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Abstract. The naive Bayesian classifier is a simple and effective clas-
sification method, which assumes a Bayesian network in which each at-
tribute has the class label as its only one parent. But this assumption is
not obviously hold in many real world domains. Tree-Augmented Naive
Bayes (T'AN) is a state-of-the-art extension of the naive Bayes, which
can express partial dependence relations among attributes. In this pa-
per, we analyze the implementations of two different TAN classifiers
and their tree structures. Experiments show how different dependence
relations impact on accuracy of TAN classifiers. We present a kind of
semi-lazy TAN classifier, which builds a TAN identical to the original
TAN at training time, but adjusts the dependence relations for a new
test instance at classification time. Our extensive experimental results
show that this kind of semi-lazy classifier delivers lower error than the
original TAN and is more efficient than Superparent TAN.

1 Introduction

Classification learning seeks to build a classifier that can assign a suitable class la-
bel to an unlabelled instance described by a set of attributes. The naive Bayesian
classifier is widely used in interactive applications due to its computational effi-
ciency, competitive accuracy, direct theoretical base, and its ability to integrate
prior information with data sample information [1-7]. It is based on Bayes’ theo-
rem and an assumption that all attributes are mutually independent within each
class. Assume X is a finite set of instances, and A = {A;, Ay,---, A, } is a finite
set of n attributes. An instance x € X is described by a vector {(a1,as, -+, an,),
where a; is a value of attribute A;. C is called the class attribute. Prediction
accuracy will be maximized if the predicted class

Label({ay,as,-+,a,)) = argmaz.(P(c | {ar,a2, -, an))). (1)

Unfortunately, unless (aj,as,---,a,) occurs many times within X, it will not
be possible to directly estimate P(c | {a1,as2, -, a,)) from the frequency with
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which each class ¢ € C co-occurs with (a1, a9, -,a,) within a given set of
training instances. Bayes’ theorem provides an equality that might be used to
help estimate the posterior probability P(¢; | ) in such a circumstance:

P(ci)P({a1, a2, -+, an) | &)
P({a1, a2, -, an))

=a-P(¢) - P({ay, a2, -, an) | ¢) (3)

Ple; | @) = (2)

where P(c;) is the prior probability of class ¢; € C, P({a1,a2, - -,ay,) | ¢) is
the conditional probability of x € T' given the class ¢;, and « is a normalization
factor. According to the Bayes Theorem and the chain rule, equation 3 can be
written as:

P(ci|z) =a- P(c) - H (ar | ar, a2, -+, ag-1,¢;) (4)

Therefore, an approach to Bayesian estimation is to seek to estimate each P(ay |
ar,az, -+, ar_1,C;).

If the n attributes are mutually independent within each class value, then
the conditional probability can be calculated in the following way:

n

P(<a’17a27 e, a | Cl H ak | Cz (5)

Classification selecting the most probable class as estimation using formula 3
and formula 5 is the well-known naive Bayesian classifier.

The attribute independence assumption makes the application of Bayes’ the-
orem to classification practical in many domains, but this assumption rarely
holds in real world problems. Where some dependence relations do exist among
attributes, the probability estimate of the naive Bayesian classifier may be incor-
rect. In such circumstances, comparing equation 4 with equation 5, we cannot use
P(ay | ¢;) instead of P(ay | a1,a2,---,ax—1,¢;), where k = 1,2, n. Notwith-
standing Domingos and Pazzani analysis that demonstrates that some violations
of the independence assumption are not harmful to classification accuracy [1],
it is clear that many are, and there is an increasing body of work developing
techniques to retain naive Bayesian classifiers’ desirable simplicity and efficiency
while delivering improved accuracy [2-5,8-12].

Of numerous proposals to improve the accuracy of naive Bayesian classifiers
by weakening its attribute independence assumption, Tree Augmented Naive
Bayes(T'AN) 19, 3,4] has demonstrated remarkable error performance [7]. Fried-
man, Geiger and Goldszmidt [9,3] compared the naive Bayesian method and
Bayesian network, and showed that using unrestricted Bayesian networks did
not generally lead to improvements in accuracy and even reduced accuracies
in some domains . They presented a compromise representation, called tree-
augmented naive Bayes (T AN, called Friedman’s TAN in our paper), in which
the class node directly points to all attribute nodes and an attribute node can



have only at most one additional parent to the class node. Based on this rep-
resentation, they utilized a scoring measurement, called conditional mutual in-
formation, to efficiently find a maximum weighted spanning tree as a classifier.
Keogh & Pazzani [4] took a different approach to constructing tree-augmented
Bayesian networks(called Keogh and Pazzani’s TAN in our paper). They used
the same representation, but used leave-one-out cross validation to estimate the
classification accuracy of the network when an arc was added. The two methods
mainly differ in two aspects. One is the criterion of attribute selection used to se-
lect dependence relations among the attributes while building a tree-augmented
Bayesian network. Another is the structure of the classifiers. The first one always
tends to construct a tree including all attributes, the second one always tends
to construct a tree with fewer dependence relations among attributes and better
classification accuracy.

Friedman’s TAN and Keogh & Pazzani’'s TAN are eager classifiers. They
build tree-augmented Bayesian classifiers based on a given set of training in-
stances at training time, and classify a new unlabelled instance directly using
the classifiers at classification time.We analyze these two different approaches to
TAN classifiers and their tree classifier structures. We show experimentally how
different dependence relations impact on the accuracy of TAN classifiers. As a
result of this study we present a new semi-lazy TAN classification algorithm. At
training time, it builds a TAN identical to Friedman’s TAN, but at classifica-
tion time we adjust the dependence relations for each new test instance. Different
Bayesian networks may apply to different unlabelled instances. Therefore, this
approach can be thought of as a semi-lazy or partially-lazy classifier. Our ex-
tensive experimental results have shown that this kind of semi-lazy classifier has
better accuracy than the previous TAN classifiers.

2 Restricted Bayesian Network Classifiers

Bayesian network classification is a probability classification method that can
describe probability distributions over the training data. However, learning un-
restricted Bayesian networks is very time consuming and quickly becomes in-
tractable as the number of attributes increases [3,13]. Previous research also
shows that some scoring metrics used in learning unsupervised Bayesian net-
works do not necessarily optimize the performance of the learned networks in
classification [9, 3]. Therefore, restricting the structure of Bayesian networks has
become an active research area. The naive Bayesian classifier can be regarded
as a highly restricted Bayesian network, which assumes that each attribute has
the class label as its only one interdependent variable. TAN classifiers allow each
attribute to depend on the class and at most one additional attribute. In this
section, we will more formally describe TAN classifiers and show some issues in
the implementations of the TAN classifiers.



2.1 The Basic TAN classifiers

A basic TAN classifier, i.e. a Friedman’s TAN classifier, is a restricted Bayesian
network classification model, which uses a tree-structure imposed on the naive
Bayesian structure. In its Bayesian network, the class node is the root and has
no parents, i.e. I[1(C) = @ (here IT(A;) represents the set of parents of variable
or attribute A;). The class variable is a parent of each attribute variables, i. e.
C € II(4;). And except for the class node, each attribute variable node has at
most one other attribute variable node as its a parent, i.e. |I1(A4;)| < 2. Therefore
P(ag | a1, a9, -,ar—1,¢;) in equation 4 can be simplified as follows.

P(ay | a1,az,---,ar-1,¢;) = Plag | 7(ar)). (6)

Note that IT(A;) represents the set of parents of attribute A;. m(a;) represents
the set of parents of attribute value a;. An example of Bayesian network structure
for a TAN structure is shown in Figure 1, where class variable node C' and all
dependences from it to all attribute nodes A; are omitted for simplicity.

Fig.1. A TAN classifier’s tree structure

The algorithm for building a basic TAN classifier consists of five main
steps [3]:

1. Compute conditional mutual information I7(A;, A; | C) between each pair
of attributes as follows(i # j):

P(4;. 4, | O)
@o-ra e 0

Ir(4;, 4; | C) = Y P(Ai, 45| C)log

A, A;,C

2. Build a complete undirected graph in which the vertices are attributes
Aq,---, A,. Annotate the weight of an edge connecting A; to A; by Ip(A;, A; |
).

3. Build a maximum weighted spanning tree.

4. Transform the resulting undirected tree to a directed one by choosing a
root variable and setting the direction of all edges to be outward from it.

5. Build a TAN model by adding a vertex labelled by C' and adding an arc
from C to each A;.



Table 1. Descriptions of Data

Domain fInstances fClasses § Attributes

1 Adult 48842 2 14
2 Annealing Processes 898 6 38
3 Breast Cancer(Wisconsin) 699 2 9
4 Credit Screening(Australia) 690 2 15
5 German 1000 2 20
6 Glass Identification 214 7 10
7 Heart Disease(Cleveland) 303 2 13
8 Hepatitis Prognosis 155 2 19
9 House Votes 84 435 2 16
10 Hypothyroid Diagnosis 3163 2 25
11 Iris Classification 150 3 4
12 LED 24(noise level=10%) 1000 10 24
13 Letter Recognition 20000 26 16
14 Liver Disorders(bupa) 345 2 6
15 Lung Cancer 32 3 56
16 New-Thyroid 215 3 5
17 Pen Digits 10992 10 16
18 Pima Indians Diabetes 768 2 8
19 Pioneer 9150 57 36
20 Post-Operative Patient 90 3 8
21 Promoter Gene Sequences 106 2 57
22 Segment 2310 7 19
23 Solar Flare 1389 3 10
24 Sonar Classification 208 2 60
25 Soybean Large 683 19 35
26 Splice Junction Gene Sequences 3177 3 60
27 Syncon 600 6 60
28 Tic-Tac-Toe End Game 958 2 9
29 Vehicle 846 4 18
30 Zoology 101 7 16

2.2 Some Issues in the Implementation

All the experiments in this paper are performed in the Weka system [14]. Now,
we discuss some extended issues in our implementation of the basic TAN clas-
sifier.

One issue is related to the probability estimation assumption. In TAN, for
each attribute we assess the conditional probability given the class variable and
another attribute. This means that the number of instances used to estimate the
conditional probability is reduced as it is estimated from the instances that share
three specific values (the class value, the parent value and the child value). Thus
it is not surprising to encounter unreliable estimates, especially in small datasets.
Friedman, Geiger and Goldszmidt dealt with this problem by introducing a



smoothing operation [3]. The estimation formula used by them is as follows.

N - ﬁTP(ﬂ'(LL')) ﬁT(x | () + _ NO
N - PrP(n(z)) + N°

s 0
0°(z | () N PrP(x(a)) + NO 07 (z | m(z))
(8)
where 6°(z | 7(x)) is the prior estimate of P(x | w(z)), and N is the confidence
associated with that prior. In their experiments, N = 5. A problem arises
when an attribute value does not occur in the training data, a situation often
occurs in cross validation tests. In this case the value of the estimate will be
zero. To address this problem, in our implementation, we also apply a normal
Laplace estimation to PrP(x). We use both smoothing functions to estimate
any conditional probability, and only Laplace estimation to estimate a non-

conditional probability.

Secondly, regarding the problem of missing values, in T AN classifiers, in-
stances with missing values were deleted from the set of training instances by
Friedman, et al. We keep all the instances, but ignore missing values from the
counts for attribute values. Also, when we estimate a conditional probability
P(ay | ¢;), for a prior probability of class value ¢; we exclude the occurrences
of class value ¢; with missing values on attribute Aj. Obviously, this makes the
estimation of the condition more reliable while estimating P(ay, | ¢;).

Thirdly, although the choice of root variable does not change the log-likelihood
of the TAN network, we have to set the direction of all edges for classification.
When each edge (Ai, Aj) is added to the current tree structure, we always set
the direction from Ai to Aj (i < j) at once.

2.3 Keogh and Pazzani’s TAN Classifiers

Keogh and Pazzani present another approach to learn TAN classifiers [4], called
Super Parent,which searches heuristically for a TAN guided by cross-validation
accuracy. They show that their algorithm consistently predicts more accurately
than naive Bayes. It consists of two steps. The first step searches for a super
parent that has the best cross-validation accuracy. A super parent is a node
with arcs pointing to all others nodes without a parent except for the class
label. The second step determines one favorite child for the super parent chosen
at the first step, again based on the cross-validation accuracy. After this iteration
of the two steps, one arc is added on the tree structure, and this process repeats
until no improvement is achieved, or n — 1 arcs are added into the tree.

We also implemented Keogh and Pazzani’s TAN classifiers in Weka system.
They follow Friedman and Goldszmidt’s assumption about missing values [3],
i.e., instances with missing values were deleted from the datasets. In their ex-
periments, they replace zero probabilities with a small epsilon (0.0001). However,
for consistency, our implementation utilises the smoothing techniques described
above for our implementation of the basic TAN classifiers.



3 Adjusting Dependence Relations in Semi-Lazy Way

In this section, we discuss how to select dependence relations among attribute
values given a test instance based on the basic TAN network. Experimentally
we demonstrate that the tree structure is a useful description for the given set of
training instances, and on the other hand, most of these conditional probabilities
have extremely high variance and lead to poor predictions. We investigate a
method of adjusting the dependence relation for a given conditional probability.
At training time, we derive the basic TAN classifiers as Friedman’s TAN. At
classification time, we reinterpret the dependence relations for a given unlabelled
instance. As the interpretation is done at classification time, we can regard this
kind of classification model as a semi-lazy or partially-lazy classifier. Finally, we
also experimentally demonstrate that building a TAN classifier in a totally lazy
way is not effective. Before describing the new algorithms, we first describe the
data sets used in our experiments and our experimental methodology.

3.1 Experimental Domains and Methodology

The thirty natural domains used in our experiments are shown in Table 1 [15].
All the experiments were performed in the Weka system [14], which provides
a workbench that includes full and working implementations of many popular
learning schemes that can be used for practical data mining or for research. The
error rate of each classification model on each domain is determined by running
10-fold cross validation on a dual-processor 1.7Ghz Pentium 4 Linux computer
with 2Gb RAM. All the data sets were used in previous research [9, 4, 5]. We also
use the default discretization method “weka.filters.DiscretizeFilter” to discretize
continuous attributes, which is based on Fayyad and Irani’s method [16].

3.2 Applying Higher-Order Conditional Probabilities

A T AN structure is a kind of restricted Bayesian network, which combines some
of Bayesian networks’ ability to represent dependence relations with the simplic-
ity of naive Bayes. A TAN structure means the way of using P(ay, | ¢;) or P(ay |
m(ay)) instead of P(ay | a1,az, -+, ax_1,¢;) in equation 4. It is clear that in some
situations, it would be useful to model correlations among attributes that cannot
be captured by a TAN structure. This will be significant when there is a suffi-
cient number of training instances to robustly estimate higher-order conditional
probabilities [9]. However, estimating higher-order conditional probabilities will
cost much more computation. Our alternative is to seek to find a better estimate
instead of P(ay | w(ax)) as the estimate of P(ay, | a1, a2, -+, ar—1,¢;) based on a
known T'AN structure. Each node in a TAN structure always has the strongest
mutual information with its parent. The performance of estimation for node Ay,
depends on the estimate for its parent node. This suggests using all the ancestors
as the condition of node Aj. The result is an algorithm for classification based
on the following equation:

P(ay | a1,a9, -, ak-1,¢;) = P(ay | Ancestors(ag)). (9)



Table 2. Applying Higher-Order Conditional Probabilities

Domain TAN®*Ty TAN®*T, HOCPTy HOCPT,

1 Adult 15.96 16.31 14.70 16.27
2 Annealing Processes 3.90 4.34 3.79 4.14
3 Breast Cancer(Wisconsin) 0.86 3.58 0.00 6.01
4 Credit Screening(Australia) 11.88 14.20 4.35 24.64
5 German 16.90 27.70 1.90 27.20
6 Glass Identification 0.93 9.34 0.93 7.94
7 Heart Disease(Cleveland) 10.56 18.48 4.29 24.09
8 Hepatitis Prognosis 3.87 18.71 1.29 21.94
9 House Votes 84 5.29 7.13 1.38 5.98
10 Hypothyroid Diagnosis 2.09 2.53 1.58 2.81
11 Iris Classification 2.67 10.00 2.00 12.67
12 LED 24(noise level=10%) 24.80 26.30 24.30 26.30
13 Letter Recognition 15.86 19.35 4.26 20.66
14 Liver Disorders(bupa) 20.29 39.71 6.09 40.58
15 Lung Cancer 9.37 46.88 0.00 43.75
16 New-Thyroid 2.33 6.98 1.40 10.23
17 Pen Digits 3.34 5.06 0.32 16.59
18 Pima Indians Diabetes 13.93 25.78 8.46 29.43
19 Pioneer 2.96 4.71 2.91 4.79
20 Post-Operative Patient 23.33 41.11 16.67 35.56
21 Promoter Gene Sequences 0.00 18.86 0.00 34.91
22 Segment 11.68 13.20 1.13 10.22
23 Solar Flare 0.94 1.01 0.86 0.94
24 Sonar Classification 2.40 29.81 0.00 44.71
25 Soybean Large 5.27 8.49 3.22 12.59
26 Splice Junc. Gene Sequences 2.80 4.60 0.03 41.33
27 Syncon 0.00 5.17 0.00 64.33
28 Tic-Tac-Toe End Game 22.23 26.10 21.82 26.20
29 Vehicle 23.52 32.39 1.30 37.35
30 Zoology 0.00 6.93 1.98 5.94

Note that this implies that the attribute subscripts are ordered so that Va; €
Ancestors(ay), j < k, an ordering that need only be imposed implicitly. In Ta-
ble 2, we list the experimental results of our implementation of Friedman’s TAN
and the classifier based on above formula 9. TAN®T} represents the results of the
basic TAN algorithm classifying all the training instances. TAN®T, represents
the results of the basic TAN algorithm using 10-fold cross validations. HOC PT;
represents the results of applying higher-order conditional probabilities formula
shown in equation 9 to classify all the training instances. HOC PT5 represents
corresponding results using 10-fold cross validations. The results are surprising.
Most of the results of new estimation using 10-fold cross validations are worse
than the TAN’s, but most of the results of new estimation classifying the train-
ing instances are better than the TAN’s. That tells us the new algorithm is
overfitting.



3.3 Adjusting Dependence Relations Algorithm

Finding the dependence relations among the attributes is an important way to
relax the attribute independent assumption made by naive Bayes. The main
difference among Bayesian classification models of this kind is in way they cal-

culate P(ay | a1,as2,---,ax—1,¢;). The above results experimentally show there
is some possibility to find another attribute value instead of the value of the par-
ent attribute. If P(ay | w(ag)) is a poor choice for P(ag | a1, a2, -, ax—1,¢;), we

should first try to use P(a | m(7(ax))), because this attribute has the strongest
dependence relations with its parent attribute. We use the following equation
for adjusting the original dependence relation in the TAN structure.

Play | a1,a9, -, ax—1,¢;) = Plag | MAX{Ancestors(ax)},c;).  (10)

where M AX{Ancestors(ay)} represents the attribute value of its ancestors
which has the maximum conditional mutual information with attribute value
ag- In this case, the conditional mutual information between two attribute val-
ues can be calculated as follows:

oty 1= S ooy | lor e (S )

because we are interested only in the specific values, no the full range of values
for each attribute. At training time, we still build a TAN model in the same
way, but at classification time, we will use formula 10 to classify an unlabelled
instance. This is a semi-lazy classifier. Our algorithm also tests the tree structure.
When a TAN structure is a single chain, we always use naive Bayes directly.
We compare the classification performance of four learning algorithms by
running 10-fold cross validations. In the Table 3, we list the experimental results.
We use the naive Bayes classifier implemented in the Weka system, simply called
Naive. We implemented in Weka Friedman’s smoothed T AN, called TAN?,
Keogh and Pazzani’s TAN, called SP, and our semi-lazy S — Lazy. The mean
accuracy and running time over all data sets for each algorithm is also given
in Table 3. Table 4 presents the WIN/LOSS/DRAW records for the semi-lazy
TAN model together with the result of a binomial sign test which indicates
the probabilities of obtaining the observed result or more extreme if WINS and
LOSSES were equiprobable. This is a record of the number of data sets for
which the nominated algorithm achieves lower, higher, and equal error to the
comparison algorithm, measured to two decimal places. The semi-lazy T AN
demonstrates significantly better classification performance than the original
T AN models, and worse(albeit not significantly) than Keogh and Pazzani’s TAN
models, but is much more efficient than Keogh and Pazzani’s TAN models.

3.4 Building TAN structures in Totally-Lazy Ways

Previous experimental results have shown that, in most cases, adjusting depen-
dence relations can improve the performance of the basic TAN classifiers. Can



Table 3. Experimental Results of Comparing Algorithms

Naive TAN? S-Lazy SP
Domain Error Error Time Error Time Error Time
Adult 18.03 16.31 1.05 16.23 1.02 15.77 178.59
Annealing Processes 546  4.34 0.12 457 0.19 4.01 1.49
Breast Cancer(Wisconsin) 2.58 3.58 0.13 286 0.02 2.58 0.13
Credit Screening(Australia) 15.07 14.20 0.03 15.22 0.04 14.35  0.98
German 24.60 27.70 0.06 25.70 0.06 24.80 3.14
Glass Identification 11.68 935 0.03 7.01 0.06 6.07 0.10
Heart Disease(Cleveland) 16.50 18.48 0.01 17.49 0.02 1519  0.23
Hepatitis Prognosis 16.13 18.71 0.02 11.61 0.02 16.13 0.11
House Votes 84 9.89 7.13 0.01 9.66 0.01 6.90 0.65
Hypothyroid Diagnosis 294 253 0.13 253 0.13 283 1551
Iris Classification 6.00 10.00 0.01 6.00 0.01 6.00 0.00
LED 24(noise level=10%) 26.20 26.30 0.01 26.10 0.01 25.90 0.23
Letter Recognition 29.99 19.35 1.23 23.15 1.77 16.47 464.11
Liver Disorders(bupa) 36.81 39.71 0.01 39.13 0.01 40.29 0.05
Lung Cancer 46.88 46.88 0.11 46.88 0.18 50.00 1.18
New-Thyroid 8.37 6.98 0.00 6.05 0.02 7.44 0.02
Pen Digits 12.92  5.06 0.53 6.03 0.69 3.50 105.77
Pima Indians Diabetes 25.00 25.78 0.01 25.26 0.02 25.39 0.21
Pioneer 9.77 4.71 444 542 891  3.66 1256.99
Post-Operative Patient 28.89 41.11 0.00 33.33 0.00 30.00 0.03
Promoter Gene Sequences 8.49 18.87 0.15 14.15 0.19 8.49 7.35
Segment 11.08 13.20 0.20 9.26 0.31 6.28 17.06
Solar Flare 3.89 1.01 0.02 0.86 0.02 1.01 0.49
Sonar Classification 25.48 29.81 0.53 25.00 0.81 23.56 21.59
Soybean Large 7.17 849 0.18 7.76 0.27 7.03 6.24
Splice Junc. Gene Sequences 4.66 4.60 1.40 4.60 1.32 4.69 217.70
Syncon 3.00 5.17 1.61 3.00 2.44 3.00 64.71
Tic-Tac-Toe End Game 29.54 26.10 0.01 24.95 0.01 28.81 0.71
Vehicle 39.48 32.39 0.10 35.22 0.15 31.68 11.24
Zoology 594  6.93 0.00 4.95 0.01 5.94 0.05
The Mean 16.41 16.49 0.40 15.33 0.62 14.59 79.22

Table 4. Comparison of Semi — LazyT AN to others
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we get lower error using a totally-lazy way? Can we build a better TAN struc-
ture for a given test instance? For many classification tasks classifier accuracy is
more important than consideration of computational expense. In such a circum-
stance, building a classifier in a lazy way may be a better choice. To evaluate
the promise of truly lazy TAN, we also implemented two ways for building a
TAN structure using the measurement of conditional mutual information be-
tween attribute values. One is based on a given class value, another is based on
all class values. Neither of them reduces error. Our previous research [7] also
showed the implementation of Keogh and Pazzani’s TAN in a lazy way did
not improve classification performance. Probably, there should be some different
measurement to show dependence relations among attribute values.

4 Conclusions

There are several contributions in this paper. The first one is that we have
examined and implemented two different T AN classifiers and their tree classifier
structures. Secondly, we experimentally show how different dependence relations
impact on the accuracy of TAN classifiers. Thirdly, we mainly present a semi-
lazy TAN classification model, which builds the same tree structure as the basic
T AN model at training time, but adjusts the dependence relations for a new test
instance at classification time. This approach can be thought of as a semi-lazy
or partially-lazy method. Our extensive experimental results have shown that
these semi-lazy classifiers have higher accuracy than the original TAN and are
more efficient than Keogh and Pazzani’s TAN.

It is remarkable that all our research is based on the assumption that the
conditional mutual information can really reflect dependence relations among at-
tributes. Because the measurements of conditional mutual information between
attributes do not specify the direction of the dependence, this is also a reason
that we can improve classification performances by adjusting dependence rela-
tions among attribute values. Although the semi-lazy TAN demonstrates better
classification performance than the original T AN models, it is worse than Keogh
and Pazzani’s TAN models. These results may suggest a way to better restrict
dependence relations based on the TAN structure.
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