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Abstract. GRD is an algorithm for k-most interesting rule discovery. In
contrast to association rule discovery, GRD does not require the use of a
minimum support constraint. Rather, the user must specify a measure of
interestingness and the number of rules sought (k). This paper reports
efficient techniques to extend GRD to support mining of negative rules.
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1 Introduction

Rule discovery involves searching through a space of rules to determine rules of
interest to a user. Association rule discovery [1] seek rules between frequent items
(literals which satisfy a minimum support constraint). A rule set is developed
which can be pruned by using further user defined constraints.

Generalized rule discovery is an alternative rule discovery approach. Rules in
GRD are developed based on user defined constraints. There is no need to apply
a minimum support constraint. Rather, the user must specify a number of rules
to be generated, k. This avoids the inherent limitations of the minimum support
methodology.

Mining negative rules from databases has been approached using association
rule discovery [3, 6, 12]. We seek to extend GRD to mining negative rules so as
to enable negative rules to be discovered without the need to specify minimum
support constraints.

2 Association Rule Discovery

Association rule discovery aims to find rules describing associations between
items [1]. A rule has the form A ⇒ B, where A is the antecedent and B is the
consequent. Both A and B are itemsets from the database. The rule implies that
if an itemset A occurs in a record then itemset B is likely to occur in the same
record of the database.

Constraints are defined to limit the space of rules to be searched [8]. For
example, 1000 items define 21000 possible combinations of itemsets which results
in a large number of rules to explore. The minimum support constraint is used
to limit the number of itemsets that need be considered.
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The support of an itemset is the frequency with which the itemset occurs
in the database. The itemsets which satisfy the minimum support constraint
are frequent itemsets. From these itemsets the rules are developed. Further con-
straints can be applied to prune the set of rules discovered [7].

3 Negative Rules

Mining negative rules has been given some attention and has proved to be use-
ful. Initial approaches [3] considered mining negative associations between two
itemsets. Savasere, Omiecinski and Navathe [6] use the method of generating
positive rules from which negative rules are mined. The result is that there are
fewer but more interesting negative rules that are mined.

Negative association rules are associations rules in which either the an-
tecedent or consequent or both are negated. For example, for the rule A ⇒
B the negative rules are A ⇒ ¬ B (A implies not B), ¬ A ⇒ B, ¬ A ⇒ ¬ B [12].

The rules above specify concrete relationships between each itemset com-
pared to [6] who look at the rule A ⇒̄ B. Another possibility is to consider
itemsets within the antecedent or the consequent being negated (e.g. (¬ A & B)
⇒ C).

4 Generalized Rule Discovery

In some applications minimum support may not be a relevant criterion to select
rules. For example, often high-value rules relate to infrequent associations, a
problem known as the vodka and caviar problem [4].

The GRD algorithm [10, 11] implements k-most interesting rule discovery.
This approach avoids the need to specify a minimum support constraint, re-
placing it by a constraint on the number of rules to be found together with the
specification of an interestingness measure. Further constraints may be specified,
including a minimum support constraint if desired, but these are not required.

GRD performs the OPUS search [9] through the space of potential an-
tecedents and for each antecedent the set of consequent conditions are explored.
The consequent conditions are limited to single condition to simplify the search.

Space constraints preclude us from presenting the algorithm here. The ex-
tensions to the base GRD algorithm [11] are however, straightforward. Based on
the idea of a diffset [13], many of the statistics for negative rules can be derived
using much statistics already derived for positive rules. Specifically,

– support(A & ¬x ⇒ B) = support(A ⇒ B) − support(A & x ⇒ B).
– support(A ⇒ ¬B) = support(A) − support(A ⇒ B).

However, the search space is nonetheless considerably larger, as an increase
in the number of conditions considered results in an exponential increase in the
size of the search space that must be explored.



5 Experiments

The modified GRD program is referred to as GRDI (GRD new Implementation).
Experiments were carried out on ten datasets with GRDI. Most of the datasets
used were the same datasets used for the comparison of the GRD system with
Apriori in [11].

Table 1. Execution times of GRD and GRDI

Data Files Records GRD GRDI Ratio
connect4 67,557 20 106 5.30
covtype 581,012 835 1976 2.37
ipums.la.99 88,443 7 1634 233.43
letter-recognition 20,000 1 34 34.00
mush 8,124 1 8 8.00
pendigits 10,992 1 28 28.00
shuttle 58,000 1 11 11.00
soybean-large 307 1 4 4.00
splice junction 3,177 6 1872 312.00
ticdata2000 5,822 7 647 92.43

Nine out of the ten datasets are taken from the UCI Machine Learning
and KDD repositories [2, ?]. The other dataset, ticdata2000 is a market-basket
dataset used in research in association rule discovery [14]. Three sub ranges
were created for numeric attributes. Each sub range approximately contained
one third of the records. The experiments were carried out on a Linux server,
with a processor speed of 1.20 GHz and main memory of 256 MB RAM.

In all experiments GRD and GRDI search for the 1000 rules with the highest
value of the search measure, Leverage. The maximum number of conditions
available on the left-hand-side was 4 and both systems assume that only a single
condition was available for the right-hand-side. This will simplify the search
task. The executions time for GRD and GRDI are presented in Table 1. Two
observations from the results are:

1. GRD: Execution times for some large datasets (large number of records)
are very short and some are very long. e.g. connect4 has 67,557 records and
requires 20 seconds to develop rules, whereas ipums.la.99 has 88,443 records
takes only 7 seconds.

2. GRDI: for most datasets GRDI’s execution time is slightly greater than
GRD, e.g. mush. However, some datasets require greater execution times for
GRDI than GRD, e.g. ticdata2002.

The reason for large increase in the computational time for some datasets (e.g.
ipums.la.99) is primarily due to the increase in the size of the search space. If few
negative rules are generated then the execution time is only a little greater. If a
majority of rules are negative (sometimes all) then the execution times are a lot



Table 2. Comparison of Minimum and Maximum Leverage values

GRD GRDI
Data Files min. lev. max. lev. mean min. lev. max. lev. mean
connect4 0.1224 0.1227 0.1225 0.1688 0.1707 0.1698
covtype 0.1083 0.1743 0.1413 0.2459 0.2474 0.2467
ipums.la.99 0.2080 0.2484 0.2282 0.2499 0.2500 0.2500
letter-recognition 0.0455 0.1459 0.0957 0.1020 0.1499 0.1395
mush 0.1558 0.2109 0.1833 0.1994 0.4930 0.3390
pendigits 0.0615 0.1757 0.1186 0.1050 0.1832 0.1441
shuttle 0.0409 0.1599 0.1004 0.0911 0.2040 0.1766
soybean-large 0.2137 0.2359 0.2248 0.2286 0.6182 0.4324
splice junction 0.0404 0.1523 0.0963 0.1244 0.1733 0.1489
ticdata2000 0.1899 0.1922 0.1910 0.2184 0.5341 0.3763

greater. The increase in execution time is directly proportionate to the increase
in size of the search space.

The comparison of minimum leverage values of the rules generated by both
systems shows that GRDI always contains negative rules in its solution. For the
datasets in which GRDI’s execution times were greater than GRD, rules with
much higher leverage were also generated. This is also true of the maximum
leverage values. An important observation is that for several datasets the min-
imum leverage value of GRDI is greater than the maximum leverage value of
GRD. The information contained within the observation is that all the rules
generated for those datasets are negative rules.

6 Conclusions

GRD has been extended to discover negative rules, providing negative rule dis-
covery without the need to specify a minimum support constraint. This is useful
because such a constraint is not appropriate for some domains and can prevent
potentially interesting rules from being discovered. An additional advantage of
GRD is that users can generate a specific number of rules that maximize a
particular search measure. Incorporating the diffsets technique results in low
additional computational time.

The GRD algorithm is modified to iterate through two antecedent sets. One
for positive items and the other for negative items. Within each iteration a
second consequent set of negative items is explored in addition to the positive
consequent set.

A comparison of GRD and GRDI shows that for several datasets GRDI
took substantially longer to execute than GRD. The reason for this increase
in execution time is because these particular datasets contained many more
negative rules than positive rules. With the increased size of the search space,
the execution times are bound to be longer for GRDI. For some datasets only
negative rules were generated. In conclusion, developing negative and positive
rules using GRD is tractable.
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