
Learning Lazy Rules to Improvethe Performance of Classi�ersKai Ming Ting, Zijian Zheng & Geo�rey WebbSchool of Computing and Mathematics,Deakin Univeristy, Australia.fkmting,zijian,webbg@deakin.edu.auAbstractBased on an earlier study on lazy Bayesian rule learning, this paper intro-duces a general lazy learning framework, called LazyRule, that beginsto learn a rule only when classifying a test case. The objective of theframework is to improve the performance of a base learning algorithm.It has the potential to be used for di�erent types of base learning al-gorithms. LazyRule performs attribute elimination and training caseselection using cross-validation to generate the most appropriate rule foreach test case. At the consequent of the rule, it applies the base learningalgorithm on the selected training subset and the remaining attributes toconstruct a classi�er to make a prediction. This combined action seeksto build a better performing classi�er for each test case than the classi�ertrained using all attributes and all training cases. We show empiricallythat LazyRule improves the performances of naive Bayesian classi�ersand majority vote.1 IntroductionLazy learning [2] is a class of learning techniques that spend little or no e�ortduring training and delay the computation to the classi�cation time. No concisemodels, such as decision trees or rules, are created at training time. Whenclassifying a test case, a lazy learning algorithm performs its computation intwo stages. First, it selects a subset of the training cases that are relevantto classifying the case in question. Then, a classi�er is constructed using thistraining subset; and the classi�er is ultimately employed to classify the test case.The case selection process in the �rst stage is a crucial part in lazy learningthat ultimately in
uences the classi�er to be constructed in the second stage.The archetypal example of a lazy learning algorithm is the k-nearest neigh-bor algorithm or instance-based learning algorithm [1, 8, 10]. In its basic form,the k-nearest neighbor algorithm stores all training cases. At classi�cationtime, it computes a distance measure between the test case and each of thetraining cases, and selects the nearest k training cases from the �rst stage. Asimple majority vote is used in the second stage|the majority class of the knearest training cases is predicted to be the class for the test case. Anotherexample is LazyDT [12], which creates decision rules at classi�cation time toselect a subset of training cases, and then performs majority vote to make aprediction. 1
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Lbr [20] uses a lazy learning technique developed to improve the perfor-mance of naive Bayesian classi�cation. For each test case, it generates a mostappropriate rule with a conjunction of attribute-value pairs as its antecedentand a local naive Bayesian classi�er as its consequent. The local naive Bayesianclassi�er is built using the subset of training cases that satisfy the antecedentof the rule, and is used to classify the test case. The main objective of creatingrules is to alleviate the attribute inter-dependence problem of naive Bayesianclassi�cation.There are several variations, especially on the method to select a trainingsubset. For example, the Optimized Set Reduction (Osr) algorithm [5] �rstidenti�es a set of plausible rules R, based on an entropy measure, that cover thecase X to be classi�ed. The set of training cases S is then formed, containingall training cases covered by any rule in R. X is then classi�ed using Bayesianclassi�cation with probability estimates derived from the distributions of at-tribute values in S. Fulton et al. [13] describe a variation of the k-nearestneighbor algorithm that selects more than one subset. For a given test case,a sequence of k decision trees is induced using 1,2,...,k nearest cases. Then aweighted voting scheme is employed to make the �nal prediction. Fulton et al.[13] also explore two other alternative techniques to select a single training sub-set. One or more decision trees are generated in all these techniques. Becauseall of these three techniques always produce the same training subset for a testcase no matter what base learning algorithm is used in the second stage, theyare unlikely to be amenable for di�erent types of base learning algorithm. TheLearning All Rules approach [19] performs lazy learning of decision rules.The lazy learning algorithms described so far are meant to be used as astand-alone classi�er. There is a lack of a general framework of lazy learningthat can be used to improve the performance of a chosen learning algorithmwhich is to be employed to produced a classi�er in the second stage of thelazy classi�cation process. In the crucial stage of training subset selection,the criteria, usually heuristics, used by these lazy learning algorithms exceptLbr are not directly relevant to the base classi�ers employed in the secondstage. This paper introduces a lazy learning framework, as a generalization ofLbr [20], that performs both attribute elimination and training case selection.When doing these, the chosen learning algorithm, which is to be employedin the second stage, is utilized in the evaluation process. This framework isintended to improve the performance of the chosen base learning algorithm.The following section describes the LazyRule framework. Section 3 con-tains the empirical evaluation to investigate whether the framework can be usedto improve the performance of two types of base learning algorithms. Section4 discusses the advantages and limitations of LazyRule. The �nal sectionsummarizes our �ndings and describes possible future work.



2 The Lazy Rule Learning FrameworkThis section describes the lazy learning framework, called LazyRule. Likemost of the other lazy learning algorithms, LazyRule stores all training cases,and begins to compute only when a classi�cation is required.To classify a test case, LazyRule generates a rule that is most appropriateto the test case. The antecedent of a lazy rule is a conjunction of attribute-valuepairs or conditions, and each condition is in the form of `attribute=value'. Thecurrent version of LazyRule can only directly deal with nominal attributes.Numeric attributes are discretized as a pre-process. The consequent of a lazyrule is a local classi�er created from those training cases (called local trainingcases) that satisfy the antecedent of the rule. The local classi�er is inducedusing only those attributes that do not appear in the antecedent of the rule.During the generation of a lazy rule, the test case to be classi�ed is used toguide the selection of attributes for creating attribute-value pairs|only valuesthat appear in the test case are being considered in the selection process. Theobjective is to grow the antecedent of a rule that ultimately decreases theerrors of the local classi�er in the consequent of the rule. The antecedent of therule de�nes a sub-space of the instance space to which the test case belongs,and selects a subset of the available training instances. For all instances inthe instance sub-space, each of the attributes occurring in the antecedent hasan identical value which is the same as the one in the antecedent, thus nota�ecting the behavior of the local classi�er. These attributes are removed fromthe local classi�er for computational e�ciency. Finally, the local classi�er ofthe rule classi�es the test case, since this case satis�es the antecedent of therule. Table 1 outlines the LazyRule framework. One must choose a baselearning algorithm for inducing local classi�ers before using this framework.For each test case, LazyRule uses a greedy search to generate a rule ofwhich the antecedent matches the test case. The growth of the rule starts froma special rule whose antecedent is true. The local classi�er in its consequentpart is trained on the entire training set using all attributes. At each step ofthe greedy search, LazyRule tries to add, to the current rule, each attributethat has not already been in the antecedent of the rule, so long as its value onthe test case is not missing. The objective is to determine whether includingthis attribute-value pair on the test case into the rule can signi�cantly improvethe estimated accuracy.The utility of every possible attribute-value pair to be added to the an-tecedent of a rule is evaluated in the following manner. A subset of examplesDsubset that satis�es the attribute-value pair is identi�ed from the current localtraining set Dtraining , and is used to train a temporary classi�er using all at-tributes that do not occur in the antecedent of the current rule and are not theattribute being examined. Cross-validation (CV) is performed to obtain theestimated errors of both the local and temporary classi�ers.1 Estimated errorsof the temporary classi�er on Dsubset together with estimated errors of the local1We choose cross-validation as the evaluation method because cross-validated errors aremore reliable estimates of true errors than re-substitution errors [4].



Table 1: The LazyRule FrameworkGiven a base learning algorithm Alg.LazyRule(Att;Dtraining ;Etest )INPUT: Att: a set of attributes,Dtraining : a set of training cases described using Att and classes,Etest : a test case described using Att.OUTPUT: a predicted class for Etest .LocalClr = a classi�er induced by Alg using Att on DtrainingErrors = errors of LocalClr estimated using CV on DtrainingCond = trueREPEATTempErrorsbest = the number of cases in Dtraining + 1FOR each attribute A in Att whose value vA on Etest is not missing DODsubset = cases in Dtraining with A = vATempClr = a classi�er induced by Alg using Att � fAg on DsubsetTempErrors = errors of TempClr estimated using CV on Dsubset +the portion of Errors in Dtraining �DsubsetIF ((TempErrors < TempErrorsbest ) AND(TempErrors is signi�cantly lower than Errors))THENTempClrbest = TempClrTempErrorsbest = TempErrorsAbest = AIF (an Abest is found)THENCond = Cond ^ (Abest = vAbest )LocalClr = TempClrbestDtraining = Dsubset corresponding to AbestAtt = Att � fAbestgErrors = errors of LocalClr estimated using CV on DtrainingELSEEXIT from the REPEAT loopclassify Etest using LocalClrRETURN the class
classi�er of the current rule on Dtraining �Dsubset are used as the evaluationmeasure of the attribute-value pair for growing the current rule. If this mea-sure is lower than the estimated errors of the local classi�er on Dtraining at asigni�cance level better than 0.05 using a one-tailed pairwise sign-test [7], thisattribute-value pair becomes a candidate condition to be added to the currentrule. The sign-test is used to control the likelihood of adding conditions thatreduce error by chance. After evaluating all possible conditions, the candidatecondition with the lowest measure (errors) is added to the antecedent of thecurrent rule.Training cases that do not satisfy the antecedent of the rule are then dis-carded, and the above process repeated. This continues until no more candi-date conditions are found. This happens, when no better local classi�er can beformed, or the local training set is too small (i.e., � 30 examples) to further



reduce the instance sub-space by specializing the antecedent of the rule. Insuch cases, further growing the rule would not signi�cantly reduce its errors.Finally, the local classi�er of this rule is used to classify the test case underconsideration.LazyRule is a generalization of Lbr [20]. In principle, the general frame-work can be used with any base classi�er learning algorithms.3 Does LazyRule improve the performance ofclassi�ers?In this section, we evaluate whether the LazyRule framework can be used toimprove the performance of a base learning algorithm. In order to show thegenerality of the framework, two di�erent types of base learning algorithm areused in the following experiments. They are majority vote (MV) and the naiveBayesian classi�er (NB). MV classi�es all the test cases as belonging to themost common class of the training cases.NB [16, 17, 18] is an implementation of Bayes' rule:P (CijV ) = P (Ci)P (V jCi)=P (V )for classi�cation, where P denotes probability, Ci is class i and V is a vector ofattribute values describing a case. By assuming all attributes are mutually in-dependent within each class, P (V jCi) = Qj P (vj jCi) simpli�es the estimationof the required conditional probabilities. NB is simple and computationallye�cient. It has been shown that it is competitive to more complex learningalgorithms such as decision tree and rule learning algorithms on many datasets[9, 6].Because the current version of LazyRule only accepts nominal attributeinputs, continuous-valued attributes are discretized as a pre-process in the ex-periments. The discretization method is based on an entropy-based method[11]. For each pair of training set and test set, both the training set and thetest set are discretized by using cut points found from the training set alone.LazyRule with MV or NB uses the N-fold cross-validation method (alsocalled leave-one-out estimation) [4] in the attribute evaluation process becauseboth MV and NB are amenable to e�ciently adding and subtracting one case.We denote LR-NB as the LazyRule framework that incorporates NB as itsbase learning algorithm; likewise for LR-MV. Note that LR-NB is exactly thesame as Lbr [20].Ten commonly used natural datasets from the UCI repository of machinelearning databases [3] are employed in our investigation. Table 2 gives a briefsummary of these domains, including the dataset size, the number of classes,the number of numeric and nominal attributes. Two strati�ed 10-fold cross-validations [15] are conducted on each dataset to estimate the performance ofeach algorithm.Table 3 reports the average test classi�cation error rate for each of theexperimental datasets. To summarize the performance comparison between an



Table 2: Description of learning tasksDomain Size No. of No. of AttributesClasses Numeric NominalAnnealing 898 6 6 32Breast cancer (Wisconsin) 699 2 9 0Chess (King-rook-vs-king-pawn) 3196 2 0 36Credit screening (Australia) 690 2 6 9House votes 84 435 2 0 16Hypothyroid diagnosis 3163 2 7 18Pima Indians diabetes 768 2 8 0Solar 
are 1389 2 0 10Soybean large 683 19 0 35Splice junction gene sequences 3177 3 0 60Table 3: Average error rates (%) of LazyRule and its base learning algorithms.Datasets NB LR-NB MV LR-MVAnnealing 2.8 2.7 23.8 8.2Breast(W) 2.7 2.7 34.5 10.3Chess(KR-KP) 12.2 2.0 47.8 4.5Credit(Aust) 14.0 14.0 44.5 15.0House-votes-84 9.8 5.6 38.6 4.5Hypothyroid 1.7 1.6 4.7 2.3Pima 25.2 25.4 34.9 26.4Solar-
are 19.4 16.4 15.7 15.7Soybean 9.2 5.9 86.6 23.2Splice-junction 4.4 4.0 48.1 14.7mean 10.1 8.0 37.9 14.5ratio .73 .32w/t/l 7/2/1 9/1/0p. of wtl .0352 .0020algorithm and LazyRule with it, Table 3 also shows the geometric mean oferror rate ratios, the number of wins/ties/losses, and the result of a two-tailedpairwise sign-test. An error rate ratio for LR-NB versus NB, for example, iscalculated using a result for LR-NB divided by the corresponding result forNB. A value less than one indicates an improvement due to LR-NB. The resultof the sign test indicates the signi�cance level of the test on the win/tie/lossrecord.We summarize our �ndings as follows. LazyRule improves the predictiveaccuracy of NB and MV. The framework achieves a 68% relative reductionin error rate for MV, and 27% relative reduction for NB. The improvement issigni�cant at a level better than 0.05 for both MV and NB. LazyRule improvesthe performance of MV on all datasets. It improves the performance of NB on



Table 4: Average rule lengths of LazyRule.Dataset LR-NB LR-MVAnnealing 0.20 1.90Breast(W) 0.00 1.63Chess(KR-KP) 4.10 4.00Credit(Aust) 0.10 2.55House-votes-84 0.90 2.23Hypothyroid 0.40 4.21Pima 0.10 2.13Solar-
are 1.10 2.65Soybean 0.90 2.35Splice-junction 0.70 2.14mean 0.85 2.587 datasets, and keeps the same performance on 2 datasets. Only on the Pimadataset does LR-NB slightly increase the error rate of NB.Table 4 shows the average length of all rules produced by LR-NB and LR-MV. The average rule length is the ratio of the total of conditions produced forall test cases and the total number of test cases, averaged over all runs.The mean values across all datasets are 0.85 and 2.58 for LR-NB andLR-MV, respectively. Examining the �gures on each dataset indicates thatLazyRule only produces rules when it is possible to improve the performanceof the classi�er trained using all training cases and all attributes. On aver-age, LR-MV produces a rule with more than 1.5 conditions for each test caseon each of the experimental datasets. This is an indication that LazyRulecould improve the performance of MV on all of these datasets. Small valuesof average rule length indicate either no or minor improvement. This is shownby LR-NB on the Annealing, Breast(W), Credit(Aust), Hypothyroid and Pimadatasets, which have average rule lengths less than 0.5.LazyRule is expected to require more compute time than the base learningalgorithm. For example, in the Breast(W) dataset in which LR-NB producesno rule, the execution time is 0.241 seconds as compared to .005 seconds forNB. In the Chess dataset in which LR-NB produces the longest rule, LR-NBrequires 213.13 seconds whereas NB requires only 0.034 seconds. The time isrecorded from a 300MHz Sun UltraSPARC machine.Being a lazy learner, another important factor that a�ects LazyRule'sexecution time is the test set size. The execution time of LazyRule is propor-tional to the size of the test set. For example, in the Chess dataset, the testsize used in the current experiment is 319. When we change the experimentfrom ten-fold cross-validation to three-fold cross-validation (the test set size isincreased to 1066), the execution time of LR-NB increases from 213 seconds to299 seconds.



4 The Advantages and Limitations ofLazyRuleLazyRule's primary action is to eliminate attributes and select training casesthat are most relevant to classifying the current test case. This builds a bet-ter performing classi�er for the test case than the classi�er trained using allattributes and all training cases. This 
exible nature of LazyRule stretchesthe base learning algorithm to its best potential under these two variables:attribute elimination and training case selection.The key advantage of LazyRule over a previous system LazyDT [12] is theuse of the cross-validation method for attribute elimination and training caseselection. The use of this technique allows di�erent types of learning algorithmto be incorporated into the LazyRule framework. LazyDT uses an entropymeasure for attribute elimination which leads to selecting cases with the sameclass. As a result, only majority vote can be used to form the local classi�er.The idea of using cross-validation and the learning algorithm, which is to beused to induce the �nal classi�er, in the evaluation process is called the wrappermethod [14]. This method was initially proposed solely for the purpose ofattribute selection/elimination. LazyRule uses the method for both attributeelimination and training case selection.The major computational overhead in LazyRule is the cross-validationprocess used in the evaluation of an attribute. The nature of the lazy learn-ing mechanism requires that the same process is repeated for each test case.This computational overhead can be substantially reduced by caching the use-ful information. In the current implementation of LazyRule, the evaluationfunction values of attribute-value pairs that have been examined are retainedfrom one test case to the next. This avoids re-calculation of the evaluationfunction values of the same attribute-value pairs when classifying unseen casesthat appear later, thus reducing the entire execution time. Our experimentshows that caching this information reduces the execution time of LazyRulewith the naive Bayesian classi�er by 93% on average on the 10 datasets usedin the experiment. This happens, because the evaluation of attribute-valuepairs for di�erent test cases are often repeated, including repeated generationof identical rules for di�erent test cases. LazyRule could be made even moree�cient by caching further information such as local classi�ers and indices fortraining cases in di�erent stages of the growth of rules. Of course, this wouldincrease memory requirements.Caching the local classi�ers has an added advantage apart from computa-tional e�ciency. Now, the number of di�erent rules together with local classi-�ers induced thus far are ready to be presented to the user in any stage duringthe classi�cation time.In theory, decision tree learning algorithm is a candidate to be used in theLazyRule framework. There are reasons why we did not include it in ourexperiments. First, given a test case, only one path is needed, not the entiretree. Second, the process of growing a lazy rule is similar to the process ofgrowing a tree. Only the criterion for attribute selection is di�erent. Lastly,



building a tree/path at the consequent of the rule would actually use di�erentcriteria for two similar processes. This seems undesirable.5 Conclusions and Future WorkWe introduce the LazyRule framework based on an earlier work for learninglazy Bayesian rules, and show that it can be used to improve the performanceof a base classi�er learning algorithm. The combined action of attribute elim-ination and training case selection of LazyRule, tailored for the test case tobe classi�ed, enables it to build a better performing classi�er for the test casethan the classi�er trained using all attributes and all training cases. We showempirically that LazyRule improves the performance of two base learningalgorithms, the naive Bayesian classi�er and majority vote.Our future work includes extending LazyRule to accept continuous-valuedattribute input, and experimenting with other types of learning algorithm suchas k-nearest neighbors. It is interesting to see how it will perform when alazy learning algorithm such as k-nearest neighbors is incorporated in this lazylearning framework. The current implementation of LazyRule only considersattribute-value pairs each in the form of `attribute = value'. Alternatives tothis form are worth exploring. Applying this framework to regression tasks isalso another interesting avenue for future investigation.References[1] Aha, D.W., Kibler, D., & Albert, M.K. Instance-based learning algorithms.Machine Learning, 6, 37-66, 1991.[2] Aha, D.W. (ed.). Lazy Learning. Dordrecht: Kluwer Academic, 1997.[3] Blake, C., Keogh, E. & Merz, C.J. UCI Repository of Machine LearningDatabases [http://www.ics.uci.edu/~mlearn/MLRepository.html]. Irvine,CA: University of California, Department of Information and ComputerScience, 1998.[4] Breiman, L., Friedman, J.H., Olshen, R.A., & Stone, C.J. Classi�cationAnd Regression Trees, Belmont, CA: Wadsworth, 1984.[5] Briand, L.C. & Thomas, W.M. A pattern recognition approach for softwareengineering data analysis. IEEE Transactions on Software Engineering, 18,931-942, 1992.[6] Cestnik, B. Estimating probabilities: A crucial task in machine learning.Proceedings of the European Conference on Arti�cial Intelligence, pages147-149, 1990.[7] Chat�eld, C. Statistics for Technology: A Course in Applied Statistics. Lon-don: Chapman and Hall, 1978.[8] Cover, T.M. & Hart, P.E. Nearest neighbor pattern classi�cation. IEEETransactions on Information Theory, 13, 21-27, 1967.
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