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Abstract

Based on an earlier study on lazy Bayesian rule learning, this paper intro-
duces a general lazy learning framework, called LAZYRULE, that begins
to learn a rule only when classifying a test case. The objective of the
framework is to improve the performance of a base learning algorithm.
It has the potential to be used for different types of base learning al-
gorithms. LAZYRULE performs attribute elimination and training case
selection using cross-validation to generate the most appropriate rule for
each test case. At the consequent of the rule, it applies the base learning
algorithm on the selected training subset and the remaining attributes to
construct a classifier to make a prediction. This combined action seeks
to build a better performing classifier for each test case than the classifier
trained using all attributes and all training cases. We show empirically
that LAZYRULE improves the performances of naive Bayesian classifiers
and majority vote.

1 Introduction

Lazy learning [2] is a class of learning techniques that spend little or no effort
during training and delay the computation to the classification time. No concise
models, such as decision trees or rules, are created at training time. When
classifying a test case, a lazy learning algorithm performs its computation in
two stages. First, it selects a subset of the training cases that are relevant
to classifying the case in question. Then, a classifier is constructed using this
training subset; and the classifier is ultimately employed to classify the test case.
The case selection process in the first stage is a crucial part in lazy learning
that ultimately influences the classifier to be constructed in the second stage.

The archetypal example of a lazy learning algorithm is the k-nearest neigh-
bor algorithm or instance-based learning algorithm [1, 8, 10]. In its basic form,
the k-nearest neighbor algorithm stores all training cases. At classification
time, it computes a distance measure between the test case and each of the
training cases, and selects the nearest k training cases from the first stage. A
simple majority vote is used in the second stage—the majority class of the k
nearest, training cases is predicted to be the class for the test case. Another
example is LAzyDT [12], which creates decision rules at classification time to
select a subset of training cases, and then performs majority vote to make a
prediction.
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LBR [20] uses a lazy learning technique developed to improve the perfor-
mance of naive Bayesian classification. For each test case, it generates a most
appropriate rule with a conjunction of attribute-value pairs as its antecedent
and a local naive Bayesian classifier as its consequent. The local naive Bayesian
classifier is built using the subset of training cases that satisfy the antecedent
of the rule, and is used to classify the test case. The main objective of creating
rules is to alleviate the attribute inter-dependence problem of naive Bayesian
classification.

There are several variations, especially on the method to select a training
subset. For example, the Optimized Set Reduction (OSR) algorithm [5] first
identifies a set of plausible rules R, based on an entropy measure, that cover the
case X to be classified. The set of training cases S is then formed, containing
all training cases covered by any rule in R. X is then classified using Bayesian
classification with probability estimates derived from the distributions of at-
tribute values in S. Fulton et al. [13] describe a variation of the k-nearest
neighbor algorithm that selects more than one subset. For a given test case,
a sequence of k decision trees is induced using 1,2,...,k nearest cases. Then a
weighted voting scheme is employed to make the final prediction. Fulton et al.
[13] also explore two other alternative techniques to select a single training sub-
set. One or more decision trees are generated in all these techniques. Because
all of these three techniques always produce the same training subset for a test
case no matter what base learning algorithm is used in the second stage, they
are unlikely to be amenable for different types of base learning algorithm. The
Learning All Rules approach [19] performs lazy learning of decision rules.

The lazy learning algorithms described so far are meant to be used as a
stand-alone classifier. There is a lack of a general framework of lazy learning
that can be used to improve the performance of a chosen learning algorithm
which is to be employed to produced a classifier in the second stage of the
lazy classification process. In the crucial stage of training subset selection,
the criteria, usually heuristics, used by these lazy learning algorithms except
LBR are not directly relevant to the base classifiers employed in the second
stage. This paper introduces a lazy learning framework, as a generalization of
LBR [20], that performs both attribute elimination and training case selection.
When doing these, the chosen learning algorithm, which is to be employed
in the second stage, is utilized in the evaluation process. This framework is
intended to improve the performance of the chosen base learning algorithm.

The following section describes the LAZYRULE framework. Section 3 con-
tains the empirical evaluation to investigate whether the framework can be used
to improve the performance of two types of base learning algorithms. Section
4 discusses the advantages and limitations of LAZYRULE. The final section
summarizes our findings and describes possible future work.



2 The Lazy Rule Learning Framework

This section describes the lazy learning framework, called LAZYRULE. Like
most of the other lazy learning algorithms, LAZYRULE stores all training cases,
and begins to compute only when a classification is required.

To classify a test case, LAZYRULE generates a rule that is most appropriate
to the test case. The antecedent of a lazy rule is a conjunction of attribute-value
pairs or conditions, and each condition is in the form of ‘attribute=value’. The
current version of LAZYRULE can only directly deal with nominal attributes.
Numeric attributes are discretized as a pre-process. The consequent of a lazy
rule is a local classifier created from those training cases (called local training
cases) that satisfy the antecedent of the rule. The local classifier is induced
using only those attributes that do not appear in the antecedent of the rule.

During the generation of a lazy rule, the test case to be classified is used to
guide the selection of attributes for creating attribute-value pairs—only values
that appear in the test case are being considered in the selection process. The
objective is to grow the antecedent of a rule that ultimately decreases the
errors of the local classifier in the consequent of the rule. The antecedent of the
rule defines a sub-space of the instance space to which the test case belongs,
and selects a subset of the available training instances. For all instances in
the instance sub-space, each of the attributes occurring in the antecedent has
an identical value which is the same as the one in the antecedent, thus not
affecting the behavior of the local classifier. These attributes are removed from
the local classifier for computational efficiency. Finally, the local classifier of
the rule classifies the test case, since this case satisfies the antecedent of the
rule. Table 1 outlines the LAZYRULE framework. One must choose a base
learning algorithm for inducing local classifiers before using this framework.

For each test case, LAZYRULE uses a greedy search to generate a rule of
which the antecedent matches the test case. The growth of the rule starts from
a special rule whose antecedent is true. The local classifier in its consequent
part is trained on the entire training set using all attributes. At each step of
the greedy search, LAZYRULE tries to add, to the current rule, each attribute
that has not already been in the antecedent of the rule, so long as its value on
the test case is not missing. The objective is to determine whether including
this attribute-value pair on the test case into the rule can significantly improve
the estimated accuracy.

The utility of every possible attribute-value pair to be added to the an-
tecedent of a rule is evaluated in the following manner. A subset of examples
D upser that satisfies the attribute-value pair is identified from the current local
training set Dirqining, and is used to train a temporary classifier using all at-
tributes that do not occur in the antecedent of the current rule and are not the
attribute being examined. Cross-validation (CV) is performed to obtain the
estimated errors of both the local and temporary classifiers.! Estimated errors
of the temporary classifier on Dy pser together with estimated errors of the local

We choose cross-validation as the evaluation method because cross-validated errors are
more reliable estimates of true errors than re-substitution errors [4].



Table 1: The LAZYRULE Framework

Given a base learning algorithm Alg.

LaZYRUIe(Atty Dtraininga Etest)
INPUT: Att: a set of attributes,
Diraining: a set of training cases described using Att and classes,
Eiest: a test case described using Att.
OUTPUT: a predicted class for Eiest.
LocalClr = a classifier induced by Alg using Att on Diraining
Errors = errors of LocalClr estimated using CV on Diraining
Cond = true
REPEAT
TempErrorsy.s; = the number of cases in Diraining + 1
FOR each attribute A in Att whose value vy on FEiest is not missing DO
Dgypser = cases in Dyrgining With A = vy
TempClr = a classifier induced by Alg using Att — {A} on Dgypses
TempErrors = errors of TempClr estimated using CV on Dgypeer +
the portion of Errors in Diraining — Dsubset
IF ((TempErrors < TempErrorsp.s;) AND
(TempErrors is significantly lower than Errors))
THEN
TempClry.,; = TempClr
TempErrorsy.s; = TempErrors
Abest =A
IF (an Ap.s is found)
THEN
Cond = Cond A (Apest = VAbest)
LocalClr = Temp Clryes;
Dtraining = Dgypset corresponding to Apest
Att = Att — {Apoys}
Errors = errors of LocalClr estimated using CV on Diraining
ELSE
EXIT from the REPEAT loop
classify Eiest using LocalClr
RETURN the class

classifier of the current rule on Diyqining — Dsubset are used as the evaluation
measure of the attribute-value pair for growing the current rule. If this mea-
sure is lower than the estimated errors of the local classifier on Dyyqining at a
significance level better than 0.05 using a one-tailed pairwise sign-test [7], this
attribute-value pair becomes a candidate condition to be added to the current
rule. The sign-test is used to control the likelihood of adding conditions that
reduce error by chance. After evaluating all possible conditions, the candidate
condition with the lowest measure (errors) is added to the antecedent of the
current rule.

Training cases that do not satisfy the antecedent of the rule are then dis-
carded, and the above process repeated. This continues until no more candi-
date conditions are found. This happens, when no better local classifier can be
formed, or the local training set is too small (i.e., < 30 examples) to further



reduce the instance sub-space by specializing the antecedent of the rule. In
such cases, further growing the rule would not significantly reduce its errors.
Finally, the local classifier of this rule is used to classify the test case under
consideration.

LAZYRULE is a generalization of LBR [20]. In principle, the general frame-
work can be used with any base classifier learning algorithms.

3 Does LAZYRULE improve the performance of
classifiers?

In this section, we evaluate whether the LAZYRULE framework can be used to
improve the performance of a base learning algorithm. In order to show the
generality of the framework, two different types of base learning algorithm are
used in the following experiments. They are majority vote (MV) and the naive
Bayesian classifier (NB). MV classifies all the test cases as belonging to the
most common class of the training cases.

NB [16, 17, 18] is an implementation of Bayes’ rule:

P(Ci|V) = P(C)P(V|Cy)/P(V)

for classification, where P denotes probability, C; is class ¢ and V is a vector of
attribute values describing a case. By assuming all attributes are mutually in-
dependent within each class, P(V|C;) = [[; P(v;|C;) simplifies the estimation
of the required conditional probabilities. NB is simple and computationally
efficient. It has been shown that it is competitive to more complex learning
algorithms such as decision tree and rule learning algorithms on many datasets
[9, 6].

Because the current version of LAZYRULE only accepts nominal attribute
inputs, continuous-valued attributes are discretized as a pre-process in the ex-
periments. The discretization method is based on an entropy-based method
[11]. For each pair of training set and test set, both the training set and the
test set are discretized by using cut points found from the training set alone.

LAZYRULE with MV or NB uses the N-fold cross-validation method (also
called leave-one-out estimation) [4] in the attribute evaluation process because
both MV and NB are amenable to efficiently adding and subtracting one case.
We denote LR-NB as the LAZYRULE framework that incorporates NB as its
base learning algorithm; likewise for LR-MV. Note that LR-NB is exactly the
same as LBR [20].

Ten commonly used natural datasets from the UCI repository of machine
learning databases [3] are employed in our investigation. Table 2 gives a brief
summary of these domains, including the dataset size, the number of classes,
the number of numeric and nominal attributes. Two stratified 10-fold cross-
validations [15] are conducted on each dataset to estimate the performance of
each algorithm.

Table 3 reports the average test classification error rate for each of the
experimental datasets. To summarize the performance comparison between an



Table 2: Description of learning tasks

Domain Size | No. of | No. of Attributes
Classes | Numeric | Nominal
Annealing 898 6 6 32
Breast cancer (Wisconsin) 699 2 9 0
Chess (King-rook-vs-king-pawn) | 3196 2 0 36
Credit screening (Australia) 690 2 6 9
House votes 84 435 2 0 16
Hypothyroid diagnosis 3163 2 7 18
Pima Indians diabetes 768 2 8 0
Solar flare 1389 2 0 10
Soybean large 683 19 0 35
Splice junction gene sequences 3177 3 0 60

Table 3: Average error rates (%) of LAZYRULE and its base learning algorithms.

Datasets NB | LR-NB | MV | LR-MV
Annealing 2.8 2.7 | 23.8 8.2
Breast(W) 2.7 2.7 | 345 10.3
Chess(KR-KP) | 12.2 2.0 | 47.8 4.5
Credit(Aust) 14.0 14.0 | 44.5 15.0
House-votes-84 | 9.8 5.6 | 38.6 4.5
Hypothyroid 1.7 1.6 | 4.7 2.3
Pima 25.2 25.4 | 34.9 26.4
Solar-flare 19.4 164 | 15.7 15.7
Soybean 9.2 5.9 | 86.6 23.2
Splice-junction 44 4.0 | 48.1 14.7
mean | 10.1 8.0 | 37.9 14.5

ratio .73 .32

w/t/1 7/2/1 9/1/0

p. of wtl .0352 .0020

algorithm and LAZYRULE with it, Table 3 also shows the geometric mean of
error rate ratios, the number of wins/ties/losses, and the result of a two-tailed
pairwise sign-test. An error rate ratio for LR-NB versus NB, for example, is
calculated using a result for LR-NB divided by the corresponding result for
NB. A value less than one indicates an improvement due to LR-NB. The result
of the sign test indicates the significance level of the test on the win/tie/loss
record.

We summarize our findings as follows. LAZYRULE improves the predictive
accuracy of NB and MV. The framework achieves a 68% relative reduction
in error rate for MV, and 27% relative reduction for NB. The improvement is
significant at a level better than 0.05 for both MV and NB. LAZYRULE improves
the performance of MV on all datasets. It improves the performance of NB on



Table 4: Average rule lengths of LAZYRULE.

Dataset LR-NB | LR-MV
Annealing 0.20 1.90
Breast(W) 0.00 1.63
Chess(KR-KP) 4.10 4.00
Credit(Aust) 0.10 2.55
House-votes-84 0.90 2.23
Hypothyroid 0.40 4.21
Pima 0.10 2.13
Solar-flare 1.10 2.65
Soybean 0.90 2.35
Splice-junction 0.70 2.14

mean 0.85 2.58

7 datasets, and keeps the same performance on 2 datasets. Only on the Pima
dataset does LR-NB slightly increase the error rate of NB.

Table 4 shows the average length of all rules produced by LR-NB and LR-
MV. The average rule length is the ratio of the total of conditions produced for
all test cases and the total number of test cases, averaged over all runs.

The mean values across all datasets are 0.85 and 2.58 for LR-NB and
LR-MV, respectively. Examining the figures on each dataset indicates that
LAZYRULE only produces rules when it is possible to improve the performance
of the classifier trained using all training cases and all attributes. On aver-
age, LR-MV produces a rule with more than 1.5 conditions for each test case
on each of the experimental datasets. This is an indication that LAZYRULE
could improve the performance of MV on all of these datasets. Small values
of average rule length indicate either no or minor improvement. This is shown
by LR-NB on the Annealing, Breast(W), Credit(Aust), Hypothyroid and Pima
datasets, which have average rule lengths less than 0.5.

LAZYRULE is expected to require more compute time than the base learning
algorithm. For example, in the Breast(W) dataset in which LR-NB produces
no rule, the execution time is 0.241 seconds as compared to .005 seconds for
NB. In the Chess dataset in which LR-NB produces the longest rule, LR-NB
requires 213.13 seconds whereas NB requires only 0.034 seconds. The time is
recorded from a 300MHz Sun UltraSPARC machine.

Being a lazy learner, another important factor that affects LAZYRULE’s
execution time is the test set size. The execution time of LAZYRULE is propor-
tional to the size of the test set. For example, in the Chess dataset, the test
size used in the current experiment is 319. When we change the experiment
from ten-fold cross-validation to three-fold cross-validation (the test set size is
increased to 1066), the execution time of LR-NB increases from 213 seconds to
299 seconds.



4 The Advantages and Limitations of
LAZYRULE

LAZYRULE’s primary action is to eliminate attributes and select training cases
that are most relevant to classifying the current test case. This builds a bet-
ter performing classifier for the test case than the classifier trained using all
attributes and all training cases. This flexible nature of LAZYRULE stretches
the base learning algorithm to its best potential under these two variables:
attribute elimination and training case selection.

The key advantage of LAZYRULE over a previous system LAzyDT [12] is the
use of the cross-validation method for attribute elimination and training case
selection. The use of this technique allows different types of learning algorithm
to be incorporated into the LAZYRULE framework. LAZYDT uses an entropy
measure for attribute elimination which leads to selecting cases with the same
class. As a result, only majority vote can be used to form the local classifier.

The idea of using cross-validation and the learning algorithm, which is to be
used to induce the final classifier, in the evaluation process is called the wrapper
method [14]. This method was initially proposed solely for the purpose of
attribute selection/elimination. LAZYRULE uses the method for both attribute
elimination and training case selection.

The major computational overhead in LAZYRULE is the cross-validation
process used in the evaluation of an attribute. The nature of the lazy learn-
ing mechanism requires that the same process is repeated for each test case.
This computational overhead can be substantially reduced by caching the use-
ful information. In the current implementation of LAZYRULE, the evaluation
function values of attribute-value pairs that have been examined are retained
from one test case to the next. This avoids re-calculation of the evaluation
function values of the same attribute-value pairs when classifying unseen cases
that appear later, thus reducing the entire execution time. Our experiment
shows that caching this information reduces the execution time of LAZYRULE
with the naive Bayesian classifier by 93% on average on the 10 datasets used
in the experiment. This happens, because the evaluation of attribute-value
pairs for different test cases are often repeated, including repeated generation
of identical rules for different test cases. LAZYRULE could be made even more
efficient by caching further information such as local classifiers and indices for
training cases in different stages of the growth of rules. Of course, this would
increase memory requirements.

Caching the local classifiers has an added advantage apart from computa-
tional efficiency. Now, the number of different rules together with local classi-
fiers induced thus far are ready to be presented to the user in any stage during
the classification time.

In theory, decision tree learning algorithm is a candidate to be used in the
LAZYRULE framework. There are reasons why we did not include it in our
experiments. First, given a test case, only one path is needed, not the entire
tree. Second, the process of growing a lazy rule is similar to the process of
growing a tree. Only the criterion for attribute selection is different. Lastly,



building a tree/path at the consequent of the rule would actually use different
criteria for two similar processes. This seems undesirable.

5 Conclusions and Future Work

We introduce the LAZYRULE framework based on an earlier work for learning
lazy Bayesian rules, and show that it can be used to improve the performance
of a base classifier learning algorithm. The combined action of attribute elim-
ination and training case selection of LAZYRULE, tailored for the test case to
be classified, enables it to build a better performing classifier for the test case
than the classifier trained using all attributes and all training cases. We show
empirically that LAZYRULE improves the performance of two base learning
algorithms, the naive Bayesian classifier and majority vote.

Our future work includes extending LAZYRULE to accept continuous-valued
attribute input, and experimenting with other types of learning algorithm such
as k-nearest neighbors. It is interesting to see how it will perform when a
lazy learning algorithm such as k-nearest neighbors is incorporated in this lazy
learning framework. The current implementation of LAZYRULE only considers
attribute-value pairs each in the form of ‘attribute = value’. Alternatives to
this form are worth exploring. Applying this framework to regression tasks is
also another interesting avenue for future investigation.
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