nocturia), P(senile Anocturia|age > 70) =
P(senile | age > 70) P(nocturia | age > 70). If this is the case (and conditioning



on y does not produce independence between these attributes),

P(y|age > 70 A senile A nocturia) #
P(y)P(age > 70| y) P(senile | y) P(nocturia| y)
P(age > 70 A senile A nocturia)

(10)

so naive Bayes will be inaccurate. However, LBR may be accurate because

P(y|age > 70 A senile A nocturia) =
P(y|age > 70)P(senile|age > 70 A y)P(nocturia | age > 70 A y)
P(senile A nocturia | age > 70) '

(11)

If these two advantages were the only consideration, it would be advantageous
to factor out all conditional interdependencies by placing all attributes in Zs.
However, placing an attribute in Z carries one disadvantage in addition to its
advantages. Each conditional probability P(Z; |y A Z2) will be estimated by the
approximation P(z; |y A Z2) & F(z; Ay A Z2)/F(y A Z3). The more attributes
in Zy the lower the frequency in D of both z; Ay A Zs and y A Z> and hence
the lower the expected accuracy of the approximation. Hence, LBR engages in
a process of seeking to balance gains in expected accuracy due to factoring out
harmful attribute interdependencies against losses in expected accuracy due to
decreased expected accuracy of estimation of the required parameters.

LBR manages this trade-off by performing leave-one-out cross-validation once
for each attribute-value using the conditional formula that results from including
that value in Z5. An attribute-value v is only considered as a candidate if the
number of examples misclassified by including v in Zy but correctly classified
by excluding it is significantly lower than the number correctly classified by
including it but misclassified by excluding it. A matched-pair binomial sign test
with significance level 0.05 is used to assess significance. The candidate with the
lowest error is selected and the process repeated until no candidates remain.

LBR uses lazy learning. Calculation is performed when an object is to be
classified. Only the attribute-values of that object are considered for inclusion
in Z5. The algorithm is presented in Table 1. Note that this algorithm does not
explicitly maintain Z5. Each Apeq found is added to Z5. Z; is the values of the
attributes in Att for Fyes. Zo is the remaining attribute values for Ejeg. The
effect of factoring out Z, is achieved by selecting for Dipqining the subset of
instances that satisfy the conditions in Z;. When the probability of an attribute
value conditional on a class is estimated from a training set, the m-estimate [2]
with m = 2 is used. When the probability of a class is estimated, the Laplace
estimate [2] is used. When applying naive Bayesian classification, if two or more
classes obtain equal highest probability estimates, one is selected at random.

4 Alternative candidate elimination strategies

LBR eliminates from consideration as candidates for A.,; attribute values that
fail to reduce error by a statistically significant amount using leave-one-out cross-



Table 1. The Lazy Bayesian Rule learning algorithm

LBR(Atty Dtraining 3 Etest)

INPUT: Att: a set of attributes,
Diraining: a set of training examples described using A#t and classes,

Eiesi: a test example described using Att.
QUTPUT: a predicted class for Ei.s:.

LocalNB = a naive Bayesian classifier trained using A#t on Diraining
Errors = errors of LocalNB estimated using N-CV on Diraining
Cond = true

REPEAT
TempErrorspess = the number of examples in Dirining + 1

FOR each attribute A in A#t whose value va on E..: is not missing DO
Dyypser = examples in Dirgining With A = v4
TempNB = a naive Bayesian classifier trained using Att — {A} on Dsypset
TempErrors = errors of TempNB estimated using N-CV on Dgypser +
errors from Errors for examples in Diraining — Dsubset
IF ((TempErrors < TempErrorspes:) AND
(TempErrors is significantly lower than Errors))

THEN
TempNBpes: = TempNB

TempErrorspest = TempErrors
Abest =A
IF (an Apes is found)

THEN
Cond = Cond N (Apest = va,,,)

LocalNB = TempNBpest
Diraining = Dsupset corresponding to Apes:
Att = Att — {Apest}
Errors = errors of LocalNB estimated using N-CV on Diraining
ELSE
EXIT from the REPEAT loop
classify Eicst using LocalNB
RETURN the class

validation on the training data. The condition that enforces this strategy is set
in bold type in Table 1.

This approach was motivated by the desire to eliminate from consideration
attribute values for which factoring out appears to reduce error only by chance.
Inevitably different formulae will result in variability in prediction performance,
and by chance some will perform better than others. By eliminating candidates
for which the difference in performance was not significantly greater than the
baseline performance, we reduce the risk of selecting an attribute value that
appears to improve performance only by chance. By using leave-one-out cross-
validation classification performance as the selection criterion we aimed to mea-
sure the effect of both the improvement brought about by weakening the at-



tribute independence assumptions and the decrease in accuracy of estimation
brought about by decreased data.

Our previous experiments indicate that this strategy is very effective at man-
aging this trade-off and results in very strong classification performance [17, 18].
However, an alternative argument can be constructed that as the only harm in
moving an attribute-value to Zs lies in the reduction in accuracy of estimation of
the parameters, the candidate elimination strategy should be aimed directly at
combating this problem. In other words, an attribute-value should remain a can-
didate for inclusion in Z3 so long as there is sufficient data to reliably estimate
the required parameters.

This paper tests this proposal by substituting for the LBR candidate elimi-
nation test (set in bold type in Table 1) an alternative test that is based solely
on the number of examples in Dyyqining that have the relevant value. This is
predicated on the assumption that if there are sufficient examples of a given
value, estimation of the frequency of that value and the probability of each class
given that value will be sufficiently accurate for accurate classification. Three
values are considered, 30, 100, and 500. The first value, 30, was selected as 30 is
commonly held to be the minimum sample from which one should draw statis-
tical inferences. The last value, 500, was selected as a sufficiently large number
that accurate estimation of parameters should be possible. 100 was selected as
an intermediate value. This new strategy was implemented by substituting the
condition |Dgypset| > MinSize for the candidate elimination condition set in
bold type in Table 1, where MinSize was set respectively to 30, 100, and 500.
This approach will default to naive Bayes when the dataset size is less than
MinSize as all candidates will be eliminated.

5 Experiments

For the first experiment, naive Bayes and the four variants of LBR, (the original
candidate elimination criterion, called hereafter LBR, and candidate elimination
using MinSize set to each of 30, 100, and 500, called hereafter MinSize = 30,
MinSize = 100, and MinSize = 500, respectively). The 29 datasets from the
UCI repository [1] were used that have been used in previous LBR experiments
[17,18] (a selection based on those used in prior semi-naive Bayesian learning
research). These datasets are described in Table 2. The experimental method of
[18] was replicated, ten repetitions of three-fold cross-validation, with different
random selection of folds during each repetition. Numeric attributes were dis-
cretized using Fayyad & Irani’s [5] MDL discretization algorithm on the training
data for a given fold. Each algorithm was evaluated with the same sequence of
thirty training and test set pairs formed in this manner.

The average error rates of each algorithm for each data set are presented
in Table 3. Also presented for each algorithm is the mean error across all data
sets, the geometric mean error ratio compared with naive Bayes, the win/loss
record between the algorithm and naive Bayes, and the win/loss record between
the algorithm and LBR. The mean error is a very gross measure of performance



Table 2. Description of data sets

Domain Size No. of No. of Attributes

Classes Numeric Nominal
Lung cancer 32 3 0 56
Labor negotiations 57 2 8 8
Postoperative patient 90 3 1 7
Zoology 101 7 0 16
Promoter gene sequences 106 2 0 57
Echocardiogram 131 2 6 1
Lymphography 148 4 0 18
Iris classification 150 3 4 0
Hepatitis prognosis 155 2 6 13
Wine recognition 178 3 13 0
Sonar classification 208 2 60 0
Glass identification 214 6 9 0
Audiology 226 24 0 69
Heart disease (Cleveland) 303 2 13 0
Soybean large 307 19 0 35
Primary tumor 339 22 0 17
Liver disorders 345 2 6 0
Horse colic 368 2 7 15
House votes 84 435 2 0 16
Credit screening (Australia) 690 2 6 9
Breast cancer (Wisconsin) 699 2 9 0
Pima Indians diabetes 768 2 8 0
Annealing processes 898 6 6 32
Tic-Tac-Toe end game 958 2 0 9
LED 24 (noise level = 10%) 1000 10 0 24
Solar flare 1389 2 0 10
Hypothyroid diagnosis 3163 2 7 18
Splice junction gene sequences 3177 3 0 60
Chess (King-rook-vs-king-pawn) 3196 2 0 36

as error rates on different domains are incommensurable, but provides an ap-
proximate indication of relative performance. The geometric mean error ratio is
the geometric mean of the value for each data set of the error of the algorithm
divided by the error of naive Bayes. The geometric mean is more appropriate
than the mean as an aggregate measure of ratio values [15]. The win/loss records
with respect to naive Bayes and LBR list the number of domains for which the
error of the algorithm is lower than the error of, respectively, naive Bayes and
LBR.

The first point of interest is that LBR has scored slightly fewer wins and
slightly more losses with respect to naive Bayes than in previous experiments
[17,18]. However, it is notable that all of LBR’s losses to naive Bayes occur with
smaller data sets. The largest is credit screening, containing 690 examples, and
for which the training set size in three-fold cross-validation will be 430. It is also



Table 3. Error rates

MinSize

NB LBR 30 100 500
Lung cancer 0.534 0.544 0.534 0.534 0.534
Labor negotiations 0.098 0.098 0.105 0.098 0.098
Postoperative patient 0.378 0.386 0.383 0.378 0.378
Zoology 0.059 0.059 0.063 0.059 0.059
Promoter gene sequences 0.109 0.112 0.170 0.109 0.109
Echocardiogram 0.296 0.297 0.306 0.296 0.296
Lymphography 0.182 0.182 0.196 0.182 0.182
Iris classification 0.066 0.066 0.065 0.066 0.066
Hepatitis prognosis 0.144 0.144 0.175 0.144 0.144
Wine recognition 0.023 0.023 0.030 0.023 0.023
Sonar classification 0.245 0.245 0.240 0.248 0.245
Glass identification 0.238 0.237 0.240 0.246 0.238
Audiology 0.277 0.277 0.290 - 0.278
Heart disease (Cleveland) 0.171 0.171 0.200 0.177 0.171
Soybean large 0.143 0.101 0.149 0.115 0.143
Primary tumor 0.534 0.535 0.568 0.551 0.534
Liver disorders 0.361 0.363 0.359 0.355 0.361
Horse colic 0.208 0.199 0.197 0.192 0.208
House votes 84 0.100 0.067 0.086 0.057 0.100
Credit screening (Australia) 0.146 0.147 0.166 0.154 0.146
Breast cancer (Wisconsin) 0.026 0.026 0.041 0.034 0.026
Pima Indians diabetes 0.252 0.251 0.267 0.253 0.252
Annealing processes 0.030 0.028 0.030 0.026 0.030
Tic-Tac-Toe end game 0.295 0.185 0.145 0.220 0.295
LED 24 (noise level = 10%) 0.261 0.260 0.265 0.263 0.259
Solar flare 0.039 0.015 0.020 0.017 0.031
Hypothyroid diagnosis 0.018 0.015 0.020 0.017 0.018

Splice junction gene sequences  0.046 0.044 0.077 0.057 0.043
Chess (King-rook-vs-king-pawn) 0.124 0.028 0.021 0.021 0.032

Mean 0.185 0.174 0.186 0.178 0.183
Geo mean vs NB 0.930 1.081 0.960 0.975
W/L vs NB 12/7 8/19 10/9 4/1
W/L vs LBR 8/21 10/13 9/11

notable that of the seven losses to naive Bayes, only three are by more than
0.002, a very small margin. While the win loss record is not significant at the
0.05 level using a one-tailed binomial sign test (p=0.1796), the mean across all
data sets is substantially lower, and, more significantly, the geometric mean error
ratio strongly favours LBR. It is notable that for the largest data sets LBR is
consistently winning, halving naive Bayes’ error with respect to solar flare and
quartering it with respect to chess.

These results suggest that the LBR’s candidate elimination strategy might
be suboptimal for small numbers of examples. In other words, it is credible that
the candidate elimination strategy does not take adequate account of whether



there is sufficient data for reliable estimation of the required parameters. It was
this supposition, derived from previous experiments, that motivated the current
study.

Of the three minimum example settings, it seems clear that MinSize = 30
provides the worst performance. On all metrics it performs worse than naive
Bayes. The geometric mean error ratio strongly favours naive Bayes as does
the win/loss record (significantly at the 0.05 level, one-tailed binomial sign test
p=0.0261). The win/loss record against LBR strongly and significantly favours
LBR (p=0.0120).

The situation with respect to MinSize = 100 is less clear cut. It wins as often
as it loses against naive Bayes. The mean, and more significantly, the geometric
mean error ratio, both favour MinSize = 100 over naive Bayes, indicating that
the magnitude of its wins tends to be greater than the magnitude of its losses.
The win/loss record with respect to LBR favours the latter, but not significantly
so (p=0.3388).

The results with respect to MinSize = 500 appear much more straight-
forward, however. First, it is necessary to consider the outcome for audiology.
It might initially appear anomalous that MinSize = 500 achieves a different
outcome to naive Bayes for a dataset with fewer than 500 examples. The expla-
nation, however, is straightforward. For this dataset there is one classification
during the ten sets of three-fold cross-validation for which naive Bayes scores two
classes as equi-probable and for which the random resolution of this draw selected
different classes for naive Bayes and MinSize = 500. In this case the random
outcome favoured naive Bayes. Of the larger datasets, for which MinSize = 500
had the opportunity to move attribute-values to Zs, MinSize = 500 consis-
tently wins over naive Bayes. Restricting the analysis to datasets for which
MinSize = 500 modifies the behaviour of naive Bayes, the win/loss record
is 4/0, which approaches significance at the 0.05 level (p=0.0625).

Table 4 presents the average size of Zy (]Z2]) and the average number of
examples from which the probabilities are estimated (|D|) for each dataset for
LBR and its three variants. It is striking that when there is sufficient data for
the constraint on minimum numbers of examples to be satisfied, this alterna-
tive approach tends to add many more values to Z,. Consider, for example,
MinSize = 500 on the King-rook-vs-king-pawn data. More than three times the
number of attribute values are added to Z5 even though there is not a large dif-
ference in the average number of examples selected by each Z,. This is because
MinSize = 500 can keep selecting additional attribute values so long as they
cover sufficient cases while LBR requires that the selection results in a significant
reduction in error.

Of the six datasets for which MinSize = 500 is able to select attribute
values for Z5, LBR obtains lower error for four and higher for two. However, for
the two for which LBR obtains higher error, the magnitude of the difference is
very small whereas the magnitude is relatively high for those datasets for which
LBR achieves lower error. These results suggest that the significance test in
LBR’s candidate elimination strategy does confer an advantage. Further support



Table 4. Mean |Z>| and examples available for estimation of parameters

LBR MinSize=30 MinSize=100 MinSize=500
\Z2| D] |Z.| |D| |Z,| |D| |Z5| D]

Lung cancer 0.07 20.7 0.00 21.3 0.00 21.3 0.00 21.3
Labor negotiations 0.00 38.0 0.24 364 0.00 38.0 0.00 38.0
Postoperative patient 0.05 589 1.25 409 0.00 60.0 0.00 60.0
Zoology 0.00 67.3 4.13 350 0.00 673 0.00 67.3
Promoter gene sequences 0.01 70.2 047 535 0.00 70.7 0.00 70.7
Echocardiogram 0.02 87.1 1.85 49.7 0.00 88.0 0.00 88.0
Lymphography 0.05 97.8 431 43.0 0.00 987 0.00 98.7
Iris classification 0.00 100.0 0.84 48.9 0.00 100.0 0.00 100.0
Hepatitis prognosis 0.02 1022 4.28 364 0.00 103.3 0.00 103.3
Wine recognition 0.00 1187 0.74 86.2 0.00 1187 0.00 118.7
Sonar classification 0.27 126.3 12.39 40.0 5.91 1024 0.00 138.7
Glass identification 0.12 135.3 3.41 58.1 1.01 1188 0.00 142.7
Audiology 0.18 145.6 43.33 48.5 26.24 103.0 0.00 150.7
Heart disease (Cleveland) 0.05 1755 3.31 472 166 1281 0.00 180.0
Soybean large 0.99 161.0 13.38 47.6 8.37 109.9 0.00 204.7
Primary tumor 0.10 221.3 3.30 136.8 2.51 161.9 0.00 226.0
Liver disorders 0.28 217.5 4.60 61.3 297 1388 0.00 230.0
Horse colic 0.47 1924 3.59 54.1 2.01 130.5 0.00 245.3
House votes 84 0.67 188.5 5.44 54.8 2.43 115.7 0.00 290.0
Credit screening (Australia) 0.20 4252 4.51 84.9 3.06 160.6 0.00 460.0
Breast cancer (Wisconsin) 0.00 466.0 2.38 150.6 1.82 269.9 0.00 466.0
Pima Indians diabetes 0.23 455.3 2.83 100.0 1.76 187.2 0.00 512.0
Annealing processes 0.09 570.0 5.05121.4 4.76 208.1 2.52 545.0
Tic-Tac-Toe end game 1.65 165.1 2.86 453 1.85 121.0 0.00 638.7
LED 24 (noise level = 10%) 0.50 571.1 5.11 129.8 3.54 197.8 0.50 603.9
Solar flare 0.80 534.6 4.71 235.1 435 2674 3.01 695.0
Hypothyroid diagnosis 0.28 1923.7 14.92 532.5 14.61 616.7 14.04 832.6

Splice junction gene sequences  0.39 1686.8 1.98 413.3 1.75 4484 1.14 878.1
Chess (King-rook-vs-king-pawn) 3.67 572.5 15.62 136.2 15.30 169.2 11.28 551.7

for this conclusion is provided by a second study that compared naive Bayes,
LBR, and MinSize = 500 in five larger datasets: phoneme (5438 examples),
mush (8124), pendigits (10992), adult (48842), and shuttle (58000). As ten runs
of three-fold cross-validation was infeasible for such large data sets, leave-one-
out cross-validation was performed for 1000 randomly selected examples from
each data set. For each of these examples, each algorithm was presented all the
remaining examples in the dataset as a training set and the withheld example
was then classified. The resulting error rates are presented in Table 5. As can be
seen, both LBR and MinSize = 500 consistently achieve lower error than naive
Bayes for these larger datasets. The win loss records of 5/0 are in both cases
statistically significant at the 0.05 level using a one-tailed sign test (p=0.0313).
While MinSize = 500 obtains marginally lower error than LBR on one dataset,
LBR obtains substantially lower error on one and slightly lower on two.



Table 5. Error for large datasets

Dataset NB LBR MinSize=500

phoneme  0.265 0.215 0.244
mush 0.014 0.000 0.000
pendigits  0.123  0.028 0.025
adult 0.163 0.132 0.137
shuttle 0.002 0.000 0.001

6 Conclusions

This paper makes two contributions to the literature on lazy Bayesian rules.
First, it presents empirical results on much larger datasets than previously ex-
plored, providing statistically significant support for the hypothesis previously
advanced [17] that LBR provides consistent advantage over naive Bayes for large
datasets.

The primary motivation for the paper, however, was to investigate alter-
natives to the candidate elimination criteria employed in LBR, exploring the
hypothesis that it will never be harmful to select candidate attribute values for
inclusion in Z, that retain sufficient examples for reliable estimation of the re-
quired parameters. While some support for this hypothesis was obtained by the
consistent capacity of MinSize = 500 to reduce error relative to naive Bayes,
the error reduction capacity of LBR remains higher. This suggests that the sig-
nificance test serves a useful function in implicitly assessing the relative gains
from factoring out a harmful attribute interdependence against the losses from
reducing the amount of data from which parameters are estimated.

Nonetheless, the MinSize = 500 strategy may offer computational advan-
tages in some applications. This is because the overheads of assessing how many
training cases are selected by a candidate attribute value are very low in compar-
ison to the computational overheads associated with performing a matched-pair
binomial sign test. For the extremely large datasets employed in some online
datamining applications these computational considerations may outweigh the
error reduction capacity of the significance test strategy.
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