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Abstract. The naive Bayes classifier is widely used in interactive appli-
cations due to its computational efficiency, direct theoretical base, and
competitive accuracy. However, its attribute independence assumption
can result in sub-optimal accuracy. A number of techniques have explored
simple relaxations of the attribute independence assumption in order to
increase accuracy. TAN is a state-of-the-art extension of naive Bayes,
that can express limited forms of inter-dependence among attributes.
Rough sets theory provides tools for expressing inexact or partial depen-
dencies within dataset. In this paper, we present a variant of TAN using
rough sets theory and compare their tree classifier structures, which can
be thought of as a selective restricted trees Bayesian classifier. It delivers
lower error than both pre-existing T'AN-based classifiers, with substan-
tially less computation than is required by the Super Parent approach.
Keywords: Naive Bayes, Bayesian Network, Machine Learning,

1 Introduction

A classification task in data mining is to build a classifier which can assign a
suitable class label to an unlabelled instance described by a set of attributes.
Many approaches and techniques have been developed to create a classification
model. The naive Bayesian classifier is one of the most widely used in interactive
applications due to its computational efficiency, competitive accuracy, direct the-
oretical base, and its ability to integrate the prior information with data sample
information [1,7,3,5,18,15,14]. It is based on Bayes’ theorem and an assump-
tion that all attributes are mutually independent within each class. Assume X is
a finite set of instances, and A = {A;, Ag,---, A, } is a finite set of n attributes.
An instance x € X is described by a vector < ai,as,---,a, >, where a; is a
value of attribute A;. C' is called the class attribute. Prediction accuracy will be
maximized if the predicted class

L(z) = argmaz.(P(c |< a1, a2, -, an >). (1)

Unfortunately, unless the vector occurs many times within X, it will not be pos-
sible to directly estimate P(c |< a1, az, -, a, >) from the frequency with which
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each class ¢ € C co-occurs with < aq,as,- -+, a, > within the training instances.
Bayes’ theorem provides an equality that might be used to help estimate the
posterior probability P(¢; | ) in such a circumstance:

Pe; |z) =a-P(c) - P(< ar,ag, -, a, >| ¢) (2)

where P(c¢;) is the prior probability of class ¢; € C, P(< aj,a2, -+, a, >| ¢;) is
the conditional probability of € T given the class ¢;, and « is a normalization
factor. According to the chain rule, equation 2 can be written as:

P(ci|z) =a- P(c) - Hp(ak | ar, a2, -, ax—1,¢) (3)
=1

Therefore, an approach to Bayesian estimation is to seek to estimate each P(ay |
a1,02," ", akflaci)

If the n attributes are mutually independent within each class value, then
the conditional probability can be calculated in the following way:

P(<a17a27"'7an >|CZ):HP(CL]€|CZ) (4)
k=1

Classification selecting the most probable class as estimated using formulae 2
and 4 is the well-known naive Bayesian classifier.

2 Approaches of Improving Naive Bayesian Method

In real world problems, the performance of a naive Bayesian classifier is domi-
nated by two explicit assumptions: the attribute independence assumption and
the probability estimation assumption. Of numerous proposals to improve the
accuracy of naive Bayesian classifiers by weakening its attribute independence as-
sumption, both Tree Augmented Naive Bayes(T'AN) [4, 3, 5] and Lazy Bayesian
Rules(LBR) [18] have demonstrated remarkable error performance [14]. Fried-
man, Geiger and Goldszmidt presented a compromise representation, called tree-
augmented naive Bayes (T'AN, simply called the basic TAN), in which the class
node directly points to all attributes’ nodes and an attribute node can have
only at most one additional parent to the class node. Keogh & Pazzani took a
different approach to constructing tree-augmented Bayesian networks [5](simply
called SuperParent or SP). The two methods mainly differ in two aspects. One
is the criterion of attribute selection used to select dependence relations among
the attributes while building a tree-augmented Bayesian network. Another is
the structure of the classifiers. The first one always tends to construct a tree
including all attributes, the second one always tends to construct a tree with
fewer dependence relations among attributes and better classification accuracy.
Zheng and Webb proposed a lazy Bayesian rule (LBR) learning technique [18].
LBR can be thought of as applying lazy learning techniques to naive Bayesian



rule induction. Both LBR and TAN can be viewed as variants of naive Bayes
that relax the attribute independence assumption [14].

In this paper, however, we concentrate on the eager strategy, which holds a
computational advantage when a single model can be applied to classify many
instances. First of all, we mainly analyze the implementations of two different
TAN classifiers and their tree classifier structures, and experimentally show
how different dependence relations impact on the accuracy of TAN classifiers.
Second, based on the definition of dependence in the basic rough set theory, we
propose a definition of dependence measurement given the class variable, and
use it to build a new dependence relation matrix. We believe that the directions
of dependence relations are very important for performance of a classifier. Using
this kind of definition, we can actually gain a directed-graph description. Third,
we present a new algorithm for building selective augmented Bayesian network
classifiers, which reduce error relative to the TAN classifiers, and has similar
computational overheads. Experimental results also show that can deliver some
improvements on performance, while requiring substantially less computation.

3 Some Issues in the Implementations

Now, we discuss some extended issues in the implementations of the TAN classi-
fiers. First of all, the problem is related to the probability estimation assumption.
In the basic TAN, for each attribute we assess the conditional probability given
the class variable and another attribute. This means that the number of in-
stances used to estimate the conditional probability is reduced as it is estimated
from the instances that share three specific values (the class value, the parent
value and the child value). Thus it is not surprising to encounter unreliable esti-
mates, especially in small datasets. Friedman, Geiger and Goldszmidt dealt with
this problem by introducing a smoothing operation [3]. There is a problem with
this strategy when attribute value a does not occur in the training data (this
situation can occur during cross validation testing), the value of the estimate
will be zero. In our implementation, we use both these smoothing adjustments
to estimate any conditional probability with |7 (a)| = 2, i.e.,

]3(@ | 7(a)) = counts(a,m(a)) + N© - %ﬂ)fl )
= counts(m(a)) + NO .

where |A| is the number of values for attribute A. We use Laplace estimation
to estimate any other probability. In Keogh and Pazzani’s SuperParent algo-
rithm, they replace zero probabilities with a small epsilon (0.0001). Kohavi,
Becker and Sommerfield [8] have shown that different methods for estimating
the base probabilities in naive Bayes can greatly impact upon its performance.
Similarly, different estimation methods will gain different effects on the same
TAN classification model. We think that estimation methods should depend
on the distribution of variables, as well as the number of training instances to
support these kinds of estimation methods. Estimation methods should be in-
dependent of classification models for the same probability. In order to compare



the performances of classification models, we use the same method to estimate
probabilities. In all the algorithms mentioned in our experiments, we always use
formular 5 to estimate any conditional probability with |7(a)] = 2 and only
standard Laplace estimation applied to any other probability.

Secondly, regarding the problem of missing values, in both the basic TAN
classifiers and Super Parent classifiers, instances with missing values were deleted
from the set of training instances. We keep all the instances, but ignore missing
values from the counts for missing attribute values. Also, when we estimate a
conditional probability P(ay | ¢;), for a prior probability of class value ¢; we
exclude the occurrences of class value ¢; with missing values on attribute Ay.
Obviously, this makes the estimation of the condition more reliable while esti-
mating any conditional probability.

Thirdly, although the choice of root variable does not change the log-likelihood
of the basic TAN network, we have to set the direction of all edges for classi-
fication. When each edge (Ai, Aj) is added to the current tree structure, we
always set the direction from Ai to Aj (i < j) at once. In Keogh and Pazzani’s
Super Parent classifiers, the direction of an arc is always from the super parent
node to the favorite child node. That means that when an dependence relation
is singled out, it always has the specific direction.

4 Selective Augmented Bayesian Classifiers

There are further factors that influence the performance of an augmented naive
Bayesian classifier. The first one is the criterion for selecting dependence relations
among the attributes. The second one is the criterion of terminating the selection.
In this section, we describe our new algorithm for selective augmented Bayesian
classifiers, explain how it works and is different from the basic TAN classifiers
and SuperParent classifiers, and experimentally show its better performance
and preferable computational profile.

4.1 Dependence Relation Matrix Based on Rough Set Theory

Friedman, Geiger and Goldszmidt explain why they use the conditional mu-
tual information as the criterion of selecting dependence relations among the
attributes [3,4]. One problem with this criterion, as mentioned above, is how
to decide the directions of dependence relations. Keogh and Pazzani use leave-
one-out cross-validation to handle this problem in the process of building a
classifier [5,6]. When the best super parent and its favorite child are found, the
dependence relation between them is naturally from the best super parent to
its favorite child, i.e., the favorite child is depends on the corresponding best
super parent. For each arc to be added into the structure, SuperParent needs
many times to execute leave-one-out cross-validations on the whole set of train-
ing instances. Although they proposed some shortcuts to speed up the process
of evaluating many classifiers, the algorithm is still very time consuming. In our
algorithm, we will use a dependence measurement based on rough sets theory.



Rough set [11] provides, in particular, tools for expressing inexact or partial
dependencies within dataset. Given a dataset of some description or measure-
ments concerning available instances, rough set methods enable to extract depen-
dence relations between corresponding attributes or variables. These dependence
relations can be applied to inductive reasoning about new, so far unseen cases,
in a way well understandable for the user. Above advantages, as well as very
effective computational framework for extraction of the most interesting depen-
dencies from real-life data, cause a rapid development of applications of rough
sets to more and more scientific fields and practical tasks [13].

According to the values of class variable, we define a new dependence relation
matrix, in which each item of conditional dependence relation, D(4;, A; | C),
can be described as follows:

| POS3:(4)) |
counts(Y.)

D(A; 451 C)= > (6)

Ai)Aijc

where POSX?(AJ-) represents the positive region of attribute A; relative to at-
tribute A; within the class value Y, [11]. Using this kind of definition, we can
actually gain a directed-graph description. Each item not only reflects the degree
of the dependence between two attributes, but also tells us the direction of the
dependence relation.

4.2 A New Selective Augmented Bayesian Algorithm

In an augmented Bayesian classifier, the second important issue is how to decide
the candidate dependence set and when terminate the the selection. There are
n(n — 1) different dependence relations among n attributes. When there are
n — 1 or no any edge with the conditional mutual information more than 0, a
basic TAN structure will have n — 1 arcs. We also try to add n — 1 arcs to our
augmented Bayesian classifier, but the candidate set is different from the basic
TAN. Because the way of weighting a candidate arc and the way of setting the
direction of an arc are different from the basic TAN structure, the candidate
arc set is different.

Based on above discussions, we can describe our selective augmented Bayesian
algorithm, simply called Select in all tables, as follows.

1. Compute the dependence relation matrix conditional mutual information
using formula 6.

2. Select an arc using a near maximum branching directed arborescence alo-
gorithm [10], based on the dependence relation matrix.

3. Use leave-one-out cross-validation to evaluate the current set of arbores-
cences to decide whether this arc should be added into the current structure or
not, adding it only if doing so reduces cross-validation error.

4. Repeat the previous iteration n — 1 times, or until no more arcs can be
tested.

An important difference from the basic TAN algorithm is that this algorithm
tries to build a maximum directed branch or arborescence [10], not a maximum



undirected spanning tree. We believe that the direction of dependence relations
is a critical issue to minimizing error. In the procedure of building an augmented
Bayesian classifier the network is always a directed structure.

5 Experimental Results

There are thirty-two natural domains used in our experiments, shown in Table 1.
Twenty-nine of these are totally drawn from the previous research paper [18]. The
other three (Satellite, segment, and Shuttle) are larger datasets. “Sf” means
the number of instances. “C'#” means the number of values of a class attribute.
“Af” means the number of attributes, not including the class attribute. All the
experiments were performed in the Weka system [17]. The error rate of each
classification model on each domain is determined by running 10-fold cross-
validation on a dual-processor 1.7Ghz Pentium 4 Linux computer with 2Gb
RAM. We use the default discretization method “weka.filters.DiscretizeFilter”
as the discretization method for continuous values, which is based on Fayyad
and Irani’s method [2].

Table 1 also shows the error rates of naive Bayes classifier (NB), the basic
TAN classifier, the SuperParent clssifier (SP), and our selective augmented
Bayesian classifier (Select) on each domain, respectively. The last row contains
the mean error rates for each column. The best one for a given dataset is shown
in bold text. It shows the selective augmented Bayesian classifier has the lowest
mean error rate. Table 2 presents the WIN/LOSS/DRAW records for comparing
with all other classifiers. This is a record of the number of data sets for which the
nominated algorithm achieves lower, higher, and equal error to the comparison
algorithm, measured to two decimal places. The table also includes the outcome
of a two-tailed binomial sign test. This indicates the probability that the ob-
served outcome or more extreme should occur by chance if wins and losses were
equiprobable. The selective augmented Bayesian classifier demonstrates the best
performance. In the thirty-two databases, there are nineteen databases which
the selective augmented Bayesian classifier has higher classification accuracy
than Naive Bayes, twenty-one databases than the basic TAN classifier, sixteen
databases than the SuperParent classifier. It is remarkable that there are eigh-
teen databases which the basic TAN classifier has higher classification accuracy
than Naive Bayes, and twelve datasets worse than Naive Bayes.

This suggests that selective augmented Bayesian classifier has similar error
to the SuperParent classifier, but the selective augmented Bayesian classifier
is much more efficient than the Super Parent classifier. Table 3 shows the time
of building each classifier. On the most of domains, the selective augmented
Bayesian classifier is much faster than the SuperParent classifier.

Table 4 shows the number of arcs in the Bayesian network built by the
Super Parent classifier (SP), the basic TAN classifier, and our (Select) on each
domain, respectively. These experimental results show that the basic TAN al-
ways tends to construct a tree including all attributes, the SP always tends to
construct a tree with fewer dependence relations among attributes and better



Table 1. Descriptions of Data and Average Error Rates

Domain Sg Ct At M NB SP TAN Select

1 Anealing 898 6 38 Y 5.46 3.3 4.34 4.12
2 Audiology 226 24 69 Y 29.20 27.88 27.43 26.55
3 Breast Cancer 699 2 9 Y 2.58 2.58 5.01 2.58
4 Chess(kr-vs-kp) 3169 2 39 N 1236 5.19 6.54 8.01
5 Credit 69 2 15 Y 1507 1522 14.93 15.23
6 Echocardiogram 131 2 6 Y 27.48 29.01 35.88 28.24
7 Glass 214 7 9 N 41.12 41.59 37.85 35.98
8 Heart 270 2 13 N 15.19 16.30 20.74 17.04
9 Hepatitis 155 2 19 Y 16.13 16.13 11.61 14.84
10 Horse Colic 368 2 21 Y 20.11 19.29 19.84 19.02
11 House Votes 84 435 2 16 N 9.89 6.67 7.59 9.20
12 Hypothyroid 3163 2 25 Y 2.94 2.81 2.66 2.75
13 Iris 150 3 4 N 6.00 6.67 5.33 8.00
14 Labors 57 2 16 Y 3.51 3.51 12.28 3.51
15 LED 1000 10 7 N 26.20 26.60 25.90 26.70
16 Bupa 345 2 6 N 36.81 38.84 37.68 39.13
17 Lung Cancer 32 3 56 Y 46.88 50.00 46.88 43.75
18 Lymphography 148 4 18 N 14.19 14.86 18.92 12.84
19 PID 768 2 8 N 25.00 25.52 25.00 24.74
20 Post Operative 90 3 8 Y 28.89 31.11 35.56  30.00
21 Primary Tumor 339 22 17 Y 48.97 51.15 54.28 50.15
22 Promoters 106 2 57 N 8.49 8.48 16.04 11.32
23 Satellite 6435 6 36 N 18.90 12.18 12.29 12.15
24  Segment 2310 7 19 N 11.08 7.01 6.15 5.54
25 Shuttle 58000 7 9 N 10.07 5.09 8.06 6.95
26 Solarflare 1389 3 10 N 3.89 1.08 1.08 1.87
27 Sonar 208 2 60 N 2548 25.96 29.33 23.08
28 Soybean 683 19 35 Y 7.17 6.59 10.98 6.44
29 Splice 3177 3 60 N 4.66 4.50 4.60 4.41
30 TTT 958 2 9 N 2954 2745 26.10 29.54
31 Wine 178 3 13 N 3.37 3.37 3.93 2.81
32 Zoology 101 7 16 N 5.94 6.93 4.95 6.93
Error Mean 17.58 16.93 18.11 16.67

classification accuracy. In order to show the candidate arc set and the structure
are different from the basic TAN classifier, we give an example produced by the
basic TAN algorithm, the Super Parent algorithm, and our selective augmented
Bayesian algorithm on dataset Soybean respectively. The basic TAN algorithm
produced a tree with n — 1 arcs (n = 35), shown in figure 1, where a node
which parent is node 0 and has no any child is omitted for simplicity. This tree
includes all the attribute nodes. The selective augmented Bayesian algorithm
produced eight arcs in four branches, shown in figure 2. The structure of this
Bayesian classifier is a forest, where some of arcs belong to the TAN structure,



Table 2. Comparison of Select to others

WIN LOSS DRAW P

NaiveBayes 19 10 3 0.1360

SuperParent 16 11 5 0.4420

TAN 21 11 0 0.1102

Table 3. Time in CPU Seconds Table 4. Arcs for each algorithm

Domain SP TAN Select Domain SP TAN Select
1 Anealing 110.31 0.17 13.95 1 Anealing 9 27 12
2 Audiology 530.96 1.79 126.38 2 Audiology 6 61 11
3 Breast Cancer 1.20 0.17 0.40 3 Breast Cancer 0 8 1
4 Chess 662.98 1.14 61.81 4 Chess 8 35 17
5 Credit 5.02 0.14 1.35 5 Credit 4 13 7
6 Echocardiogram 0.07 0.03 0.10 6 Echocardiogram 0 5 17
7 Glass 0.37 0.11 0.31 7 Glass 3 5 7
8 Heart 0.31 0.11 0.25 8 Heart 0 10 3
9 Hepatitis 2.13 0.11 1.59 9 Hepatitis 2 18 3
10 Horse Colic 6.78 0.13 1.42 10 Horse Colic 4 18 7
11 House Votes 1.51 0.10 1.50 11 House Votes 1 15 3
12 Hypothyroid 130.58 0.25 28.8 12 Hypothyroid 7 24 14
13 Iris 0.07 0.02 0.07 13 Iris 0 3 1
14 Labor 0.09 0.09 0.17 14 Labor 0 10 3
15 LED 1.48 0.07 1.54 15 LED 1 6 4
16 Bupa 0.24 0.06 0.13 16 Bupa 1 2 1
17 Lung Cancer 7.23 0.14 5.56 17 Lung Cancer 2 19 6
18 Lymphography 0.36 0.10 1.52 18 Lymphography 1 17 4
19 PID 1.37 0.12 1.32 19 PID 1 5 1
20 Post Operative 0.10 0.02 0.11 20 Post Operative 2 7 3
21 Ptn 2.63 0.11 5.22 21 Ptn 0 16 5
22 Promoters 11.75 0.34 10.77 29 Promoters 0 56 4
23 Satellite 6247.56 4.9 269.66 23 Satellite 35 35 35
24 Segment 202.69 1.84 24.36 24 Segment 13 15 17
25 Shuttle 137.68 5.14 79.82 25 Shuttle 2 6 8
26 Solarflare 8.85 0.07 2.56 26 Solarflare 6 9 8
27 Sonar 165.06 1.88 22.62 27 Sonar 3 56 7
28 Soybean 51.59 0.43 51.63 28 Soybean 2 34 8
29 Splice 1090.46 3.71 313.44 29 Splice 2 59 7
30 TTT 1.07 0.06 0.53 30 TTT 1 8 0
31 Wine 0.17 0.13 0.48 31 Wine 0 12 2
32 Zoo 1.80 0.09 0.61 31 Zoo 2 15 3

but some others do not belong to the TAN structure. This example also shows
our selective augmented Bayesian algorithm produces different results from the
sTAN method described by Keogh and Pazzani [6]. In the sT AN model, they
only select from those edges that appear in the basic TAN tree structure. The



Fig. 1. The Bayesian network of TAN on dataset Soybean
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Fig. 2. The Bayesian network of selec- Fig. 3. The Bayesian network of super
tive augmented TAN on dataset Soy- parent TAN on dataset Soybean
bean

result of the SuperParent algorithm is shown in figure 3. The SuperParent
algorithm only uses leave-one-out cross validation to determine the directions of
arcs, but it can not always obtain better performance. For example, on dataset
PID, the Bayesian networks built by both the Super Parent algorithm and the
selective augmented Bayesian algorithm have only one arc, but the directions
are different. The tree structure built by the SuperParent algorithm is only
the arc: (4, 1), but the selective augmented Bayesian algorithm produces one arc
with reverse direction.

6 Conclusion

In this paper we have investigated three issues that affect the quality of TAN
classifiers learned from data. The first issue is how to estimate the base probabil-
ities. We conclude that it is important to use a consistent estimation to compare
with each other. The second is how to measure dependence relations between two
attributes with directions. Based on the definition of dependence degree in the
basic rough set theory, we propose a definition of dependence measurement given
class variable for building a classification model. Thirdly, we mainly present a
selective augmented Bayesian network classifier that reduces error relative to the



original TAN, and with similar computational overheads, but much lower com-
putational overheads than the SuperParent, which is a state-of-the-art variant
of the basic TAN classifier. Experimental results show that it can deliver some
improvements on performance, while requiring substantially less computation.
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