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Abstract

The success and popularity of naive Bayes has led to a field of research exploring algo-

rithms that seek to retain its numerous strengths while reducing error by alleviating

the attribute interdependence problem. This thesis builds upon this promising field of

research, contributing a systematic survey and several novel and effective techniques.

It starts with a study of the strengths and weaknesses of previous semi-naive

Bayesian methods, providing a taxonomy of them and comparative analysis of their

features. Twelve key semi-naive Bayesian methods are benchmarked using error anal-

ysis based on the bias-variance decomposition, probabilistic prediction analysis based

on the quadratic loss function and training and classification time analysis on sixty

natural domains from the UCI Machine Learning Repository. Results for logistic re-

gression and LibSVM, a popular SVM implementation, are also presented to provide

a baseline for comparison. In analyzing results of these experiments, we offer general

recommendations for selection between semi-naive Bayesian methods based on the

characteristics of the application to which they are applied.

This comparative study supports previous findings of strong performance from Av-

eraged One-Dependence Estimators (AODE), which significantly reduces naive Bayes’

error with modest training and classification time overheads. Backward Sequential

Elimination is an effective wrapper technique to identify and repair harmful interde-

pendencies, and has been profitably applied to naive Bayes. It is therefore surprising

that its straightforward application to AODE has previously proved ineffective. In

response to this observation, this thesis explores novel variants of this strategy leading

to effective techniques. These eliminate child attributes from within the constituent

One-Dependence Estimators, thereby significantly improving AODE’s prediction ac-

curacy. However, due to repeated accuracy evaluation of attribute subsets on AODE,

these elimination techniques have very high training time complexity. In response to

this drawback, a new type of semi-naive Bayesian operation, Subsumption Resolution

(SR), is proposed. It efficiently identifies pairs of attribute values such that one is a

generalization of the other and deletes the generalization at classification time. This

adjustment is proved to be theoretically correct for such an interdependence relation-

ship. The thesis demonstrates experimentally that SR can in practice significantly

v



improve both classification accuracy and the precision of conditional probability esti-

mates. When applied to AODE, SR achieves classification and probability estimation

accuracy competitive to state-of-the-art semi-naive Bayesian methods without undue

time complexity and may prove desirable over a considerable range of classification

tasks. In addition, SR is suited to incremental and semi-supervised learning. This

thesis also explores circumstances under which elimination of near-generalizations

proves beneficial.
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Chapter 1

Introduction

In this information age, data is accumulated and stored at an impressive pace. One

tremendous challenge we are facing is to convert large quantities of data into useful

information and knowledge, a process called data mining [Witten and Frank, 2005].

Machine learning is a key for data mining. It provides powerful tools for identifying

patterns and trends in data and generalizing them into compact forms, usually re-

ferred to as models. These models help people to interpret existing data and make

predictions for future data.

One important task of machine learning and data mining is supervised classi-

fication learning, in which a class label is associated with each observed example

and the goal of the learning system is to predict class labels for unlabeled exam-

ples. There are numerous approaches to this task, among which naive Bayes (NB)

[Kononenko, 1990; Langley, Iba and Thompson, 1992; Langley and Sage, 1994] may

be the simplest and most computationally efficient. This approach is referred to as

“naive” in that it makes the assumption of independence between attributes given

the class. Due to its simplicity, efficiency and remarkably high classification accuracy

in many application domains, for example, medical diagnosis and text classification

[Domingos and Pazzani, 1996; Mitchell, 1997; Lewis, 1998], NB has attracted consid-

erable interest.

Improvements to the accuracy of a computationally efficient method is of substan-

tial practical value. Over the years, many refinements to NB have been proposed.

This thesis builds upon this established body of work, analyzing the strengths and

1



Chapter 1. Introduction 2

weaknesses of previous techniques and utilizing that analysis to propose new algo-

rithms that enhance NB’s accuracy while retaining its attractive strengths. The

following three sections present the motivations, contributions and structure of this

thesis.

1.1 Motivations

One factor that contributes to the success and popularity of NB is its simplicity.

It makes a “naive” assumption that attributes are independent given the class and

hence dramatically reduces the computational overheads for estimating the posterior

probability. A fixed structure in which all attributes only depend on the class is

used to perform classification, consequently, there is no model selection. To learn

from new examples, it only needs to update a small number of frequency counts.

This characteristic, referred to as incrementality, is especially advantageous for data

mining applications where databases grow at a rapid pace. NB performs optimal

classification save only in so far as there are

• violations of its attribute conditional independence assumption; and

• inaccuracies in the estimation of the base probabilities from the training data.

However, this attribute independence assumption is frequently unrealistic in the

real world. Numerous techniques have sought to enhance the accuracy of NB by

relaxing the assumption. We call these methods semi-naive Bayesian methods.

Most semi-naive Bayesian methods are well-founded and tested, but they have

previously compared only to the base learner, NB, and a small number of other semi-

naive Bayesian methods. In consequence, the relative performance of those methods is

not clear, which illuminates the need for a comparative study of semi-naive Bayesian

methods. This leads to the first objective of this thesis, which is to study the

strengths and weaknesses of previous semi-naive Bayesian methods and offer general

suggestions for selection between these methods.

To achieve this objective, we examine twelve key semi-naive Bayesian methods

and empirically evaluate them with respect to accuracy and computational overheads.

We noticed that most algorithms that relax the attribute independence assumption

without modifying NB’s structure use a wrapper approach (refer to Section 2.5.2.2) to
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identify and remove harmful interdependencies, a process with high execution time.

Kononenko (1991) made an attempt to use a statistical method to identify correlations

between attributes and join strongly related attribute values. However, the reported

experimental results were not compelling. The question therefore arises as to whether

there are approaches, other than wrapper approach, that can efficiently detect and

repair harmful interdependencies while maintaining NB’s structure. Due to a variety

of relationships between attributes, we are especially interested in exploring methods

for detection and removal of some common interdependencies, which leads to the

second objective of this thesis.

Our extensive experimental results show that five semi-naive Bayesian methods

achieve significant accuracy improvement and there is no statistically significant ac-

curacy difference between them. In our experiments, these methods can be largely

classified into three groups (Figure 1.1). The first group significantly improves NB’s
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Figure 1.1: Significant accuracy improvement without undue computational over-
heads is desirable.

accuracy at the cost of considerable increase in training time, which is the time to

build a model. The second group significantly enhances NB’s accuracy with substan-

tially increased classification time, which is the time to classify a new example. The

third group significantly improves NB’s accuracy without undue training and classifi-

cation time. Methods with high computational cost usually do not scale well to large
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data sets, which are very common in data mining applications. The combination

of high accuracy and modest computational cost makes the third group a desirable

option over a wide range of applications.

The third objective of this thesis is to develop efficient algorithms that further

improve classification and conditional probability estimation accuracy of NB and com-

pete favorably with state-of-the-art semi-naive Bayesian methods. More specifically,

we are devoted to improving the accuracy and probabilistic prediction of Averaged

One-Dependence Estimators (AODE) (refer to Section 3.2.2.4), the method in the

third group, without increasing its computational complexity and interfering with its

capacity for incremental learning.

1.2 Thesis Contributions

The original contributions to machine learning research are summarized as follows.

• Analysis of previous research

1. Detailed time and space complexity analysis for twelve existing semi-naive

Bayesian methods (Chapter 3).

2. A comprehensive comparison of NB and twelve semi-naive Bayesian meth-

ods using error analysis based on the bias-variance decomposition, proba-

bilistic prediction analysis based on the quadratic loss function and train-

ing and classification time analysis on sixty natural domains from the UCI

Machine Learning Repository (Chapter 3).

3. A comprehensive comparison of NB, five semi-naive Bayesian methods that

in our experiments significantly improve NB’s accuracy, logistic regression

and LibSVM using error analysis based on the bias-variance decomposition

on fifty-eight natural domains from the UCI Machine Learning Repository

(Chapter 3).

4. A taxonomy of semi-naive Bayesian techniques (Chapter 3).

5. Recommendations for selection between semi-naive Bayesian methods

based on the characteristics of the application to which they are applied

(Chapter 3).
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• Theoretical analysis

1. Definitions for three extreme types of interdependencies between at-

tributes: the generalization, substitution and duplication relationships,

analysis for relationships between them and between surjection and gen-

eralization, bijection and substitution (Chapter 5), and a definition for

near-generalization relationship (Chapter 6).

2. The theorem that deletion of generalizations is a theoretically correct ad-

justment for the generalization relationship (Chapter 5).

• New semi-naive Bayesian learning algorithms and techniques

1. A new technique, Subsumption Resolution (SR), for efficiently identifying

occurrences of the generalization relationship and removing generalizations

at classification time (Chapter 5).

2. Empirical evidence that the application of SR to NB significantly improves

both classification and conditional probability estimation accuracy at the

cost of considerable increase in computing time (Chapter 5).

3. Empirical evidence that the application of SR to AODE significantly im-

proves both classification and conditional probability estimation accuracy

without undue computation (Chapter 5).

4. Empirical evidence that AODE with SR competes favorably with state-of-

the-art semi-naive Bayesian methods (Chapter 5).

5. A new technique, Semi-Supervised Subsumption Resolution (SSSR), for

using both labeled and unlabeled data to efficiently identify occurrences of

the generalization relationship and remove generalizations at classification

time (Chapter 5).

6. Empirical evidence that SSSR can substantially reduce the variance of SR

(Chapter 5).

7. An investigation into the circumstances in which elimination of near-

generalizations often proves profitable (Chapter 6).

8. The finding that child selection might have greater effect than parent se-

lection in the context of AODE (Chapter 4).
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9. An analysis of the reason why previous approaches to attribute selection

in AODE have failed to significantly reduce error (Chapter 4).

10. Empirical evidence that AODE’s accuracy can be significantly improved

by the addition of child elimination with a statistical test (Chapter 4).

1.3 Thesis Organization

The rest of this thesis is organized as follows.

• Chapter 2 lays a foundation by introducing the fundamental terms and con-

cepts of supervised classification learning and by reviewing three classification

algorithms which will be compared in the following chapter.

• Chapter 3 reviews the literature on semi-naive Bayesian classification learning

and conducts comparative analysis of twelve semi-naive Bayesian methods in

terms of bias, variance, error, root mean squared error, training and classifica-

tion time on sixty natural domains from the UCI Machine Learning Repository.

In order to provide a baseline for comparison, it also presents results for lo-

gistic regression and LibSVM. Finally, it provides general recommendations for

selection between semi-naive Bayesian methods.

• Chapter 4 investigates why the straightforward application of attribute selec-

tion to AODE has proved ineffective and develops novel attribute selection

algorithms that do prove effective when applied to AODE.

• Chapter 5 formally defines three extreme types of interdependencies between

attributes: the generalization, substitution and duplication relationships and

discusses relationships between them. A new technique, Subsumption Reso-

lution (SR), is proposed to efficiently identify and remove generalizations at

classification time. The effect of SR on NB and AODE is evaluated and the

resulting classifiers are compared to other state-of-the-art semi-naive Bayesian

methods. Semi-Supervised Subsumption Resolution (SSSR), a variant of SR, is

proposed to reduce the variance of SR.
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• Chapter 6 extends Subsumption Resolution to Near-Subsumption Resolution

and studies the circumstances in which deletion of near-generalizations often

proves advantageous.

• Chapter 7 summarizes the major conclusions presented in this thesis and pro-

vides suggestions for future work.



Chapter 2

Supervised Classification Learning

This chapter provides background knowledge that is required by the thesis. First, it

formally defines the supervised classification problem and the notation used through-

out the thesis. Evaluation metrics for classification learning algorithms are briefly

introduced in Section 2.2 and special attention is given to accuracy, including the

bias and variance tradeoff, and computational complexity. Section 2.3 describes two

frequently used methods to evaluate probabilistic prediction, which provide a useful

adjunct to classification accuracy for algorithms that can also produce probability es-

timates. Discretization is briefly introduced in Section 2.4 and attribute selection in

Section 2.5. Section 2.6 reviews three classification algorithms that will be compared

in the next chapter. Finally, Section 2.7 provides a summary of this chapter.

2.1 Terminology and Notation

We begin by introducing the terminology and notation to be used in the rest of the

thesis. The notation follows that of Webb, Boughton and Wang (2005). Let Xi be an

attribute (also called a feature) which takes values from a set V (Xi). There are two

types of attributes. An attribute is qualitative (or categorical) if it can be classified

into distinct categories. An attribute is quantitative (or numeric) if it has a numerical

form and to which arithmetic operations can be applied [Bluman, 1997; Yang, 2003].

Let X = 〈X1, . . . , Xn〉 be the instance variable. An unlabeled instance (also called

example), denoted by x = 〈x1, . . . , xn〉, is a point in the instance space V (X1)×· · ·×
V (Xn). Let V (Y ) = {c1, . . . , ck} be the domain of the class variable Y . A class label

8



Chapter 2. Supervised Classification Learning 9

y ∈ V (Y ) is a value of Y . A labeled instance x′ = 〈x1, . . . , xn, y〉 is a point in the

instance space V (X1)× · · · × V (Xn)× V (Y ).

A training set T = {x′1, . . . ,x′t} is the set of labeled instances (also called training

instances). A classifier, denoted as C, is a function that maps an unlabeled instance x

to a class label y. Supervised classification learning is the process to build a classifier

from a training set such that the classifier can predict a class label for a new instance.

Given a set U , we denote the cardinality of U by |U |. We use vi to indicate

|V (Xi)| and v = 1
n

∑n
i=1 |V (Xi)| to indicate the mean number of values per attribute.

Table 2.1 summarizes the notation introduced in this section.

Table 2.1: Notation

Notation Description

Xi The ith attribute

xi The value of Xi

X The instance variable

V (Z) The domain of variable Z

x An unlabeled instance

x′ A labeled instance

Y The class variable

y A class label

|U | The number of elements in U

T The training set

C A classifier

n The number of attributes

k The number of classes

t The number of training instances

vi The number of values of attribute Xi

v The mean number of values per attribute
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2.2 Evaluation Metrics for Classification Learning

Algorithms

Learning algorithms can be examined from different perspectives: accuracy, computa-

tional complexity, incrementality, interpretability, scalability and robustness [Hilario

and Kalousis, 1999; Hastie, Tibshirani and Friedman, 2001]. Informally, accuracy

describes how well the classifier generated from a learning algorithm performs the

classification task. Computational complexity indicates the efficiency of an algorithm.

We say that an algorithm is incremental if it does not need to reprocess all earlier

training instances when new instances become available. Interpretability refers to

whether an user can easily understand the output of an algorithm. Scalability de-

scribes the behavior of an algorithm relative to the training sample size and hence

is closely related to computational complexity. Robustness reflects the sensitivity of

an algorithm to variations in data characteristics, including noise, missing, irrelevant

and redundant values. Among these metrics, accuracy and computational complexity

are most frequently used in evaluating learning algorithms.

2.2.1 Accuracy

We say that an instance is correctly classified if the prediction agrees with the actual

class for that instance and incorrectly if it does not. The accuracy of an algorithm

is the expected percentage of correctly classified examples that are randomly drawn

from the population [Kohavi, 1995; Mitchell, 1997; Witten and Frank, 2005]. In

other words, the accuracy of an algorithm is the probability that an instance ran-

domly drawn from the population (〈x, y〉) can be correctly classified by the classifier

C established by the algorithm:

accuracy = P (C(x) = y).

The error (or zero-one loss) of an algorithm is the probability that the classifier C
misclassifies a randomly drawn instance. That is, the error is one minus the accuracy:

error = P (C(x) 6= y)

= 1− accuracy.
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2.2.1.1 Methods for Accuracy Estimation

The accuracy on the training set, called the resubstitution accuracy, is an overopti-

mistic estimate of accuracy as the classifier has been learned from the same training

set, and not a good indication for the future performance of an algorithm. One nat-

ural approach to overcoming this problem is to estimate accuracy on an independent

set, called test set or holdout set, which is unavailable to the learning algorithm at

training time.

Holdout method. The training set is randomly divided into two disjoint subsets.

One is used as the training set and another the test set. The drawback of this method

is that the accuracy estimate of a single random split may heavily depend on the

specific partitions formed, as different partitions may lead to considerably different

results. This problem can be alleviated by using resampling.

Random subsampling. This approach performs multiple data splits of the train-

ing data and averages estimated accuracies on holdout sets. Random subsampling

produces more stable accuracy estimates than the holdout method.

Cross-validation. In a u-fold cross-validation, the training data is randomly di-

vided into u mutually exclusive subsets of approximately equal size. Sequentially, one

subset is used as the test set for the classifier generated from the remaining u − 1

subsets. Accuracy is obtained as the average of the estimates on u subsets. The

advantage of this technique is that every instance in the training data is used once

in the role of test set, and hence the cross-validation accuracy is the percentage of

instances that are correctly classified.

Leave-One-Out cross-validation. This is a special case of u-fold cross-validation,

in which u is the total number of instances (t). That is, each instance in the training

set is in turn left out to test the classifier generated from all the remaining instances.

Leave-One-Out cross-validation uses t − 1 instances for training and thus may be

expected to produce a classifier with similar accuracy to that which might be expected

from a classifier learnt from all the data. However, as the sample size grows, the
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computational overheads of Leave-One-Out cross-validation may be quite high, as t

separate classifiers must be learnt.

Bootstrap. This is a resampling technique with replacement. A training data of

t instances is randomly sampled with replacement to form another data set of t

instances. The new data set is used for training and those instances in the original

data that have not been selected are used for testing. This process is repeated several

times and the results are averaged to obtain the accuracy.

2.2.1.2 Bias and Variance

Error can be decomposed into bias, variance and irreducible error [Kong and Di-

etterich, 1995; Breiman, 1996; Kohavi and Wolpert, 1996; Friedman, 1997; Hes-

kes, 1998; Webb, 2000; Domingos, 2000; James, 2003]. This decomposition provides

valuable insights into the components of the error. Bias denotes the systematic com-

ponent of error, which relates to how closely the learner is able to describe the decision

surfaces for a domain. Variance describes the component of error that stems from

sampling, which reflects the sensitivity of the learner to variations in the training sam-

ple. Irreducible error is the lower error bound of any classifier and usually aggregated

into the bias or the variance in supervised classification learning.

Unfortunately, we cannot in general minimize bias and variance simultaneously.

There is a bias-variance tradeoff such that bias typically increases when variance

decreases and vice versa. Algorithms that form models with few parameters usually

have low variance in that they are insensitive to data variations, and high bias because

the simple models generated generally underfit the data. In contrast, algorithms that

learn models that are highly parameterized usually have low bias because they can

generate complex models to fit the training data closely, and high variance for the

reason that the models they create differ substantially between different training

samples. In such a case, the model built from the training data may not generalize

well to other data. This is called overfitting. In general, the better the learner is able

to fit the training data, the lower the bias will be. However, closely fitting the training

data may result in greater changes in the models formed from sample to sample, and

hence higher variance.
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One frequently used bias-variance decomposition method is Kohavi and Wolpert’s

method (1996), which defines bias and variance as follows.

bias2 =
1

2

∑
y∈Y

(P (Y = y | X = x)− P (C(x) = y))2

variance =
1

2

(
1−

∑
y∈Y

P (C(x) = y)2

)

σ2 =
1

2

(
1−

∑
y∈Y

P (Y = y | X = x)2

)

When estimating these metrics from experimental data, the irreducible error, σ2,

is usually aggregated into bias2.

2.2.2 Computational Complexity

The computational complexity theoretically measures the time and space that an

algorithm requires given the size of input data. Big-O notation describes how the

size of input data affects the usage of computational resources and is always used to

specify the worst-case performance of an algorithm given its inputs [Bachmann, 1894;

Sipser, 1997; Cormen, Leiserson, Rivest and Stein, 2001].

Given the input size of s and two positive non-decreasing functions f and g, we

say that f(s) has order O
(
g(s)

)
if for some positive constants c and s0 the following

condition holds:

∀s ≥ s0, f(s) ≤ cg(s).

In this thesis, we use Big-O notation to bound the worst-case running time or

space of an algorithm. For example, O
(
s2

)
is used to upper bound the running time

of the insertion sort algorithm, where s is the number of elements to be sorted.
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2.2.2.1 Time Complexity

The time complexity of an algorithm is the amount of time needed to fulfil its task.

In supervised classification learning, classification of an instance consists two steps:

• Generate a classifier from the training data (training time phase).

• Classify a new instance (classification time phase).

We use training time complexity to measure the time taken to establish a classifier

and classification time complexity to measure the time taken to classify a new instance.

2.2.2.2 Space Complexity

The space complexity measures the amount of space (or memory) required by an

algorithm. Training space complexity and classification space complexity are used to

measure the space needed respectively to form a classifier and classify a new instance.

2.3 Evaluation of Probabilistic Prediction

Error rate (or zero-one-loss) is a standard measurement used to evaluate learning

algorithms. In many applications, for algorithms that can also produce probability

estimates, it is desirable to obtain accurate probability estimates rather than a sim-

ple classification. For example, a correct prediction of an edible mushroom with a

probability of 1.0 is obviously more accurate than a prediction with a probability of

0.51. However, under zero-one loss, these two predictions have the same loss (zero)

[Hope and Korb, 2004]. Two frequently used methods to evaluate probabilistic pre-

diction are the quadratic loss function and the information loss function [Witten and

Frank, 2005]. They reward predictors that can accurately predict the true probabili-

ties.
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2.3.1 Quadratic Loss function

For a single test instance x, the quadratic loss function is:

k∑
i=1

(P̂ (yi | x)− bi)
2

= 1− 2P̂ (yj | x) +
k∑

i=1

P̂ (yi | x)2,

where P̂ (yi | x) is the probability estimate for the ith class, P̂ (yj | x) is the probability

estimate for the actual class and bi is 1 if i is the actual class and 0 otherwise. When

there are several instances in the test set, the loss function is summed over them all.

The lower the quadratic loss, the more accurate probability estimates we obtain. For

the mushroom example, the quadratic loss of the first prediction is 0, while that of

the second prediction is 0.4802.

Root mean squared error (RMSE) is a commonly used metric to evaluate the

accuracy of probability estimates. It is the square root of the mean squared error

given by the quadratic loss function:

√∑
i(P̂ (yi | x)− bi)2

k
.

2.3.2 Information Loss Function

The information loss function for a single test instance x is:

− log2 P̂ (yi | x),

where i is the index of actual class of x, and P̂ (yi | x) is the probability estimate

for the ith class. The larger the probability assigned to the actual class, the lower

the information loss will be, and hence the better the probabilistic estimation. For

the mushroom example, the information loss of the first prediction is 0 and that of

the second prediction is 0.9714. If a classifier assigns a zero probability to the actual

class, the information loss is infinite. In contrast, the upper bound of the quadratic

loss function is 1 +
∑

i P̂ (yi | x)2 ≤ 2. We use the quadratic loss function to evaluate
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probabilistic prediction due to the complexity of handling infinite values that can

arise with the information loss function.

2.4 Discretization

Some learning algorithms require that data comprises only qualitative attributes.

Therefore, before they can be applied to data sets with quantitative attributes, these

algorithms need a preprocessing step, called discretization, to transform quantita-

tive attributes to qualitative ones. Discretization can also improve accuracy and

efficiency for other learning algorithms which can deal with quantitative attributes

[Catlett, 1991; Kerber, 1992; Dougherty, Kohavi and Sahami, 1995; Cerquides and

de Màntaras, 1997; Frank and Witten, 1999; Liu, Hussain, Tan and Dash, 2002; Yang,

2003].

Most discretization methods are supervised methods. They take into account the

class information to select discretization cut points, which are real values that divide

the range of quantitative values into intervals. One commonly used discretization

approach is MDL discretization [Fayyad and Irani, 1993]. It uses class information

entropy to evaluate candidate cut points, selecting the cut point with the lowest

entropy to binarize the range. It recursively binarizes the two intervals of the previous

partition until a stopping criterion is met. The minimum description length (MDL)

principle [Rissanen, 1978], which recommends to select the hypothesis for the data

that achieves the best data compression [Grünwald, Pitt and Myung, 2005], is used

as a stopping criterion. The discretization is stopped when the cost of encoding the

current cut point and the classes of instances below and above the cut point is greater

than the cost of encoding the classes of instances before splitting.

For detailed studies of various discretization methods, the reader can refer to

[Dougherty et al., 1995; Liu et al., 2002; Yang, 2003].

2.5 Attribute Selection

Attribute selection is the process of selecting an attribute subset [Langley, 1994; Ko-

havi and John, 1997; Blum and Langley, 1997; Guyon and Elisseeff, 2003; Liu and

Yu, 2005]. It has many potential beneficial effects, reducing the dimensionality of the
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data, removing irrelevant or redundant attributes, improving the accuracy of learning

algorithms and providing faster prediction.

2.5.1 Irrelevant and Redundant Attributes

The accuracy of classification learners is often reduced by the presence of two types

of attributes, irrelevant and redundant attributes.

Irrelevant attributes. An attribute that is not necessary for predicting the class

is called an irrelevant attribute. In other words, an attribute is irrelevant if its

removal from the attribute set does not reduce the prediction power. There are many

different definitions of relevance in the literature. We refer the reader to Kohavi and

John (1997) and Blum and Langley (1997).

Redundant attributes. An attribute whose values are dependent on or can be de-

rived from the values of other attributes is called a redundant attribute. Redundancy

implies that attributes share mutual information. In real world problems, redun-

dancy is often inobvious. For instance, one attribute can be a function of another or

of several other attributes.

2.5.2 Heuristic Search

Since there are 2n candidate subsets of n attributes, an exhaustive search of the space,

even with a moderate n, is prohibitive [Amaldi and Kann, 1998]. This necessitates the

use of heuristic search, which guarantees to find a locally (not necessarily globally)

optimal attribute subset in reasonable time. Greedy hill climbing is a simple and

widely used heuristic search. It adds or removes an attribute irrevocably at each

step. That is, once an attribute is added or removed, that action cannot be undone.

In consequence, the time complexity of this search process is O
(
n2

)
.
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2.5.2.1 Search Direction

Forward selection begins with the empty attribute set and successively adds at-

tributes, while backward elimination starts with the complete attribute set and suc-

cessively removes attributes. Bidirectional search begins with both empty and entire

attribute sets, and simultaneously adds and removes attributes.

2.5.2.2 Subset Evaluation

To measure the effectiveness of alternative attribute subsets, we need an evaluation

function, which measures the discriminating ability of an attribute or an attribute set

among classes. Following the classification of Kohavi and John (1997), algorithms for

attribute selection broadly fall into two categories.

Wrapper model. The wrapper approach uses accuracy estimates of a target learn-

ing algorithm as an evaluation function [Kittler, 1986; Doak, 1992; Caruana and

Freitag, 1994; Langley and Sage, 1994; Pazzani, 1996; Kohavi, 1996; Kohavi and

John, 1997; Keogh and Pazzani, 1999; Zheng and Webb, 2000]. Given an attribute

subset, the accuracy of the target algorithm is estimated using cross validation. The

wrapper approach appears to deliver high accuracy as it takes the bias of the target

algorithm into account and thus the selected attribute subset may be better suited

to the algorithm [Langley, 1994]. However, even for an algorithm with a moderate

complexity, repeatedly applying the algorithm on attribute subsets results in high

computational overheads [Hall, 2000; Forman, 2003].

Filter model. The filter approach assesses attribute subsets based on general

characteristics of data, independently of any learning algorithm [Mucciardi and

Gose, 1971; Narendra and Fukunaga, 1977; Sheinvald, Dom and Niblack, 1990; Al-

muallim and Dietterich, 1991; Oliveira and Sangiovanni-Vincentelli, 1992; Kira and

Rendell, 1992; Cardie, 1993; Modrzejewski, 1993; Schlimmer, 1993; Koller and Sa-

hami, 1996; Hall, 2000] Generally, filter approaches are much more efficient than

wrapper approaches. As a consequence, for data with high dimensionality, the filter

approach might be a more practical choice.

Recently, there have been attempts to combine these two models. We call them

the hybrid models [Das, 2001; Xing, Jordan and Karp, 2001].
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2.5.2.3 Stopping Criteria

There are three commonly used options for halting the search.

Continue Search and Select Best (CSSB). This strategy continues the search

until all attributes have been added or removed and then selects the attribute subset

with the highest evaluation.

Stop on First Nonimprovement (SFN). This option terminates the search

when subsequent attribute addition (or elimination) does not improve the evalua-

tion of the current attribute set.

Stop on First Reduction (SFR). This method performs attribute selection con-

tinually so long as the evaluation of the current attribute set is not reduced.

2.6 Classification Algorithms

In this section, we first briefly describe Bayesian network classifiers [Friedman, Geiger

and Goldszmidt, 1997]. The simplest Bayesian network classifier, naive Bayes (NB)

[Kononenko, 1990; Langley et al., 1992; Langley and Sage, 1994], will be discussed

in Chapter 3. Next, we describe logistic regression [Mclachlan, 1992], which is the

discriminative counterpart of NB [Mclachlan, 1992; Rubinstein and Hastie, 1997].

Discriminative classifiers directly estimate the posterior probability P (y | x), while

generative classifiers estimate the joint probability P (y,x) and calculate P (y | x)

by using Bayes rule. Finally, we introduce support vector machines (SVM) [Boser,

Guyon and Vapnik, 1992; Cortes and Vapnik, 1995], which have become quite popular

due to its strong theoretical foundation and desirable performance. These methods

will be included in a comprehensive comparison performed in the next chapter.

2.6.1 Bayesian Network Classifiers

A Bayesian network [Pearl, 1988] represents a probability distribution by using a

directed acyclic graph (DAG) G = 〈VG, EG〉, where VG = {Z1, . . . , Zn} is the set of

nodes which represent variables and EG is the set of arcs which represent conditional
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dependencies between variables. These dependencies are quantified by a set of local

conditional probabilities. In the DAG G, each variable Zi is independent of its non-

descendants given its immediate predecessors, called parents and indicated as π(Zi).

Figure 2.1 illustrates a simple Bayesian network taken from [Pearl and Russell, 2000].
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Figure 2.1: A Bayesian network [Pearl and Russell, 2000].

It describes the relationships among five variables. For example, Z5 (whether the

pavement is slippery) is independent of Z1 (season of the year), Z2 (whether the

sprinkler is on) and Z3 (whether it is raining) given Z4 (the pavement is wet).

The joint probability over VG can be defined by

P (z1, . . . , zn) =
n∏

i=1

P (zi | π(zi)),

where zi is a value of Zi and π(zi) is a value of π(Zi). Hence, in the example illustrated

in Figure 2.1, we have

P (z1, z2, z3, z4, z5) = P (z1)P (z2|z1)P (z3|z1)P (z4|z2, z3)P (z5|z4).

Learning a Bayesian network is the process of finding a network that can best

match the training set [Friedman et al., 1997; Acid, Campos and Castellano, 2005].

The application of a learned Bayesian network to classification is simple, calculating

the posterior probability of the class given an instance and classifying the instance

into the class with the highest posterior probability [Duda and Hart, 1973]. We call
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the classifier that uses a Bayesian network to classify an instance a Bayesian network

classifier [Friedman et al., 1997].

The simplest Bayesian network classifier is NB [Kononenko, 1990; Langley et al.,

1992; Langley and Sage, 1994], in which Y has no parents and Xi only has Y as its

parent (1 ≤ i ≤ n). We will formally describe NB and its extensions in the next

chapter.

2.6.2 Logistic Regression

Logistic regression is a linear method for classification [Mclachlan, 1992; Mitchell,

2005; Witten and Frank, 2005]. It directly estimates the posterior class probability

from the training set and assigns the class with the highest posterior probability to

the test instance. In the case where Y is a boolean variable, the logistic regression

model is defined as

P (Y = 1 | X) =
1

1 + exp(w0 +
∑n

i=1 wiXi)

and

P (Y = 0 | X) = 1− P (Y = 1 | X) =
exp(w0 +

∑n
i=1 wiXi)

1 + exp(w0 +
∑n

i=1 wiXi)
,

where wi is the parameter to be estimated (0 ≤ i ≤ n). The vector of parameters

W = 〈w0, . . . , wn〉 is usually fit to maximize the conditional log-likelihood:

W ← argmax
W

t∑
o=1

lnP (Y o | Xo,W ),

where Y o and Xo are respectively the observed Y value and X value in the oth training

instance. A commonly used method for this maximization problem is gradient ascent

[Avriel, 2003; Pedregal, 2004]. The parameters are initialized to zero and continually

updated in the direction of the gradient until a global maximum is reached:

W ← W + η
∂

∑t
o=1 lnP (Y o | Xo,W )

∂W
, (2.1)

where η is the learning rate.
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For a multi-class problem, the logistic regression model is defined as

P (Y = cl | X) =
exp(wl0 +

∑n
i=1 wliXi)

1 +
∑k−1

j=1 exp(wj0 +
∑n

i=1 wjiXi)
.

and

P (Y = ck | X) =
1

1 +
∑k−1

j=1 exp(wj0 +
∑n

i=1 wjiXi)
,

where 1 ≤ l ≤ k− 1 and wji is the parameter for Y = cj and Xi. It also uses (2.1) to

optimize W .

2.6.3 Support Vector Machine

A Support vector machine (SVM) [Boser et al., 1992; Cortes and Vapnik, 1995] is

defined for two-class problems, where yi ∈ {−1, 1}, 1 ≤ i ≤ t. It performs classifica-

tion by mapping the training data into a higher dimensional space and constructing a

separating hyperplane to linearly separate the data into two classes with the maximal

margin.

In general, a separating hyperplane takes the form

w · x + b = 0,

where w = 〈w1, . . . , wn〉 is a weight vector, b is a threshold and · is the dot prod-

uct. The optimal separating hyperplane is the one that provides maximum separation

between the classes. The instances that have minimum distance to the optimal sepa-

rating hyperplane are called support vectors. It is quite likely that the test instances

are close to the training instances, and hence the greater the margin between support

vectors and the optimal separating hyperplane, the better the classification accuracy

a SVM may obtain.

Figure 2.2 illustrates the optimal separating hyperplane and support vectors in a

linearly separable problem taken from [Hearst, Schölkopf, Dumais, Osuna and Platt,

1998]. The training set is linearly separable if it can be separated by an n − 1

dimensional hyperplane. By scaling w and b, the hyperplanes, which are parallel to

the optimal separating hyperplane and closest to support vectors can be described
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Figure 2.2: Separating hyperplanes for a linearly separable problem. x1, x2 and x3

are support vectors [Hearst, Schölkopf, Dumais, Osuna and Platt, 1998].

as:

w · x + b = 1

and

w · x + b = −1.

All instances can be separated into two classes if for 1 ≤ i ≤ t, either w ·xi +b ≥ 1

or w · xi + b ≤ −1. This is equivalent to

yi(w · xi + b) ≥ 1, 1 ≤ i ≤ t. (2.2)

The distance between the hyperplanes is 2/ ‖ w ‖. Therefore, to maximize the

distance between the hyperplanes requires the solution of the following optimization

problem:

minimize
1

2
‖ w ‖2, subject to yi(w · xi + b) ≥ 1, 1 ≤ i ≤ t (2.3)
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Ideally, a SVM can establish an optimal separating hyperplane that completely

separates the training data. However, due to outliers, perfect separation may not ex-

ist. In the case when perfect separation does exist, it may result in a model with large

number of dimensions and hence overfitting. To allow a small number of misclassi-

fied instances, Corinna Cortes and Vladimir Vapnik (1995) introduce slack variables

ξi ≥ 0 (1 ≤ i ≤ t), which describe the degree of misclassification, to relax (2.2) to

yi(w · xi + b) ≥ 1− ξi 1 ≤ i ≤ t. (2.4)

It is clear that the larger the ξi, the easier the (2.4) to be met. Thus, we need to

penalize large ξi in the objective function. The equation (2.5) now transforms to

minimize
1

2
‖ w ‖2 +C

∑
i

ξi, subject to yi(w · xi + b) ≥ 1− ξi, 1 ≤ i ≤ t, (2.5)

where C > 0 is the penalty parameter of the error term.

For a non-linearly separable problem, SVM uses a kernel function to map the

training data into a higher dimensional space and then construct the optimal sepa-

rating hyperplane in the new space to perform linear classification. A kernel function

has the form

K(xi,xj) = Φ(xi) · Φ(xj),

where Φ is a nonlinear map. The most commonly used kernel function in SVM is

radial basis function (RBF) kernel

K(xi,xj) = exp(−γ ‖ xi − xj ‖2), for γ > 0.

Figure 2.3 [Hearst et al., 1998] shows that mapping a non-linearly separable train-

ing data into a higher dimensional space via Φ can make it possible to perform linear

separation.

SVM is a binary classifier algorithm. One frequently used approach to generalizing

from two-class classification to multi-class classification is the one-against-one method

[Hsu and Lin, 2002; Wu, Lin and Weng, 2004], where a classifier is trained between
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Figure 2.3: Linear separation might be possible in a higher dimensional space [Hearst,
Schölkopf, Dumais, Osuna and Platt, 1998].

each pair of classes (hence, there are k(k−1)/2 binary classifiers), and the predicting

class is the one with the largest vote.

2.7 Summary

The aim of this chapter is to provide some explanations of the concepts and terms

of supervised classification learning. These concepts and terms assist the reader to

appreciate NB and its extensions presented in the following chapters. Bias, variance,

RMSE, time and space complexity introduced in this chapter are employed to evaluate

these algorithms.



Chapter 3

Naive Bayes and Its Extensions

Naive Bayes (NB) is a simple, computationally efficient and effective probabilistic

approach to classification learning built on the assumption of conditional indepen-

dence between the attributes given the class. Its success and popularity has led to

the development of semi-naive Bayesian methods that seek to retain its numerous

strengths while reducing error by alleviating the attribute interdependence problem.

This chapter describes NB and analyzes its strengths and weaknesses. It categorizes

previous semi-naive Bayesian methods into four groups: those that apply conventional

NB to a new attribute set, those that alter NB by allowing interdependencies between

attributes, those that apply NB to a subset of the training sample, and those that

perform corrections to NB’s probability estimates. Twelve key semi-naive Bayesian

algorithms are analyzed in detail. We perform comparative analysis of their features

and benchmark them using error analysis based on the bias-variance decomposition,

probabilistic prediction analysis based on the quadratic loss function and training and

classification time analysis on sixty natural domains from the UCI Machine Learning

Repository. To provide a baseline for comparison, we also present comprehensive

experimental results for Logistic Regression and LibSVM, a popular SVM implemen-

tation. In analyzing the results of these experiments we provide general guidelines

for selection between semi-naive Bayesian methods based on the characteristics of the

application to which they are applied.

26
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3.1 Naive Bayes (NB)

Despite its unrealistic attribute conditional independence assumption, NB has demon-

strated competitive classification accuracy to many other sophisticated methods over

a considerable range of classification tasks. This section formally describes classifica-

tion with NB, analyzes NB’s time and space complexity and examines its merits and

limitations.

3.1.1 Classification with NB

The Bayesian classifier [Duda and Hart, 1973] labels an unseen instance with the class

that has the highest estimated posterior probability. Formally, it predicts the class

for an instance x = 〈x1, . . . , xn〉 by using

argmax
y

P (y |x) = argmax
y

P (y,x)/P (x) (3.1)

= argmax
y

P (y,x). (3.2)

The equality holds between (3.1) and (3.2) due to P (x) being invariant across

values of y.

Where estimates of P (y |x) are required rather than a simple classification, these

can be obtained by normalization,

P̂ (y |x) =
P̂ (y,x)∑k

i=1 P̂ (ci,x)
, (3.3)

where P̂ (·) represents an estimate of P (·).
For ease of explication, we describe NB and its variants by the manner in which

each calculates the estimate P̂ (y,x). This estimate is then utilized with (3.2) or (3.3)

to perform respectively classification or conditional probability estimation.

Since the number of combinations of attribute values is vn, to accurately estimate

P (Y,X), we need to estimate O(kvn) parameters, each requiring sufficient examples

to support reliable estimation [Mitchell, 2005]. It is clearly unrealistic to do this

directly in most real world domains as, if the number of attributes is large, some
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instances are unlikely to occur in the given training data, and hence it is impossible

to obtain the estimate of P (Y,X) directly from the training sample.

NB [Kononenko, 1990; Langley et al., 1992; Langley and Sage, 1994] circumvents

this problem by making the assumption that the attributes are independent given the

class. Consequently, the number of parameters to estimate P (Y,X) is dramatically

reduced to O(kvn). Under this conditional independence assumption NB estimates

P (y,x) by

P̂ (y,x) = P̂ (y)
n∏

i=1

P̂ (xi | y). (3.4)

In NB, the class Y is qualitative and an attribute Xi can be either qualitative

or quantitative. For qualitative attributes, P (y) is estimated by the frequency of

instances with value y, and P (xi | y) is estimated by the frequency of instances with y

and xi divided by that of instances with y. To avoid the problems that result from zero

frequencies and zero probabilities, smoothing methods, such as Laplace estimation and

m-estimation [Cestnik, 1990], are employed. Using Laplace estimation, we have

P̂ (y) =
F (y) + 1

t + k

and

P̂ (xi | y) =
F (y, xi) + 1

F (y) + vi

,

where F (y) is the frequency of y and F (y, xi) is the frequency of y and xi in the

training set. Using m-estimation, we have

P̂ (y) =
F (y) + m

k

t + m

and

P̂ (xi | y) =
F (y, xi) + m

vi

F (y) + m
,

where m is a constant.

For quantitative attributes, one common approach to representing the distribu-

tions P (Xi | Y ) is to assume that Xi has a Gaussian distribution whose mean and

variance depends on Y . Previous research [Dougherty et al., 1995] shows that the
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classification errors of NB with discretization methods employed in their study are

lower than that of NB with the assumption that quantitative attributes have a Gaus-

sian distribution. Theoretical analysis on why discretization is effective on NB can

be found in [Hsu, Huang and Wong, 2000; Hsu, Huang and Wong, 2003; Yang, 2003].

For this reason, in this thesis, quantitative attributes are discretized prior to NB’s

classification.

3.1.2 Complexity

At training time, NB generates a one-dimensional table of class probability estimates,

indexed by class, and a two-dimensional table of conditional attribute-value probabil-

ity estimates, indexed by class and attribute-value. The resulting space complexity

is O
(
knv

)
. To generate the estimates, NB needs to scan the training data, hence the

time complexity is O
(
tn

)
.

At classification time, to classify a single example has time complexity O
(
kn

)

using the tables formed at training time with space complexity O
(
knv

)
.

3.1.3 Merits of NB

Simplicity and Efficiency. Due to the independence assumption, NB is simple

and computationally efficient. It produces frequency tables at training time, obtained

by scanning the training data once if all attributes are qualitative. Therefore, as has

been discussed in Section 3.1.2, NB’s training time complexity is only linear in the

number of instances and attributes. Since it does not store the training data after

the tables of probability estimates are generated, it is space efficient as well.

Effectiveness. Even though the attribute independence assumption is frequently

unrealistic, NB has exhibited accuracy competitive with other learning algorithms

for many tasks, including medical diagnosis and text classification [Domingos and

Pazzani, 1996; Mitchell, 1997]. It performs optimal classification if the attribute con-

ditional independence assumption holds and the estimation of the base probabilities

from the training data is accurate. In the presence of interdependencies between at-

tributes, NB’s classification may still be optimal so long as it can generate the highest

conditional probability for the most probable class [Domingos and Pazzani, 1996].
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Robustness. Since missing values are simply ignored in frequency tables, if data

are missing at random they may have little impact on NB’s classification. NB takes

into account the evidence from all attributes and uses only class and conditional

attribute probabilities to perform classification. Therefore, irrelevant attributes and

noise may have little influence on NB’s classification as well.

Low Variance Profile. NB has low sensitivity to data variations in that it uses

a fixed formula to classify instances and hence does not perform model selection.

This may have the effect of decreasing the variance component of NB’s error [Hastie

et al., 2001].

Incrementality. NB performs classification by using class and conditional attribute

probability estimates. In consequence, when new training instances are available, it

only needs to update the probability estimates, which process has time complexity

O
(
n
)
. This desirable characteristic makes NB an attractive option for data mining

applications where databases grow at a rapid pace.

3.1.4 Limitations of NB

Limited Representation Ability. NB can master linearly separable concepts (re-

fer to Section 2.6.3) in binary domains [Duda and Hart, 1973], but cannot represent

some linearly separable concepts (for example, some m-of-n concepts 1) and many non-

linearly separable concepts (for example, the XOR function 2) [Kohavi, 1995; Domin-

gos and Pazzani, 1997; Rish, 2001].

Sub-optimal Classification. NB excels when the attribute conditional indepen-

dence assumption holds. Although some violations of the assumption do not affect

its optimality [Domingos and Pazzani, 1996], many do render its classification sub-

optimal. For example, in an extreme case where an attribute is perfectly correlated

with another, NB double counts the redundant information provided by the attribute.

Table 3.1.4 illustrates a linearly separable function which classifies instances to 1

if the values of any two of X1, X2 and X3 are 1 and to 0 otherwise [Duda and

1An m-of-n concept is true if m or more out of n binary attributes are true.
2The XOR function, indicated as xi ⊕ xj , is true if and only if xi 6= xj .
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Hart, 1973; Langley, 1993]. NB can successfully represent this function. However,

as illustrated in Table 3.2, when a redundant attribute X0 (the negation of X1) is

included, NB misclassifies the 4th instance to 0.

Table 3.1: NB can successfully repre-
sent this linearly separable function.

X1 X2 X3 Y

0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

Table 3.2: Given a redundant attribute X0,
NB misclassifies the 4th instance.

X0 X1 X2 X3 Y

1 0 0 0 0
1 0 0 1 0
1 0 1 0 0
1 0 1 1 0 ×
0 1 0 0 0
0 1 0 1 1
0 1 1 0 1
0 1 1 1 1

High Bias Profile. As discussed in Section 2.2.1.2, there is a bias-variance trade-

off such that bias typically increases when variance decreases and vice versa. NB

has low variance and at the same time high bias. Variance is expected to decrease

with increasing training sample size, as the differences between the different samples

decrease and hence the differences between the models generated from the samples

decrease [Brain and Webb, 2002]. It follows that bias is likely to be the most impor-

tant factor that governs the prediction error for problems with large training samples.

Therefore, the accuracy of NB may not scale up as well as other algorithms that have

lower bias.

3.2 Previous Semi-naive Bayesian Methods

There are many attempts to further improve NB’s accuracy by alleviating the

attribute interdependence problem while at the same time retaining its simplic-

ity and efficiency [Kittler, 1986; Kononenko, 1991; Langley, 1993; Langley and
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Sage, 1994; Kohavi, 1996; Pazzani, 1996; Sahami, 1996; Singh and Provan, 1996; Fried-

man et al., 1997; Webb and Pazzani, 1998; Keogh and Pazzani, 1999; Zheng, Webb and

Ting, 1999; Zheng and Webb, 2000; Webb, 2001; Xie, Hsu, Liu and Lee, 2002; Frank,

Hall and Pfahringer, 2003; Gama, 2003; Webb, Boughton and Wang, 2005; Acid

et al., 2005; Cerquides and Mántaras, 2005b; Cerquides and Mántaras, 2005a; Greiner,

Su, Shen and Zhou, 2005; Roos, Wettig, Grünwald, Myllymäki and Tirri, 2005; Zhang,

Jiang and Su, 2005; Langseth and Nielsen, 2006]. As already discussed in Sec-

tion 3.1.3, Domingos and Pazzani (1996) point out that interdependence between

attributes will not affect NB’s classification accuracy, so long as it can generate the

correct ranks of conditional probabilities for the classes. However, the success of

semi-naive Bayesian methods show that appropriate relaxation of the attribute inde-

pendence assumption is effective at improving its accuracy. Further, in many appli-

cations it is desirable to obtain accurate estimates of the conditional class probability

rather than a simple classification, and hence mere correct ranking will not suffice.

Previous semi-naive Bayesian methods can be roughly subdivided into four groups.

The first group applies NB to a new attribute set, which can be generated by delet-

ing attributes [Kittler, 1986; Langley and Sage, 1994; Pazzani, 1996] and joining at-

tributes [Kononenko, 1991; Pazzani, 1996; Langseth and Nielsen, 2006]. The second

group adds explicit interdependencies between attributes. Sahami (1996) introduces

the terminology of the z-dependence Bayesian classifier, in which each attribute de-

pends upon the class and at most z other attributes. Within this framework, NB

is a 0-dependence estimator. The majority of semi-naive Bayesian methods that

add explicit interdependencies between attributes establish 1-dependence classifiers

[Friedman et al., 1997; Keogh and Pazzani, 1999; Webb et al., 2005; Cerquides and

Mántaras, 2005a; Zhang et al., 2005]. Two exceptions are NBTree [Kohavi, 1996]

and Lazy Bayesian Rules (LBR) [Zheng and Webb, 2000], both of which may add

any number of dependencies for an attribute. This group and the third group, which

applies NB to a subset of the training instances [Langley, 1993; Frank et al., 2003], are

not mutually exclusive. For example, NBTree and LBR classify instances by applying

NB to a subset of the training instances, and hence they can also be categorized to

the third group. The fourth group performs adjustments to the output of NB with-

out altering its direct operation [Webb and Pazzani, 1998; Platt, 1999; Zadrozny and

Elkan, 2001; Gama, 2003].
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It is also useful to distinguish between eager learning methods [Kittler, 1986;

Kononenko, 1991; Langley, 1993; Langley and Sage, 1994; Kohavi, 1996; Pazzani,

1996; Friedman et al., 1997; Webb and Pazzani, 1998; Keogh and Pazzani, 1999;

Gama, 2003; Webb et al., 2005; Cerquides and Mántaras, 2005a; Zhang et al., 2005],

which perform learning at training time, and lazy learning methods [Zheng and Webb,

2000; Frank et al., 2003], which defer learning until classification time.

In this study, we focus on variants of NB other than variants of logistic regression,

the discriminative analog of NB.

3.2.1 Applying NB to a New Attribute Set

In NB, all the attributes are used during prediction, and hence all have some influence

on classification. When two attributes are strongly related, the influence from these

two attributes may be given too much weight, and the influence of the other attributes

may be reduced, which can result in prediction bias. Deleting one of these attributes

may have the effect of alleviating the problem. In addition, irrelevant attributes may

also degrade the performance of NB, in effect increasing variance without decreasing

bias. Hence their removal is also useful.

3.2.1.1 Backward Sequential Elimination and Forward Sequential Selec-

tion

Backward Sequential Elimination (BSE) [Kittler, 1986] and Forward Sequential Se-

lection (FSS) [Langley and Sage, 1994] use a simple heuristic wrapper approach that

seeks to minimize error on the training set in order to detect and repair harmful in-

terdependencies. Leave-one-out cross validation error is used as a selection criterion.

Starting from the full set of attributes, BSE operates by iteratively removing suc-

cessive attributes, each time removing the attribute whose elimination best reduces

training set error. FSS uses the reverse search direction and operates by iteratively

adding successive attributes, each time adding the attribute whose addition most im-

proves training set accuracy. BSE terminates the process when there is no accuracy

improvement, while FSS performs selection continually as long as the accuracy is not

reduced.
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We denote the resulting attribute subset as S. Independence is assumed among

the attributes in S given the class. Therefore, BSE and FSS estimate P (y,x) by

P̂ (y,x) = P̂ (y)
∏
x∈S

P̂ (x | y).

At training time BSE and FSS generate a one-dimensional table of class probabil-

ity estimates and a two-dimensional table of conditional attribute-value probability

estimates as NB does. As they perform leave-one-out cross validation to select the

subset of attributes, they must also store the training data, with additional space

complexity O
(
tn

)
.

Keogh and Pazzani (1999) speed up the process of evaluating the classifiers by

using a two-dimensional table, indexed by instance and class, to store the probability

estimates. Each entry in the table is the estimate of the posterior probabilities that

instance x belongs to class y. It is straightforward to update these to exclude or

include the contribution of a specific attribute xi by dividing or multiplying the

entry 〈x,y〉 by P̂ (xi|y). Hence, leave-one-out cross validation can be performed by

simply taking each attribute xi in turn, excluding or including xi in the table of

posterior probabilities, and then classifying x. The resulting space complexity is

O
(
tn + tk + knv

)
. The time complexity of a single leave-one-out cross validation is

reduced from O(tkn) to O(tk) by using the speed up strategy. Therefore, the time

complexity of attribute selection is O
(
tkn2

)
, as leave-one-out cross validation will be

performed at most O
(
n2

)
times.

BSE and FSS have identical time and space complexity to NB at classification

time, although they may in practice result in significant speed-up if many attributes

are deleted.

3.2.1.2 Backward Sequential Elimination and Joining

Creating new compound attributes when dependencies between attributes are de-

tected is another approach to relax the attribute independence assumption. The

Semi-naive Bayesian Classifier [Kononenko, 1991] uses an exhaustive search to join

attribute values iteratively based on a statistical method for identifying correlations
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between attributes. However, the reported experimental results were not compelling

and the technique does not appear to have been utilized since it was first proposed.

Backward Sequential Elimination and Joining (BSEJ) [Pazzani, 1996] uses predic-

tive accuracy on leave-one-out cross validation as a merging criterion to create new

Cartesian product attributes. The value set of a new Cartesian product attribute is

the Cartesian product of the value sets of the two original attributes. For instance,

if attribute X1 has two values: x1
1 and x2

1, and attribute X2 has three values: x1
2, x2

2

and x3
2, the new Cartesian product attribute will have six values: x1

1x
1
2 ,x1

1x
2
2, x1

1x
3
2,

x2
1x

1
2, x2

1x
2
2 and x2

1x
3
2. In addition to creating new Cartesian product attributes, BSEJ

deletes original attributes and also new Cartesian product attributes during a hill-

climbing search. It repeatedly joins the pair of attributes or deletes the attribute such

that the action most improves predictive accuracy on leave-one-out cross validation.

This process terminates when there is no further accuracy improvement.

The resulting Cartesian product attribute set is denoted as M . The set of remain-

ing original attributes that have not been either deleted or joined is indicated as R.

Independence is assumed among the attributes in R and M given the class. Hence,

BSEJ estimates P (y,x) by

P̂ (y,x) = P̂ (y)
∏
x∈R

P̂ (x | y)
∏
z∈M

P̂ (z | y).

At training time BSEJ generates a one-dimensional table of class probability esti-

mates and a two-dimensional table of conditional attribute-value probability estimates

as NB does. It also generates two-dimensional tables of conditional Cartesian product

attribute-value probability estimates, indexed by class and compound attribute-value.

In the worst case, the new Cartesian product attribute has vn values. Therefore, the

space complexity is O
(
tn + kvn

)
. BSEJ considers at most O

(
n3

)
Cartesian product

attributes, each requiring a pass through the training data to generate joint probabil-

ity estimates and performing leave-one-out cross validation. The time complexity of

joining and deleting attributes is O
(
tkn3

)
. At classification time, to classify a single

example has time complexity O
(
kn

)
and space complexity O

(
kvn

)
.
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3.2.2 Altering NB by Allowing Interdependencies between

Attributes

The addition of explicit arcs between attributes allows interdependencies between

attributes to be addressed directly. However, techniques for learning unrestricted

Bayesian networks often fail to achieve lower error than NB and sometimes lead to

higher error [Friedman et al., 1997]. Two possible reasons for this are that the large

number of parameters that must be estimated for full Bayesian networks lead to high

variance and that full Bayesian networks are oriented toward estimating any marginal

probability rather than the being specifically focused on the task of estimating the

conditional probabilities of the class attribute given a full set of other attribute values.

3.2.2.1 Tree Augmented Naive Bayes and SuperParent TAN

Tree Augmented Naive Bayes (TAN) [Friedman et al., 1997] allows each attribute

to depend on at most one non-class attribute. Based on this representation, they

extended a method first proposed by Chow and Liu (1996) and utilized conditional

mutual information to efficiently find a maximum spanning tree as a classifier. As each

attribute depends on at most one other non-class attribute, TAN is a 1-dependence

classifier. It estimates P (y,x) by

P̂ (y,x) = P̂ (y)
n∏

i=1

P̂ (xi | y, π(xi)), (3.5)

where π(xi), defined in Section 2.6.1, is a value of the parent of attribute Xi.

At training time TAN generates a one-dimensional table of class probability esti-

mates, and a three-dimensional table of probability estimates for each attribute-value,

conditioned by each other attribute-value and each class, space complexity O
(
k(nv)2

)
.

The time complexity of forming the three dimensional probability table is O
(
tn2

)
, as

we need to update each entry for every combination of the two attribute-values for

every instance. Creating the conditional mutual information matrix requires consid-

eration for each pair of attributes of every pairwise combination of their respective

values in conjunction with each class. The resulting time complexity is O
(
kn2v2

)
.

The parent function is then generated by establishing a maximal spanning tree, time

complexity O
(
n2 log n

)
. At classification time, to classify a single example has time
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complexity O
(
kn

)
. The three dimensional conditional probability table formed at

training time can be compressed by storing probability estimates for each attribute-

value conditioned by the parent selected for that attribute and the class. Hence, the

space complexity is O
(
knv2

)
.

SuperParent TAN (SP-TAN) [Keogh and Pazzani, 1999], a variant of TAN, uses

the same representation as TAN, but utilizes a wrapper approach to construct the

parent function. It uses leave-one-out cross validation error as a criterion to add arcs.

Those attributes without a non-class parent are identified and labeled as orphans.

Then an attribute called the SuperParent is allocated as parent of all the orphans

(other than itself). There are two steps to add an arc. First, the SuperParent that

most improves accuracy is selected. Next, SP-TAN assesses the effect of adding a

single arc from the SuperParent to each orphan. The orphan pointed to by the best

arc is called the FavoriteChild. This SuperParent-FavoriteChild pair is then added to

the current network. SP-TAN stops adding arcs when there is no further accuracy

improvement. It also uses (3.5) to classify an instance.

Since TAN and SP-TAN use different criteria to establish the parent function,

TAN tends to add n−1 arcs, while SP-TAN may have fewer arcs between attributes.

Another difference is the direction of arcs. TAN randomly selects a root attribute and

directs all edges away from it. This means the direction of edges is assigned randomly.

In contrast, SP-TAN makes the direction from SuperParents to their favorite children.

At training time SP-TAN needs additional space complexity O
(
tn

)
for storing

the training data compared with TAN. The selection of a single SuperParent is order

O
(
tkn2

)
, and the selection of the favorite child of the SuperParent is order O

(
tkn

)
,

which is achieved by using the speed up strategy mentioned in Section 3.2.1.1. Keogh

and Pazzani (1999) proposed another optimization to speed up the evaluating process

by sorting instances according to whether they are classified correctly and testing the

misclassified instances first. Hence, once the number of the misclassified instances

is larger than the current best-so-far error, we can stop testing the classifier. These

optimizations are effective in practice. The time complexity of forming the parent

function is O
(
tkn3

)
, as O

(
n
)

arcs are added. SP-TAN has identical classification

time and space complexity to TAN.



Chapter 3. Naive Bayes and Its Extensions 38

3.2.2.2 NBTree

NBTree [Kohavi, 1996] seeks to combine the advantages of NB and decision trees. It

partitions the training data using a tree structure and establishes a local NB in each

leaf. It uses 5-fold cross validation accuracy estimation as the splitting criterion. Each

value of a splitting attribute has its own subtree. The utility of a node is the 5-fold

cross validation accuracy of NB at this node and that of a split on an attribute equals

the weighted sum of the utility of nodes generated by the split. NBTree partitions

the training sample according to the test on the attribute that has the highest utility,

out of these that are substantially better than the utility of the current node. A split

is defined to be substantial if the relative error reduction is greater than 5% and the

splitting node has at least 30 instances. When there is no substantial improvement,

NBTree stops the growth of the tree.

The classical decision tree predicts the same class for all test instances that reach

a leaf. In NBTree, these instances are classified using a local NB in the leaf, which

only considers those attributes that are not tested on the path to the leaf and those

training instances that reach the leaf. Let B be the set of the splitting attributes on

the path leading to the leaf, and let L be the set of the remaining attributes, we have

P (Y,X) = P (B)P (Y |B)P (L |Y, B)

∝ P (Y |B)P (L |Y, B),

where P (Y |B) is the probability of the class in the leaf, in which the attributes in

B have same values, and P (L |Y,B) is the conditional probability of the remaining

attributes given the class in the leaf. Therefore, NBTree estimates P (y,x) by

P̂ (y,x) = P̂ (y, b)
∏

l∈L

P̂ (l | y, b),

where b is a value of B. NBTree is expected to have the effect of mitigating the

harmful attribute interdependence problem for each local NB if B can be selected

appropriately.

In NBTree, the number of leaves possible is O
(
t
)
, and the height of the tree is

O
(
logvt

)
if we assume the tree is a balanced tree. Therefore, there are O

(
t/v

)
internal
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nodes. At the root, NBTree performs 5-fold cross validation on each attribute to select

the best one to split, time complexity of O
(
tkn2

)
. Less time is required for the other

internal nodes. Hence, the time complexity of building the tree is O
(
t2kn2/v

)
. Each

leaf has O
(
n − logvt

)
attributes and stores a two-dimensional table of conditional

attribute-value probability estimates. The space complexity is O
(
tk(n− logvt)v

)
. At

classification time, to classify a single example has time complexity O
(
kn

)
, space

complexity O
(
tk(n− logvt)v

)
.

3.2.2.3 Lazy Bayesian Rules

Lazy Bayesian Rules (LBR) [Zheng and Webb, 2000] adopts a lazy approach and gen-

erates a Bayesian rule according to each test example. The antecedent of a Bayesian

rule is a conjunction of attribute-value pairs, and the consequent of the rule is a

local NB, which uses those attributes that do not appear in the antecedent. The

utility of an attribute-value pair is assessed using leave-one-out cross validation in

the local training samples, those examples that have the attribute values in the an-

tecedent together with the attribute value being tested. As different attribute-value

pairs cover different subsets of the training samples, it is necessary to be careful in

assessing the relative effectiveness of the alternatives. For example, one attribute

value might select a set of examples that are already all correctly classified by the

existing antecedent whereas another might select only examples that are not. If the

former made no errors and the latter made only 50% errors then it would be the

latter that provided that greatest improvement even though it had the higher error.

To measure each attribute-value pair on the whole local training sample, the errors

of the existing local NB on the training samples that satisfy the attribute values in

antecedent but not the attribute value being tested, are added to the errors of the

NB on the local training examples. The attribute-value pair with the lowest error,

out of these that are significantly lower than the error of the current local NB, is

added to the antecedent. The difference is considered as significant if the outcome of

a one-tailed pairwise sign test is better than 0.05. LBR stops adding attribute-value

pairs into the antecedent if there is no significant improvement.

Let q be a value of the set of attributes in the antecedent, and let O be the set of

remaining attributes, LBR estimates P (y,x) by
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P̂ (y,x) = P̂ (y, q)
∏
o∈O

P̂ (o | y, q).

The Bayesian rule generated by LBR can be considered as a branch of a tree built

by NBTree. LBR generates a rule for each new instance, while NBtree builds a single

model according to all the examples in the training data. If examples are not evenly

distributed among branches, NBTree may suffer from the small disjunct problem

[Holte, Acker and Porter, 1989]. As LBR uses lazy learning, it may mitigate the

problem by avoiding splits on an attribute when the relevant value is infrequent. It is

efficient when few examples are to be classified. However, the computational overhead

of LBR may be excessive when large numbers of examples are to be classified.

At training time, the time and space complexity of LBR are O
(
tn

)
, as it only

stores the training data. At classification time, LBR adds attribute-value pairs to the

antecedent with time complexity of O
(
tkn3

)
, as the selection of an attribute-value pair

for the antecedent is order O
(
tkn2

)
and this selection is performed repeatedly until

there is no significant improvement on accuracy. The space complexity is O
(
tn+knv

)
.

3.2.2.4 Averaged One-Dependence Estimators

To avoid model selection and attain the efficiency of 1-dependence classifiers, Av-

eraged One-Dependence Estimators (AODE) [Webb et al., 2005] selects a restricted

class of One-Dependence Estimators (ODEs) and aggregates the predictions of all

qualified estimators within this class. A single attribute, called the SuperParent if we

borrow the term from SP-TAN, is selected as the parent of all the other attributes

in each ODE. This type of ODE is called a SuperParent One-Dependence Estimator

(SPODE). In order to avoid unreliable base probability estimates, when classifying

an instance x the original AODE excludes SPODEs with SuperParent xi where the

frequency of the value xi is lower than limit m = 30, a widely used minimum on sam-

ple size for statistical inference purposes. However, subsequent research [Cerquides

and Mántaras, 2005a] reveals that this constraint actually increases error and hence

the current research uses m = 1.
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For any attribute value xi,

P (y,x) = P (y, xi)P (x | y, xi).

This equality holds for every xi. Therefore, for any U ⊆ {1, . . . , n},

P (y,x) =

∑
i∈U P (y, xi)P (x | y, xi)

|U | .

Thus,

P (y,x) =

∑
i:1≤i≤n∧F (xi)≥m P (y, xi)P (x | y, xi)

|{i : 1 ≤ i ≤ n ∧ F (xi) ≥ m}| , (3.6)

where F (xi) is the frequency of attribute-value xi in the training sample.

AODE utilizes (3.6) and, for each ODE, an assumption that the attributes are

independent given the class and the privileged attribute value xi, estimating P (y,x)

by

P̂ (y,x) =

∑
i:1≤i≤n∧F (xi)≥m P̂ (y, xi)

∏n
j=1 P̂ (xj | y, xi)

|{i : 1 ≤ i ≤ n ∧ F (xi) ≥ m}| .

At training time AODE generates a one-dimensional table of class probability

estimates, and a three-dimensional table of probability estimates for each attribute-

value, conditioned by each other attribute-value and each class, space complexity

O
(
k(nv)2

)
. Forming the three dimensional probability table is of time complexity

O(tn2). Classification requires the tables of probability estimates formed at training

time of space complexity O(k(nv)2). The time complexity of classifying a single

example is O(kn2) as we need to consider each pair of qualified parent and child

attribute within each class. This process can be sped up by introducing a constant

array to store estimates of P (y, xi) and P (xj | y, xi) at training time. Therefore,

at classification time, we only need to read, other than calculate, these estimates.

Although this does not change the classification time complexity, in practice, it may

result in substantial speed-up.
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3.2.2.5 Maximum a Posteriori Linear Mixture of Generative Distribu-

tions

AODE classifies by uniformly aggregating all qualified ODEs. One natural extension

to AODE is to use a linear mixture assigning a weight to each ODE. Maximum a

Posteriori Linear Mixture of Generative Distributions (MAPLMG) [Cerquides and

Mántaras, 2005a] assigns the weights w = 〈w1, . . . , wn〉 , with which the supervised

posteriori for Linear Mixture of Generative Distributions (LMG) is maximized, to the

ODEs. This is an optimization problem under the constraint that ∀l ∈ {1, . . . , n},
wl ≥ 0 and

∑n
l=1 wl = 1. The Augmented Lagrangian method [Pedregal, 2004] is

used to transform the constrained nonlinear optimization problem into a sequence

of unconstrained nonlinear optimization problems, which are solved by the Broyden-

Fletcher-Goldfarb-Shanno (BFGS) algorithm [Avriel, 2003].

The supervised posterior for LMG using Leave-One-Out cross validation is

P̂LMG(w|T ) =
∏

〈x,y〉∈T

( ∑n
i=1 wiP̂

LOO
i (x, y)∑

y∈Y

∑n
i=1 wiP̂LOO

i (x, y)

n∏
i=1

wi

)
,

where

P̂LOO
i (x, y) = P̂ (xi, y)

n∏
j=1

P̂ (xj|xi, y),

which is estimated by excluding instance 〈x, y〉 from T .

MAPLMG estimates P (y,x) by

P̂ (y,x) =
n∑

i=1

wiP̂ (y, xi)
n∏

j=1

P̂ (xj | y, xi).

At training time, MAPLMG first estimates the generative probabilities for the

instances left out. It generates a three-dimensional table of probability estimates and

stores the training data to perform Leave-One-Out cross validation, space complexity

of O(tn + k(nv)2). Since we need to go through the training data and consider each
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parent and child attribute pair within each class, the estimation process has time

complexity of O(tkn2). The second step is to maximize the supervised posterior for

LMG, which has space complexity of O(n2) and time complexity of O(tknI), where I

is the upper limit of the number of iterations. Therefore, the overall time complexity

is O(tkn2 + tknI). At classification time, MAPLMG has identical time and space

complexity to AODE.

3.2.3 Applying NB to a Subset of the Training Set

Another effective approach to accommodating violations of the attribute conditional

independence assumption is to apply NB to a subset of the training set, as it is

possible that the assumption, although is violated in the whole training set, may

hold or approximately hold in a subset of the training set. As already discussed, this

group and the second group that alters NB by allowing interdependencies between

attributes are not mutually exclusive. NBTree and LBR use local NBs to classify an

instance and can also be classified into this group.

3.2.3.1 Recursive Bayesian Classifiers

Recursive Bayesian Classifiers (RBC) [Langley, 1993] forms NB on the training data,

then partitions the training data, placing each instance in a partition corresponding

to the class that NB assigns it. This process is repeated recursively on each partition

forming a tree, until each leaf partition contains only instances from one class. At

classification time, NB is applied to the test instance to direct it down one branch of

the tree. Then the NB formed at the appropriate partition is applied, and so on, until

a leaf is reached, at which point the NB for the leaf is applied to obtain a classification.

While results on artificial data were promising, the reported experimental results for

RBC on natural data sets are disappointing. As a result the technique has received

little attention.

3.2.3.2 Locally Weighted Naive Bayes

Inspired by locally weighted linear regression [Cleveland, 1979; Atkeson, Moore and

Schaal, 1997; Loader, 1999; Hastie et al., 2001], Frank, Hall and Pfahringer incorpo-

rate locally weighted learning into NB [Frank et al., 2003]. Locally Weighted Naive
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Bayes (LWNB), at classification time, assigns a weight to each instance in the training

set and applies NB to the subset of the training set in which all weights of instances

are greater than zero. The instance weights decrease linearly with the Euclidean dis-

tance to the test instance and the number of instances in the subset is determined

by a user-specified parameter h. The Euclidean distance of the test instance to the

ith nearest neighbor is denoted as di. Before the distance is calculated, quantitative

attributes are assumed to be normalized (0 ≤ xi ≤ 1) and qualitative attributes be

binarized. LWNB assigns the weight wi = f(di/dh) to the ith instance, where f is a

weighting function:

f(x) =

{
0 if x > 1

1− x otherwise
.

Let h′ be the number of instances whose distances are less than dh. LWNB applies

NB to the training set with rescaled weights w′
i which is calculated by

w′
i =

wi × h′∑t
j=1 wj

.

With these rescaled weights, the total weight in the subset in which all weights

are greater than zero is approximately h. That is,
∑h′

i=1 w′
i ≈ h.

In the subset, the frequency of the ith class is:

F (ci) =
h′∑

l=1

w′
lE(ci, cl),

where E(a, b) is one if a = b and zero otherwise.

The frequency of xj (the value of the jth attribute in the test instance) given class

ci is:

F (xj | ci) =
h′∑

l=1

w′
lE(ci, cl)E(xj, x

l
j),

where xl
j is the value of the jth attribute in the lth instance. LWNB uses (3.4) to

estimate P (y,x).



Chapter 3. Naive Bayes and Its Extensions 45

At training time, as LWNB only stores the training data, it has time and space

complexity of O
(
tn

)
. At classification time, the time complexity of computing dis-

tances is O
(
tn

)
if a linear search is performed.3 Estimating class probability and

conditional attribute-value probability has time complexity of O
(
h′n

)
. To classify

the test example requires time of order O
(
kn

)
. Hence, the classification time com-

plexity is O
(
tn + kn

)
. The space complexity is O

(
tn + knv

)
.

3.2.4 Performing Corrections to NB’s Probability Estima-

tions

The distortion of probabilities that NB’s independence assumption produces might be

corrected by making adjustments to the class probabilities or the attribute conditional

probabilities. This line of reasoning leads to the fourth group of methods, which

modify the probability outcome of NB.

3.2.4.1 Adjusted Probability Naive Bayesian Classification

Adjusted Probability Naive Bayesian Classification (APNB) [Webb and Pazzani,

1998] applies linear adjustments to the class probabilities. In the two class case,

it only needs to find an adjustment for one of the classes. As the adjustment for one

class will influence the adjustments for other classes in the multiple class case, APNB

uses a simple hill-climbing search to find adjustments that maximize resubstitution

accuracy.

If an instance x of class ci is misclassified as class cj by APNB with the current

vector of adjustments Adj, there are two possible adjustments to correct that mis-

classification. One is an upward adjustment, which multiplies the original probability

estimate for class ci by an adjustment >
Adjcj P̂ (cj |x)

P̂ (ci|x)
, where P̂ (cj | x) and P̂ (ci | x)

are the probability estimates produced by NB, and Adjcz is the adjustment for class

cz. Another is a downward adjustment, which multiplies the probability of class cj

with an adjustment <
AdjciP (ci|x)

P (cj |x)
. APNB selects a value slightly above or below the

bounds implied by these ranges, a small value (10−5) being added to the relevant

3When space-partitioning methods, such as KD-Tree, are performed, less time is required for
computing distances.
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bound for upward adjustments and subtracted from the relevant bound for down-

ward adjustments. If there is a significant accuracy improvement by using a upward

or downward adjustment, another bound value for the adjustment is computed. For

the upward adjustment, the upper bound value is the lowest value greater than the

lower bound value, that has a higher resubstitution error than the lower bound value.

For the downward adjustment, the lower bound value is the highest value less than

the upper bound value, that has a higher resubstitution error than the upper bound

value. The adjustment is replaced by the midpoint of the two bound values. This

process is repeated until there is no accuracy improvement that passes a binomial

sign test for significance at the 0.05 level.

APNB estimates P (y,x) by

P̂ (y,x) = AdjyP̂ (y)
n∏

i=1

P̂ (xi | y).

At training time APNB generates a one-dimensional table of class probability

estimates and a two-dimensional table of conditional attribute-value probability es-

timates. It also stores the training data to perform leave-one-out cross validation.

Hence, the space complexity is O
(
tn + knv

)
. In the worse case, there are O

(
t
)

mis-

classified instances, and each possible adjustment for the instance has time complexity

of O
(
tk

)
. This process is repeated once for each class to find a single adjustment that

maximizes resubsitution accuracy. Therefore, the time complexity is O
(
t2k2

)
. It has

identical time and space complexity to NB at classification time.

3.2.4.2 Iterative Bayes

Iterative Bayes (IB) [Gama, 2003] starts with the conditional attribute-value fre-

quency table generated by NB, indexed by class and attribute-value, and iteratively

updates the frequency table by cycling through all the training examples.

At each iteration, all the examples in the training set are classified by NB using the

current frequency tables. The conditional attribute-value frequency table is updated

through each training example. The adjustment (indicated as adj) for an example x

is
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1.0− P̂ (yi |x)

k
,

where yi is the predicted class. If the example is correctly classified, adj is added to

the entries 〈yi, xj〉, 1 ≤ j ≤ n, and adj/(k− 1) is subtracted from the entries 〈yl, xj〉,
1 ≤ l ≤ k, l 6= i and 1 ≤ j ≤ n. If the example is misclassified, adj is subtracted

from the entries 〈yi, xj〉, 1 ≤ j ≤ n, and adj/(k − 1) is added to the entries 〈yl, xj〉,
1 ≤ l ≤ k, l 6= i and 1 ≤ j ≤ n. This process is terminated when the number of

iterations exceeds 10 or the following evaluation function increases:

1

t

t∑
i=1

(
1.0− argmax

y
P̂ (y |xi)

)
,

where xi is the ith example. It uses (3.4) to estimate P (y,x).

At training time, IB generates a one-dimensional table of class probability es-

timates and a two-dimensional table of conditional attribute-value probability esti-

mates as NB does. It also store the training data, with additional space complexity

O
(
tn

)
. At each iteration, to update conditional frequency table requires time of or-

der O
(
tkn

)
, as we need to adjust each entry for every combination of the classes

and attribute-values for every example, and to perform classification for all examples

also requires time of order O
(
tkn

)
. Therefore, the total training time complexity is

O
(
tkn

)
. At classification time, it has identical time and space complexity to NB.

3.2.5 Complexity Summary

Table 3.3 summarizes the complexity of the algorithms discussed. We display the

time complexity and the space complexity of each algorithm for each of training time

and classification time.

The training time complexity of BSEJ and SP-TAN is cubic in the number of

attributes, that of NBTree is quadratic in the number of instances and attributes and

that of APNB is quadratic in the number of instances and classes. Hence, BSEJ and

SP-TAN has very high training time if the number of attributes is large, NBTree if

the number of instances and attributes are large and APNB if the number of instances

and classes are large. The classification time complexity of these four algorithms is
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Table 3.3: Computational complexity

Training Classification

Algorithm Time Space Time Space

NB O(tn) O(knv) O(kn) O(knv)

BSE O(tkn2) O
(
tn + tk + knv

)
O(kn) O(knv)

FSS O(tkn2) O
(
tn + tk + knv

)
O(kn) O(knv)

BSEJ O(tkn3) O(tn + kvn) O(kn) O(kvn)

TAN O(tn2 + k(nv)2 + n2logn) O(k(nv)2) O(kn) O(knv2)

SP-TAN O(tkn3) O(tn + k(nv)2) O(kn) O(knv2)

NBTree O(t2kn2/v) O(tkv(n− logvt)) O(kn) O(tkv(n− logvt))

LBR O(tn) O(tn) O(tkn3) O(tn + knv)

AODE O(tn2) O(k(nv)2) O(kn2) O(k(nv)2)

MAPLMG O(tkn2 + tknI) O(tn + k(nv)2) O(kn2) O(k(nv)2)

LWNB O(tn) O(tn) O(tn + kn) O(tn + knv)

APNB O(tn + t2k2) O(tn + knv) O(kn) O(knv)

IB O(tkn) O(tn + knv) O(kn) O(knv)

k is the number of classes

n is the number of attributes

t is the number of training examples

v is the mean number of values for an attribute

I is the upper limit of the number of iterations for BFGS
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linear in the number of classes and attributes. Therefore, once models are generated,

these methods can classify test instances efficiently.

LBR and LWNB have identical training time complexity to NB, and hence they are

highly efficient when few instances are to be classified. However, the high classification

time complexity of LBR, O
(
tkn3

)
, hampers its application when large numbers of

instances are to be classified. The classification time complexity of LWNB, O
(
tn +

kn
)
, is higher than that of the other methods except LBR, AODE and MAPLMG.

As t is usually considerably greater than k and n, LWNB has substantially higher

classification time relative to AODE and MAPLMG in most cases.

The training time complexity of MAPLMG, BSE and FSS is relatively higher

than that of TAN, AODE and IB, whose training time complexities are moderate.

AODE and MAPLMG have high classification time when the number of attributes

are large, for example, in text classification. However, for many classification tasks

with moderate or small number of attributes, the classification time complexity of

AODE and MAPLMG is modest.

BSEJ has very high training space complexity, which is an exponential function

of the number of attributes.

3.2.6 Bayesian Network Perspective

From the Bayesian Network perspective, the methods discussed can be classified into

three groups, as depicted in Figure 3.1. NB, BSE, FSS, BSEJ, LWNB, APNB and

IB are 0-dependence classifiers, since they only allow each attribute to depend on the

class. TAN, SP-TAN, AODE and MAPLMG belong to the second group, which allows

each attribute to depend on the class and at most one other attribute. For instance, in

graph (b), attribute X2 and Xi depend on attribute X1, and Xi+1 depends on Xi and

so forth. AODE and MAPLMG are special types of 1-dependence classifiers, in which

all the attributes depend on the class and the SuperParent, such as attribute X1 in

graph (c). The third group assumes independence among fewer attributes by allowing

each attribute to depend on the class and at most z (z ≥ 0) other attributes. In graph

(d), independence is assumed among attributes in O = {Xiq+1 , . . . , Xin} given the

class, and these attributes depend on all the attributes in P = {Xi1 , . . . , Xiq}. For

NBTree, P is the set of the splitting attributes on the path leading to the leaf, and
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Figure 3.1: Bayesian Network (a) 0-dependence classifier, (b) 1-dependence classifier,
(c) 1-dependence classifier (SuperParent), and (d) z-dependence classifier (z ≥ 0)

O is the set of leaf attributes. For LBR, P is the set of attributes in the antecedent,

and O is the set of attributes in the consequent.

3.3 Comparison of Fifteen Methods

In this section, the performance of NB and twelve semi-naive Bayesian algorithms,

BSE, FSS, BSEJ, TAN, SP-TAN, NBTree, LBR, AODE, MAPLMG,LWNB, APNB

and IB will be analyzed in terms of classification error, bias, variance, root mean

squared error, training time and classification time on the sixty natural domains from

the UCI Repository of machine learning [Newman, Hettich, Blake and Merz, 1998].
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To provide a baseline for comparison, we also compare these methods to logistic

regression and LibSVM with parameter search.

3.3.1 Data Sets

Table 3.4 summarizes the characteristics of each data set used in this thesis, including

the number of the instances, attributes and classes. We augment those widely used

natural data sets in the literature [Langley and Sage, 1994; Pazzani, 1996; Domingos

and Pazzani, 1996; Zheng and Webb, 2000; Webb et al., 2005] by twenty-three data

sets. They represent a wide range of practical problems.

Connect-4 Opening is the largest data set in our data collection. It has 67557

instances with 42 attributes, each corresponding to one connect-4 square on the seven-

column, six-row board. The class has 3 values: win, loss and draw. Each attribute

has 3 values: x (player x has taken the square), o (player o has taken the square)

and b (the square is blank). Each instance is a legal 8-play position in which neither

player x or player o has won and the next move is not forced.

Audiology, whose task is to diagnose hearing problems, has the largest number of

attributes (69) in our data collection. It has 226 instances and 24 classes. Nettalk

(Phoneme) has the largest number of classes. There are 52 classes, 5438 instances

and 7 attributes in Nettalk.

Figure 3.2 presents the number of instances, attributes and classes of the 60 data

sets. Data sets are respectively sorted in descending order on the numbers of in-

stances, attributes and classes in Figures 3.2 (a), (b) and (c). To scale Figure 3.2

(a) appropriately, we cut short the bars of 7 data sets which have more than 10000

instances. They are Connect-4 Opening (67557 instances), Adult (48842 instances),

Letter Recognition (20000 instances), Magic Gamma Telescope (19020 instances),

Nursery (12960 instances), Sign (12546 instances) and Pen Digits (10992 instances).

From Figure 3.2 (a) we can see that 11 data sets have more than 5000 instances,

23 data sets have more than 1000 instances and 35 data sets have more than 500

instances.

As shown in Figure 3.2 (b), 7 data sets, Audiology, Lung Cancer, Promoter Gene

Sequences, Sonar Classification, SPAM E-mail, Splice-junction Gene Sequences and

Syncon, have more than 50 attributes, 15 data sets have more than 30 attributes and

39 data sets have more than 10 attributes. All data sets have at least 4 attributes.
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Table 3.4: Data sets used for experiments

No.Domain CaseAttClass No.Domain CaseAttClass

1 Abalone 4177 8 3 31 Liver Disorders (Bupa) 345 6 2

2 Adult 48842 14 2 32 Lung Cancer 32 56 3

3 Annealing 898 38 6 33 Lymphography 148 18 4

4 Audiology 226 69 24 34 Magic Gamma Telescope 19020 10 2

5 Auto Imports 205 25 7 35 Mushrooms 8124 22 2

6 Balance Scale 625 4 3 36 Nettalk(Phoneme) 5438 7 52

7 Breast Cancer (Wisconsin) 699 9 2 37 New-Thyroid 215 5 3

8 Car Evaluation 1728 6 4 38 Nursery 12960 8 5

9 Connect-4 Opening 67557 42 3 39 Optical Digits 5620 48 10

10 Contact-lenses 24 4 3 40 Page Blocks 5473 10 5

11 Contraceptive Method Choice 1473 9 3 41 Pen Digits 10992 16 10

12 Credit Screening 690 15 2 42 Pima Indians Diabetes 768 8 2

13 Cylinder Bands 540 39 2 43 Postoperative Patient 90 8 3

14 Dermatology 366 34 6 44 Primary Tumor 339 17 22

15 Echocardiogram 131 6 2 45 Promoter Gene Sequences 106 57 2

16 German 1000 20 2 46 Segment 2310 19 7

17 Glass Identification 214 9 3 47 Sick-euthyroid 3772 29 2

18 Haberman’s Survival 306 3 2 48 Sign 12546 8 3

19 Heart Disease (Cleveland) 303 13 2 49 Solar Flare 1389 9 2

20 Hepatitis 155 19 2 50 Sonar Classification 208 60 2

21 Horse Colic 368 21 2 51 SPAM E-mail 4601 57 2

22 House Votes 84 435 16 2 52 Splice-junction Gene Sequences 3190 61 3

23 Hungarian 294 13 2 53 Syncon 600 60 6

24 Hypothyroid(Garavan) 3772 29 4 54 Tic-Tac-Toe Endgame 958 9 2

25 Ionosphere 351 34 2 55 Vehicle 846 18 4

26 Iris Classification 150 4 3 56 Volcanoes 1520 3 4

27 King-rook-vs-king-pawn 3196 36 2 57 Vowel 990 13 11

28 Labor Negotiations 57 16 2 58 Waveform-5000 5000 40 3

29 LED 1000 7 10 59 Wine Recognition 178 13 3

30 Letter Recognition 20000 16 26 60 Zoo 101 16 7
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Figure 3.2: The number of instances, attributes and classes of 60 data sets
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There are 4 data sets, Nettalk, Audiology, Letter Recognition and Primary Tumor,

that have more than 20 classes, 14 data sets have more than 5 classes and 25 data

sets have 2 classes.

3.3.2 Experimental Methodology

The experiments in this thesis compare algorithms implemented in the Weka work-

bench (version 3-5-2) [Witten and Frank, 2005] on the data sets described in Sec-

tion 3.3.1. Each algorithm is tested on each data set using a 50-run 2-fold cross

validation. The Friedman test and Nemenyi test with 0.05 level of significance are

employed to evaluate the performance of algorithms, including classification error,

bias, variance, RMSE, training time and classification time.

Experiments on the algorithms except LBR and LibSVM were performed on a

dual-processor 1.7 GHz Pentium 4 Linux computer with 2 Gb RAM. LBR and Lib-

SVM were executed on a Linux Cluster based on Xeon 2.8 GHz CPUs.

3.3.2.1 Two-Fold Cross-Validation Bias-Variance Estimation

Since bias and variance are important factors that influence the classification error

of a learning algorithm, bias-variance decomposition is widely used to investigate the

performance of learning algorithms. There are a number of different bias-variance

decomposition definitions [Kong and Dietterich, 1995; Breiman, 1996; Kohavi and

Wolpert, 1996; Friedman, 1997; Webb, 2000]. In this thesis, we use the bias and

variance definitions of Kohavi and Wolpert (1996) together with the repeated cross-

validation bias-variance estimation method proposed by Webb (2000).

In order to maximize the variation in the training data from trial to trial we use

two-fold cross validation. Figure 3.3 illustrates the estimation process. The training

data is first randomized. Then, it is randomly divided into two folds, foldi
1 and foldi

2.

Classifieri
1 is generated from foldi

1 and Classifieri
2 is generated from foldi

2. foldi
1

and foldi
2 are respectively used as a test set for Classifieri

2 and Classifieri
1. In this

manner, each available instance is classified once for each two-fold cross-validation. In

order to give a more accurate estimation of the average performance of an algorithm,

this process is repeated 50 times which produces 100 folds. Bias, variance, error and
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Figure 3.3: Two-fold cross-validation bias-variance estimation (50 runs)

RMSE are estimated by evaluation of the predictions of Classifieri
1 and Classifieri

2

when applied to foldi
2 and foldi

1 for 1 ≤ i ≤ 50.

In Kohavi and Wolpert’s method, the default bias-variance estimation method in

Weka [Kohavi and Wolpert, 1996], the randomized training data are divided into a

training pool and a test pool randomly. Each pool contains 50% of the data. 50 (the

default number in Weka) local training sets, each containing half of the training pool,

are sampled from the training pool. Hence, each local training set is only 25% of the

full data set. Classifiers are generated from local training sets and bias, variance and

error are estimated from the performance of the classifiers on the test pool. Figure 3.4

illustrates this process.

The repeated cross-validation bias-variance estimation method is preferred to Ko-

havi and Wolpert’s method as it results in the use of substantially larger training
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Figure 3.4: Kohavi and Wolpert’s bias-variance estimation (50 runs).

sets. In addition, every case in the training data is used the same number of times

for both training and testing.

3.3.2.2 Probability Estimates

The base probabilities of each algorithm, except TAN, Logistic Regression and Lib-

SVM, are estimated using Laplace estimation [Cestnik, 1990]. 4

In TAN, a smoothing operation was introduced and the conditional probability of

xi given its parents, π(xi), is calculated by

P̂ s(xi|π(xi)) = αF (xi|π(xi)) + (1− α)F (xi),

where α = tF (π(xi))
tF (π(xi))+s

and s = 5 [Friedman et al., 1997]. It also uses Laplace estimation

to estimate P (y).

4In keeping with Weka’s default probability estimation method, we use the Laplace estimation
to adjust probability estimates.
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3.3.2.3 Numeric Values and Missing Values

For all algorithms except Logistic Regression and LibSVM, quantitative attributes

are discretized using MDL discretization [Fayyad and Irani, 1993]. In keeping with

Weka’s Logistic Regression, missing values for qualitative attributes are replaced with

modes and those for quantitative attributes are replaced with means from the training

data.

3.3.2.4 Statistics Employed

We use the Friedman test and the Nemenyi test to compare the performance of

multiple algorithms and Win/Draw/Loss record to compare the performance of two

algorithms. Mean metrics across all data sets are also employed to provide a simplistic

overall measure of relative performance. In addition, we use the Spearman’s rank

correlation test to examine whether the bias proportion of error on large data sets is

higher than that on small data sets.

Friedman Test. Demšar (2006) recommends the Friedman test [Friedman, 1937;

Friedman, 1940] for comparisons of multiple algorithms over multiple data sets. It

first calculates the ranks of algorithms for each data set separately (average ranks are

assigned if there are tied values), and then compares the average ranks of algorithms

over data sets. The null-hypothesis is that there is no difference in average ranks.

If the null-hypothesis is rejected then it is probable that there is a true difference in

the average ranks of at least two algorithms. Post-hoc tests are used to determine

which pairs of algorithms have significant differences. Let Ri be the average rank of

ith algorithm over data sets. The Friedman statistic derived by Iman and Davenport

(1980) is

FF =
(D − 1)χ2

F

D(a− 1)− χ2
F

,

where

χ2
F =

12D

a(a + 1)

(∑
i

R2
i −

a(a + 1)2

4

)
,
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a is the number of algorithms and D is the number of data sets. The Friedman

statistic is distributed according to the F distribution with a− 1 and (a− 1)(D− 1)

degrees of freedom. We reject the null-hypothesis if FF is lager than the critical value

of F (a− 1, (a− 1)(D − 1)) for α = 0.05.

Nemenyi Test. If the Friedman test rejects the null-hypothesis, the Nemenyi test

is used to further analyze which pairs of algorithms are significant different. Let dj
i

be the difference between ith algorithm and jth algorithm. We assess a difference

between ith algorithm and jth algorithm as significant if dj
i > Critical Difference

(CD):

CD = q0.05

√
a(a + 1)

6D
,

where q0.05 are the critical values that are calculated by dividing the values in the

row for the infinite degree of freedom of the table of Studentized range statistics

(α = 0.05) by
√

2.

Win/Draw/Loss Record. When two algorithms are compared, we count the num-

ber of data sets for which one algorithm performs better, equally or worse to the other

on a given measure. A standard binomial sign test, assuming that wins and losses

are equiprobable, is applied to these records. We assess a difference as significant if

the outcome of a one-tailed binomial sign test is less than 0.05.

Mean. The arithmetic mean across all data sets provides a gross indication of rel-

ative performance and adjunct to other statistics.

Spearman’s Rank Correlation Test. We use this test to assess whether there

is a relationship between the mean bias proportion of error across large data sets

and small data sets over a algorithms. Mean values across large and small data sets

are separately converted to ranks (average rank is used if two or more values are

equal). Let di be the difference between the ranks on the ith out of a algorithms.
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The Spearman’s rank correlation coefficient is

rs = 1− 6
∑a

i=1 d2
i

a(a2 − 1)
.

We reject the null-hypothesis that there is no relationship between the mean values

across large and small data sets if rs is greater than the critical value for a two-tailed

Spearman’s rank correlation test at α = 0.05.

3.3.2.5 Logistic Regression and LibSVM

We use Weka’s implementation and default setting of logistic regression. The results

of LibSVM using Weka’s implementation and default setting with the exception of

turning on normalization of data (recommended in [Hsu, Chang and Lin, 2007]) are

poor on many data sets. For instance, the errors on 2 data sets, Pen Digits and

Syncon, are greater than 0.8, and errors on 13 data sets are greater than 0.5. This

necessitates the use of parameter search. We perform a “grid-search” on C and γ

for the RBF kernel using 5-fold cross-validation [Hsu et al., 2007]. Each pair of (C,

γ) is tried (C = 2−5, 2−3, . . . , 215, γ = 2−15, 2−13, . . . , 23), and the one with the lowest

cross-validation error is selected. However, this process has high time complexity.

3.3.2.6 Locally Weighted Naive Bayes

We use Weka’s implementation of LWNB and set the number of neighbors to 50, as

this number is favorable to LWNB [Frank et al., 2003].

3.3.3 Experimental Results

As LBR has very high classification time complexity, the results of LBR on the three

largest data sets (Connect-4 Opening, Adult and Letter Recognition) are obtained

from five runs of two-fold cross-validation.

BSEJ has a memory shortage problem on five data sets (Adult, Letter Recognition,

Segment, Spam E-mail and Cylinder-bands). To estimate the results of BSEJ, we

average the results of i− 1 iterations if the ith run is the first iteration that has the

problem.
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Due to the high time complexity of “grid-search” on C and γ for the RBF kernel,

the results of LibSVM on Letter Recognition, MAGIC Gamma Telescope, Pen Digits,

Optical Digits, Waveform-5000 and SPAM E-mail are obtained from five runs of two-

fold cross-validation. In addition, at the time of writing, we still have not obtained

the results of LibSVM on Adult and Connect-4 Opening, even by using two runs of

two-fold cross-validation.

We first compare NB and the 12 semi-naive Bayesian methods discussed using

the Friedman and Nemenyi tests on the 60 data sets. Then, we select five semi-naive

Bayesian algorithms, all of which enjoy significant error advantage relative to NB,

to compare with logistic regression and LibSVM on 58 data sets (exclude Adult and

Connect-4 Opening). We do not compare NB and all the 12 semi-naive Bayesian

algorithms to logistic regression and LibSVM, as the power of the Friedman and

Nemenyi tests is low with a large number of algorithms and hence 58 data sets are

not sufficient to differentiate 15 algorithms.

Following the graphical presentation of Demšar, we show the comparison of al-

gorithms against each other with the Nemenyi test on each metric. We plot the

algorithms on the left line according to their average ranks, which are indicated on

the parallel right line. Critical Difference (CD) is also presented in the graphs. The

lower the position of algorithms, the lower the ranks they obtain, and hence the bet-

ter the performance. Algorithms are connected by a line if their differences are not

significant. Detailed error, bias, variance and RMSE by data sets are presented in

the Appendix A.

3.3.3.1 Comparison of NB and the 12 Semi-naive Bayesian Algorithms

on 60 Data Sets

With 13 algorithms and 60 data sets, the Friedman statistic is distributed according to

the F distribution with a−1 = 13−1 = 12 and (a−1)(D−1) = (13−1)∗(60−1) = 708

degrees of freedom. The critical value of F (12, 708) for α = 0.05 is 1.7658. The

Friedman statistics for error, bias, variance and RMSE in our experiments are 9.2524,

21.7209, 20.1314 and 13.7670 respectively, and hence we reject all the null-hypotheses.

We show the comparison of the 13 algorithms against each other using the Nemenyi

test on error, bias, variance and RMSE in Figures 3.5, 3.6, 3.7 and 3.8 respectively.

With 13 algorithms and 60 data sets, the Critical Difference for α = 0.05 is CD
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= 3.313 ∗
√

a(a + 1)/(6 ∗D) = 3.313 ∗
√

13(13 + 1)/(6 ∗ 60) = 2.3556. Since the

comparison involves 13 algorithms, the power of the Nemenyi test is low and so only

large effects are likely to be apparent.

Error

MAPLMG achieves the lowest mean error rank (4.5250). LBR comes next and AODE

obtains the third lowest mean error rank (5.2083 and 5.5083). FSS and NB have the
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Figure 3.5: Error comparison of NB and 12 semi-naive Bayesian algorithms with the
Nemenyi test on 60 data sets. CD = 2.3556.

highest and the second highest mean rank (9.0833 and 8.7833).

The Nemenyi test indicates that MAPLMG enjoys a significant advantage over

all the other algorithms except LBR, AODE, LWNB, SP-TAN and BSEJ. LBR out-

performs NBTree, APNB, TAN, BSE, NB and FSS, and share a similar level of error

with MAPLMG, AODE, LWNB, SP-TAN, BSEJ and IB. The error differences be-

tween AODE and TAN, BSE, NB and FSS are significant. LWNB and SP-TAN have

a significantly lower mean error rank compared with NB and FSS. They have a lower

mean error rank compared to BSEJ, IB, NBTRee, APNB, TAN and BSE, but these

differences are not significant.
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FSS has a higher mean error rank compared to all the other algorithms, but the

difference is not significant when it is compared to NB, BSE, TAN, APNB, NBTree

and IB. Five semi-naive Bayesian algorithms, MAPLMG, LBR, AODE, LWNB and

SP-TAN outperform NB on the Nemenyi test.

Bias

NBTree comes out ahead when mean bias ranks are compared (rank being 3.8833).

It enjoys a significant advantage over all the other algorithms except LWNB, BSEJ

and LBR.
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Figure 3.6: Bias comparison of NB and 12 semi-naive Bayesian algorithms with the
Nemenyi test on 60 data sets. CD = 2.3556.

LWNB achieves the second lowest mean rank (4.0750) and shares a similar level of

bias with NBTree, BSEJ, LBR, SP-TAN, TAN and FSS. There are small differences

between BSEJ and LBR, and SP-TAN, TAN and FSS. BSEJ, LBR, SP-TAN, TAN,

FSS and MAPLMG have a significant advantage over APNB, IB and NB. However,

the differences between these algorithms and BSE and AODE are not significant.

AODE and BSE have lower mean bias ranks compared with APNB, IB and NB, but

only have a significant advantage in bias over NB, which has the highest mean bias
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rank (10.7083). NB has a significant disadvantage relative to all the other algorithms

but IB and APNB.

Variance

NB and AODE have the lowest and the second lowest mean variance rank (4.2167

and 4.4417 respectively). They enjoy a clear and consistent advantage in variance

over the rest of algorithms except MAPLMG, APNB and IB.
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Figure 3.7: Variance comparison of NB and 12 semi-naive Bayesian algorithms with
the Nemenyi test on 60 data sets. CD = 2.3556.

MAPLMG has the third lowest mean rank, shares a similar level of variance with

NB, AODE, APNB, IB, SP-TAN and BSE and has a significant advantage over the

remaining algorithms. APNB and IB have lower mean ranks than SP-TAN, BSE

and LBR, but these differences are not significant. These two algorithms enjoy a

significant advantage over BSEJ, LWNB, TAN, FSS and NBTree. SP-TAN, BSE and

LBR have lower mean ranks than that of BSEJ, LWNB, TAN, FSS and NBTree,

but only have a significant advantage over NBTree, which has the highest mean rank

(10.3000). All the other algorithms except FSS, TAN, LWNB and BSEJ enjoy a

significant advantage in variance over NBTree.
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RMSE

MAPLMG achieves the lowest mean rank of RMSE (3.9333). It significantly outper-

forms all the rest of algorithms but AODE, LBR and SP-TAN.
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Figure 3.8: RMSE comparison of NB and 12 semi-naive Bayesian algorithms with the
Nemenyi test on 60 data sets. CD = 2.3556.

AODE and LBR have lower mean ranks than SP-TAN, LWNB, TAN and BSEJ,

and have a significant advantage over the other algorithms except MAPLMG. The

advantage of SP-TAN relative to NB, APNB and IB is significant. There are small

differences between LWNB, TAN and BSEJ, which have a substantially lower RMSE

compared to APNB and IB.

IB and APNB have the highest and the second highest mean rank of RMSE (9.5500

and 9.0000). They have a significant disadvantage over all the other algorithms except

NB, NBTree, FSS and BSE. Four semi-naive Bayesian algorithms, MAPLMG, AODE,

LBR and SP-TAN, enjoy a significant advantage in RMSE relative to NB.

Computing Time

Some caution is required in comparing compute times for execution of implementa-

tions of alternative learning algorithms, as there is always room for uncertainty to
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what extent differences in performance can be attributed to the relative efficiency

with which the algorithms have been implemented as opposed to fundamental effi-

ciencies in the actual algorithms. Nonetheless, empirical comparison of real world

running time can provide a valuable adjunct to computational complexity analysis.

We here present the results of such an empirical evaluation with the qualification that

specific outcomes should be treated with caution.

Figures 3.9 and 3.11 provide training time and classification time comparisons of

all the algorithms except LBR, which was executed on a different machine, using the

Nemenyi test over 60 data sets. As BSEJ has a memory shortage problem on five

data sets (Adult, Letter Recognition, Segment, Spam E-mail and Cylinder-bands),

we estimate training time for each data set by multiplying the total training time on

i − 1 iterations by 50/(i − 1) if the ith iteration is the first iteration that has the

problem. Classification time is estimated by the same approach.

With 12 algorithms and 60 data sets, the Friedman statistic is distributed ac-

cording to the F distribution with a − 1 = 12 − 1 = 11 and (a − 1)(D − 1) =

(12 − 1) ∗ (60 − 1) = 649 degrees of freedom. The critical value of F (11, 649)

for α = 0.05 is 1.8029. The null-hypotheses are rejected because the Friedman

statistic for training time and classification time are 259.9665 and 203.9095 re-

spectively. The Critical Difference using the Nemenyi test for α = 0.05 is CD

= 3.269 ∗
√

a(a + 1)/(6 ∗D) = 3.269 ∗
√

12(12 + 1)/(6 ∗ 60) = 2.1519.

The mean training and classification time across 60 data sets are presented in

Figures 3.10 and 3.12. These algorithms are sorted in ascending order on the mean

metrics. To scale these graphs appropriately, we cut short the bars of SP-TAN in

Figure 3.10 and LWNB in Figure 3.12. The mean training time of SP-TAN is 12609.89

seconds and the mean classification time of LWNB is 7560.12 seconds.

Training Time

NB and LWNB achieve the lowest and second lowest mean training time rank (1.6917

and 1.7333). Their training time is not significantly lower than that of AODE and

outperforms the rest of algorithms.

AODE enjoys a clear advantage over the algorithms in which wrapper techniques

are employed (BSE, APNB, FSS, BSEJ, SP-TAN, MAPLMG and NBTree). The

difference between AODE and IB is also significant. It has substantially lower mean
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Figure 3.9: Training time comparison of NB and 11 semi-naive Bayesian algorithms
(exclude LBR) with the Nemenyi test on 60 data sets. CD = 2.1519.

training time rank compared to TAN, but the difference is not significant. TAN shares

a similar level of training time with AODE, IB, BSE and APNB, and has a significant

advantage relative to FSS, BSEJ, SP-TAN, MAPLMG and NBTree.

IB has lower mean training time rank compared to all the algorithms using wrap-

per techniques, and outperforms FSS, BSEJ, SP-TAN, MAPLMG and NBTree. The

difference between BSE and APNB is small. They enjoy a significant advantage over

BSEJ, SP-TAN, MAPLMG and NBTree.

FSS shares a similar level of training time with BSE, APNB, BSEJ, SP-TAN

and MAPLMG, and has a clear advantage over NBTree. The advantage of BSEJ

compared to NBTree, but not SP-TAN and MAPLMG, is significant. NBTree has

the highest mean training time rank (11.6167). All the algorithms, but MAPLMG

and SP-TAN, have a significant advantage in training time over NBTree.

NBTree has very high training time on data sets with large number of instances

and SP-TAN and BSEJ have very high training time on data sets with large number

of attributes. On the seven largest data sets with 10000 or more instances (Connect-

4 Opening, Adult, Letter Recognition, MAGIC Gamma Telescope, Nursery, Sign
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Figure 3.10: Mean training time of NB and 11 semi-naive Bayesian algorithms (ex-
clude LBR) across 60 data sets.

and Pen Digits), NBTree has the highest training time on all these data sets ex-

cept Connect-4 Opening and Letter Recognition. On Connect-4 Opening (42 at-

tributes), the training time of SP-TAN, BSEJ and NBTree are 551821.75, 195316.21

and 17939.40 seconds respectively. The mean training time of SP-TAN and BSEJ are

lower than that of NBTree when Connect-4 Opening is excluded. APNB has high

training time on data sets with large number of instances and classes. On Letter

Recognition, which has 20000 instances and 26 classes, the training time of APNB

(49190.25 seconds) is higher than that of NBTree (40406.30 seconds).

APNB has lower training time on 45 data sets compared to FSS and 52 data

sets compared to MAPLMG. Due to its high training time on data sets with a large

number of instances and classes, such as Letter Recognition and Nettalk (52 classes),

it has higher mean training time than FSS and MAPLMG.

Because FSS uses forward selection and continues the selection process when there

is no accuracy degradation, it is substantially slower than BSE. It has higher training

time than BSE on all the 60 data sets.

Classification Time

FSS, BSE, NB and IB have a clear and consistent advantage over the remaining

algorithms. LWNB, MAPLMG, AODE and NBTree have a significant disadvantage

relative to the rest of algorithms. LWNB, which is a lazy method, has a significant

higher test time rank than all the other algorithms except MAPLMG. However, it

has much higher classification time compared to MAPLMG on 58 data sets and lower
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Figure 3.11: Classification time comparison of NB and 11 semi-naive Bayesian algo-
rithms (exclude LBR) with the Nemenyi test on 60 data sets. CD = 2.1519.

classification time on Audiology and Lung Cancer, both of them have more than 55

attributes.

Since FSS and BSE generally delete attributes, they have lower mean classification

time rank compared to NB. Furthermore, as FSS employs forward selection and hence

usually uses a small number of attributes to classify an instance, it achieves the lowest

mean classification time rank.

The Nemenyi test does not assess the differences between APNB, SP-TAN, TAN,

and BSEJ as statistically significant. At classification time, APNB needs to apply

linear adjustments to the class probabilities, SP-TAN and TAN require to apply

parent function to each attribute and BSEJ needs to scan the joining and deleting

tables. Due to the additional operations, they usually have higher classification time

compared to NB, IB, BSE and FSS. Although these algorithms have a significantly

higher mean classification time rank than NB, in practice, these time differences are

small. For example, the time differences between APNB and NB on 53 data sets are

less than 1 second.

AODE and MAPLMG have relatively high classification time because they need

to average all qualified 1-dependence classifiers. Before using local NB in a leaf to
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Figure 3.12: Mean classification time of NB and 11 semi-naive Bayesian algorithms
(exclude LBR) across 60 data sets.

classify a test instance, NBTree needs extra time to reach the leaf and access the

appropriate local NB according to the attribute values of the test instance. It shares

a similar level of classification time with AODE and MAPLMG.

3.3.3.2 Bias and Variance: in Relation to the Size of Data Sets

Bias, as discussed in Section 2.2.1.2, measures how closely the learner is able to

describe the decision surfaces for a domain, and variance measures the sensitivity

of the learner to variations in the training sample. Generally, algorithms that learn

highly parameterized models, such as NBTree, have lower bias than algorithms that

form models with few parameters, such as NB, because models generated by the

former usually fit training data closer than those by the latter, but higher variance

in that the former models are more dependent on training data and sensitive to

data variations than the latter models. In this section, we discuss how data set size

interacts with bias and variance, which in turn affects error.

It is quite likely that differences between small samples are greater than those

between large samples. In other words, differences between samples are expected

to decrease with increasing sample size. It follows that differences between models

formed from those samples are expected to decrease and hence variance is expected

to decrease [Brain and Webb, 2002]. Geurts (2002) reported that the behaviors of

bias with respect to the sample size is algorithm dependent. In his study, the bias of

linear regression is independent of sample size, while decision trees decrease in bias

with increasing sample size. Brain and Webb (2002) observed that the bias of C4.5
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and its variants tends to decrease, while that of NB increases on all data sets tested

except Waveform.

If variance decreases as training set size increases, the bias proportion of error

may be higher on large data sets than on small data sets and the variance proportion

of error may be higher on small data sets than on large data sets. In consequence,

low bias algorithms may have advantage in error on large data sets and low variance

algorithms on small data sets [Brain and Webb, 2002; Castillo and Gama, 2006].

To assess whether the bias proportion of error is higher on large data sets than

small data sets, we compare the results of bias as a proportion of error on the twenty-

five largest data sets, each with 1000 or more cases, and on the thirty-five smallest

data sets, each with less than 1000 cases. Spearman’s rank test is used to test

whether the difference between the results on large data sets and small data sets

over the 13 algorithms is non-random. We assess a difference as significant if rs =

1 − 6
∑

d2
i /a(a2 − 1) > 0.566, where di is the difference between the rank of mean

value on the two sets of data sets on the ith out of 13 algorithms, a is 13, and 0.566

is the critical value for a two-tailed test at a significance level of 0.05.

Table 3.5 provides the ranked mean bias proportion of error on the 25 largest data

sets and the 35 remaining data sets over 13 algorithms. Figure 3.13 presents the mean

Table 3.5: Mean bias proportion of error on 25 largest and 35 smaller data sets

Bias/Error NB BSE FSS BSEJ TAN SP-TAN NBTree LBR AODE MAPLMG LWNB APNB IB

Large data 0.856 0.798 0.753 0.715 0.739 0.718 0.612 0.655 0.791 0.771 0.619 0.824 0.829

Rank 13 10 7 4 6 5 1 3 9 8 2 11 12

Small data 0.701 0.673 0.605 0.651 0.608 0.670 0.572 0.667 0.683 0.678 0.624 0.696 0.683

Rank 13 8 2 5 3 7 1 6 11 9 4 12 10

bias proportion on all, the large and the small data sets respectively. From Table 3.5

and subgraphs (b) and (c) of Figure 3.13 we can see that each mean bias proportion

on the large data sets is higher than that on small data sets with the exception of

LBR and LWNB. This is because the bias proportion of error of LBR on Mushroom

(0.0002) and Pen digits (0.0008) is very small and that of LWNB on Mushroom is

zero, and hence the mean bias proportion on the large data sets is relatively low for



Chapter 3. Naive Bayes and Its Extensions 71

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

IBNBFSS
APNB

BSE
TAN

BSEJ
NBTree

SP-TAN

AODE
LBR

MAPLMG

LW
NB

M
ea

n 
er

ro
r

Variance
Bias

(a) Mean error on 60 data sets

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

IBNBFSS
APNB

BSE
TAN

BSEJ
NBTree

SP-TAN

AODE
LBR

MAPLMG

LW
NB

M
ea

n 
er

ro
r

Variance
Bias

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

IBNBFSS
APNB

BSE
TAN

BSEJ
NBTree

SP-TAN

AODE
LBR

MAPLMG

LW
NB

M
ea

n 
er

ro
r

Variance
Bias

(b) Mean error on 25 largest data sets (c) Mean error on 35 smallest data sets

Figure 3.13: Bias accounts for a larger proportion of error on large data sets. (The
algorithms are sorted in ascending order on the mean error on 60 data sets)

LBR and LWNB. The rs value for the Spearman’s rank test is 0.819 > 0.566, which

suggests that bias accounts for a larger proportion of error on large data sets.

Figure 3.14 presents the error comparison of the 13 algorithms against each other

with the Nemenyi test on the 25 largest data sets (CD = 3.7246). When FSS is

compared to NB, APNB and BSE, TAN compared to APNB and IB, BSE compared

to APNB and NBTree compared to IB on all 60 data sets, the former of each pair

has a lower mean bias rank, and a higher mean error rank compared to the latter.

However, the former of each pair achieves a lower mean error rank compared to the

latter on 25 largest data sets.
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Figure 3.14: Error comparison of NB and 12 Semi-naive Bayesian algorithms with
the Nemenyi test on the 25 largest data sets. CD = 3.6493.

Note that the bias advantages of NBTree and BSEJ relative to NB are significant

and the error advantages are not on all 60 data sets. However, they have a significant

error advantage over NB on the 25 largest data sets, despite the power of the latter

test being substantially lower due to its use of fewer data points. Similarly, the error

difference between LWNB and BSE is not significant on all 60 data sets, but it is on

the 25 largest data sets. FSS has the seventh lowest mean bias rank, second highest

mean variance rank and highest mean error rank on 60 data sets, but its mean error

rank decreases substantially (moving down four positions) when the 25 largest data

sets are compared. These results correspond well to the expectation that algorithms

with a low bias profile, such as NBTree, tend to have lower relative error on large

training sets and algorithms with a low variance profile, such as NB, tend to have

lower relative error on small training sets.

In an earlier study [Zheng and Webb, 2005] which compared NB, AODE, NBTree,

LBR, TAN, SP-TAN, BSEJ, BSE and FSS, AODE was the only algorithm to have

a significant advantage in error over NB. However, three semi-naive Bayesian algo-

rithms, LBR, AODE and SP-TAN, achieve a significant advantage in error over NB in

the current study. AODE and SP-TAN achieve statistically significant win-draw-loss
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error records over NBTree in the previous study, while their error is not significantly

lower than that of NBTree in this study. The advantage of AODE over BSEJ is signif-

icant in the earlier study, it is not in the current study. Although different comparison

methods (the binomial sign test for the earlier study and the Nemenyi test for this

study) are employed, the main reason for the different outcomes might be that the

previous study used Kohavi and Wolpert’s bias-variance estimation technique, which

produces smaller training sets than the technique employed by the current study, and

compared the algorithms on 35 data sets with a smaller average size. Hence, the

experiments might put algorithms with a low bias profile at a disadvantage.

3.3.3.3 Comparison of NB, Five Semi-naive Bayesian Algorithms, Logis-

tic Regression and SVM on 58 Data Sets

Because using a large number of algorithms reduces the power of the Friedman and

Nemenyi tests, in this section we only compare NB and five semi-naive Bayesian

algorithms to logistic regression and LibSVM. These five algorithms are MAPLMG,

LBR, AODE, LWNB and SP-TAN, all of which significantly reduce NB’s error. As

we mentioned previously, at the time of writing, we have not obtained the results of

LibSVM on Adult and Connect-4 Opening due to the high time complexity of “grid-

search” on C and γ for the RBF kernel. We compare the 8 algorithms on 58 data

sets. Since LibSVM does not provide probability estimates, we only compare these

algorithms with respect to error, bias and variance.

With 8 algorithms and 58 data sets, the Friedman statistic is distributed according

to the F distribution with a−1 = 8−1 = 7 and (a−1)(D−1) = (8−1)∗(58−1) = 399

degrees of freedom. The critical value of F (7, 399) for α = 0.05 is 2.0325. The null-

hypotheses are rejected as the Friedman statistic for error, bias and variance are

5.8459, 16.0903 and 5.9328 respectively. The Critical Difference using the Nemenyi

test for α = 0.05 is CD = 3.031 ∗
√

a(a + 1)/(6 ∗D) = 3.031 ∗
√

8(8 + 1)/(6 ∗ 58) =

1.3787.

Figures 3.15, 3.16, and 3.17 show the comparison of the 8 algorithms against

each other with the Nemenyi test on error, bias and variance respectively. Logistic

regression is simplified as logistic and LibSVM as SVM in each graph.
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Error

LibSVM and MAPLMG achieve the lowest and second lowest mean error ranks

(3.5690 and 3.6293) and outperform logistic regression and NB. The differences be-

tween LibSVM, MAPLMG, AODE, LWNB, LBR and SP-TAN are not statistically

significant. Logistic regression has the second highest mean error rank (5.1293). Its
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Figure 3.15: Error comparison of NB, 5 Semi-naive Bayesian algorithms, logistic re-
gression and SVM with the Nemenyi test on 58 data sets (exclude Adult and Connect-
4 Opening). CD = 1.3787.

error is not significantly different to that of AODE, LWNB, LBR, SP-TAN, and NB.

Note that LBR and SP-TAN have a significant error advantage relative to NB

in the previous comparison (Figure 3.5). However, they do not have a significant

advantage relative to NB in this comparison from which Adult and Connect-4 Opening

are excluded. This is because LBR and SP-TAN have considerably lower error ranks

than NB on the large data sets Adult and Connect-4 Opening that can not included

in the current experiments. For example, the error rank of LBR on Adult is 1 while

that of NB is 13. The addition of the two data sets enhance the power of the Nemenyi

test to differentiate LBR and SP-TAN from NB.

Logistic regression also has substantially lower error than NB on the two data sets,

but the difference between logistic regression and NB is not statistically significant on
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the Nemenyi test when NB, SP-TAN, LBR, AODE, MAPLMG, LWNB and logistic

regression are compared on 60 data sets. For conciseness, we do not report the results.

In fact, when logistic regression is compared solely to NB, it has lower error on 34

data sets and higher on 26 data sets. This difference is also not statistically significant

using a binomial sign test, p = 0.1831.

Bias

LWNB has the lowest mean bias rank (3.0603). It shares a similar level of bias
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Figure 3.16: Bias comparison of NB, 5 Semi-naive Bayesian algorithms, logistic regres-
sion and SVM with the Nemenyi test on 58 data sets (exclude Adult and Connect-4
Opening). CD = 1.3787.

with LibSVM and logistic regression, and outperforms all the remaining algorithms.

LibSVM has the second lowest mean bias rank (3.1293), which is significantly lower

than the mean ranks of SP-TAN, MAPLMG, AODE and NB. Logistic regression has

lower mean rank than LBR, SP-TAN, MAPLMG, AODE and NB, but it only has a

significant advantage relative to NB.

The bias difference between AODE and NB is not significant in this comparison,

but it is in the previous comparison (Figure 3.6). The reason is that the inclusion of

Adult and Connect-4 Opening, on which AODE has lower mean bias ranks than NB,
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makes the Nemenyi test powerful enough to detect a significant difference between

AODE and NB.

When LWNB is compared to LBR and SP-TAN, it has a significant bias advantage

in this comparison, but shares a similar level of bias with LBR and SP-TAN in the

previous comparison (Figure 3.6). This is because the large number of algorithms

(13) included in the previous comparison reduced the power of the Nemenyi test to

differentiate the two methods.

Variance

NB and AODE have the lowest and second lowest mean variance rank (3.5517 and

3.5862). They have a significant advantage in variance over SP-TAN, LBR, and

LWNB. MAPLMG outperforms LWNB. It has lower mean rank than LibSVM, logistic

 3.5
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Figure 3.17: Variance comparison of NB, 5 Semi-naive Bayesian algorithms, logis-
tic regression and SVM with the Nemenyi test on 58 data sets (exclude Adult and
Connect-4 Opening). CD = 1.3787.

regression, SP-TAN and LBR, but the differences are not statistically significant.

In Figure 3.7, MAPLMG outperforms LBR. However, the current comparison does

not reveal this difference. This is also because the strength of the Nemenyi test is
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augmented by the addition of Adult and Connect-4 Opening, on which MAPLMG

has lower variance than LBR.

3.3.4 Discussion

NB does not perform model selection, using a fixed formula to classify test instances.

This results in relatively low variance. The relaxation of the attribute independence

assumption may make semi-naive Bayesian methods fit the training sample closer.

Consequently, they may have lower bias, but higher variance compared with NB. If

a semi-naive Bayesian method can find the right balance between bias and variance,

it may deliver higher classification accuracy than NB.

NBTree and LBR

NBTree, which combines decision trees with NB, is a relatively highly parameterized

method. It has the lowest mean bias rank in the comparison of the naive and semi-

naive Bayesian algorithms (Figure 3.6). LBR establishes a rule in a lazy manner. This

rule can be seen as a branch of the tree produced by NBTree. Thus, both approaches

can produce models with as high a level of dependence as there are attributes. Because

LBR uses lazy learning and hence can adjust its model to each test case, it is expected

to have lower bias compared with NBTree. However, Figure 3.6 shows that NBTree

has considerably lower bias than LBR.

There are two main differences between these two methods. First, NBTree uses

5-fold cross validation accuracy estimation as the splitting criterion, while LBR uses

Leave-One-Out cross validation accuracy estimation. Another difference between

NBTree and LBR is the stopping criterion. The former stops the growth of the tree

when the relative error reduction is less than 5% or the number of the instances in a

splitting node is less than 30, and the latter stops the growth of the rule when there

is no significant accuracy improvement as assessed by a sign test. It is quite likely

that the sign test at a significance level of 0.05 is stricter than the criterion that the

relative error reduction is greater than 5%. Hence, the latter might result in closer

fitting compared to the former. For instance, if the best error so far is 4 and the

current error is 0, the relative error reduction is 100% > 5%, but this improvement

fails the significance test.
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To assess this expectation we compare LBR with original NBTree (indicated as

NBTree5fold
ns ) and three variants of NBTree using the Nemenyi test. The first variant,

called NBTreeLOO
ns uses the same stopping criterion as original NBTree and Leave-

One-Out cross validation as the evaluation function. The second variant, called

NBTree5fold
s , uses the same splitting criterion as original NBTree and a sign test

as the stopping criterion. NBTreeLOO
s uses Leave-One-Out cross validation accuracy

estimate as the splitting criterion and a sign test as the stopping criterion. Figure 3.18

presents the bias comparison of the five algorithms using the Nemenyi test (CD =

 2
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Figure 3.18: Bias comparison of NBTree, NBTree’s variants and LBR with the Ne-
menyi test on 60 data sets. CD = 0.7875

0.7875).

Both NBTree5fold
ns and NBTreeLOO

ns enjoy lower mean bias rank compared with

LBR. 5 This result suggests that the splitting criterion is not the cause of the dis-

crepancy from our expectation that LBR has lower bias compared with NBTree. In

contrast, NBTree5fold
s and NBTreeLOO

s have higher mean bias rank compared with

LBR. Furthermore, NBTreeLOO
s , which uses the same splitting and stopping criteria

5Figure 3.6 does not reveal the bias difference between NBTree and LBR is statistically significant.
However, the advantage of NBTree in bias is significant compared to LBR, as shown in Figure 3.18.
This is because 60 data sets are not sufficient to differ NBTree and LBR when 13 algorithms are
compared, while they are sufficient when 5 algorithms are compared by using the Nemenyi test.
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as LBR, has a significant disadvantage relative to LBR. This result is consistent with

the expectation that the relative error reduction constraint results in closer fitting

than the sign test.

Since NBTree and LBR are z-dependence classifiers, they may have great potential

to have lower bias on large data sets as these may have sufficient data to obtain

accurate higher order probability estimates and hence to have appropriate model

selection. As a consequence, these two algorithms may have an advantage in error

on large data sets, however, they may not scale up well due to the high training time

complexity of NBTree and high classification time complexity of LBR.

LWNB and LBR

Both LWNB and LBR can be considered as techniques that identify a relevant subset

of the training set and learn a local NB therefrom. Since they use lazy learning,

which may find a model that is most appropriate to the test instance, they may have

relatively low bias at the cost of considerably increased classification time. LWNB

has the second lowest mean bias rank and considerably lower mean bias rank than

LBR (Figure 3.6). Its mean error rank is higher, but not significantly higher, than

that of LBR. However, LWNB has substantially lower classification time compared

to LBR. This makes LWNB a more appealing option for large data sets relative to

LBR.

FSS, BSE and BSEJ

FSS is the only method that has a higher mean error rank compared to NB. It has

higher variance than the remaining algorithms except NBTree. The reason might be

that FSS employs forward selection, which appears to produce an attribute subset

with a small number of attributes. This attribute subset tends to change greatly

from sample to sample. In contrast, BSE uses backward selection and usually uses

most of the attributes to classify instances. Consequently, there is often less variation

between the models created by BSE than there is between those created by FSS. In

addition, FSS might be susceptible to getting trapped into poor selections by local

minima.

BSEJ provides substantial decrease in bias by creating new compound attributes

and deleting attributes. The mean bias rank of BSEJ is slightly lower than that of
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LBR. It may also have the potential to deliver low error on large data sets. However,

due to the high space complexity, its Weka implementation suffers from memory

shortages when large numbers of attributes are joined.

TAN and SP-TAN

Comparing SP-TAN to TAN, the former has much lower variance than the latter. One

factor that may contribute to SP-TAN’s lower variance is that SP-TAN stops adding

arcs when there is no accuracy improvement and hence usually produces a forest,

while TAN tends to establish a tree with n−1 arcs. SP-TAN exhibits higher accuracy

compared to TAN in our data collection. Nonetheless, TAN might be superior when

training time is concerned.

APNB and IB

These two methods reduce NB’s bias by modifying the probability outcome of NB.

Compared to other semi-naive Bayesian methods, bias reductions obtained by APNB

and IB are small. For each training instance, APNB increases the probability esti-

mation for the true class if this increase improves the leave-one-out cross validation

accuracy, while IB increases the probability estimation for each attribute given the

true class. These probability adjustments reduce the zero-one loss, meanwhile, in-

crease the quadratic loss. The training cost of IB, which is linear in the number of

instances, attributes and the class, is considerably lower than that of APNB, espe-

cially when the numbers of instances and classes are large.

AODE and MAPLMG

AODE reduces variance by aggregating all qualified 1-dependence classifiers. In our

comparison, it shares similar levels of error and RMSE with LibSVM, MAPLMG,

LBR, LWNB, SP-TAN and logistic regression, while having considerably lower train-

ing time relative to LibSVM, MAPLMG, SP-TAN and logistic regression and classifi-

cation time relative to LWNB in most cases and LBR. AODE maintains the robustness

and much of the efficiency of NB, and at the same time exhibits significantly higher

classification accuracy and probabilistic prediction for many data sets. Therefore, it
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has the potential to be a valuable substitute for NB over a considerable range of clas-

sification tasks and has received substantial attention. Indeed, at the time of writing,

the paper introducing AODE [Webb et al., 2005] is the most cited paper from 2005

in the Machine Learning journal [Thomson ISI, 2008].

MAPLMG substantially reduces the bias of the base learner, AODE, at the cost of

considerable increase in variance. For the data sets in the current study, the reduction

in bias outweighs the increase in variance and results in an overall reduction in error.

Due to the relative bias/variance profile, MAPLMG is likely to achieve lower error

than AODE on large data sets. It delivers the lowest mean error and RMSE ranks

of the 12 Semi-naive Bayesian methods and has slightly higher mean error rank than

LibSVM, which has substantially higher training time overheads than MAPLMG. The

classification time overheads of AODE and MAPLMG are, although higher than other

semi-naive Bayesian methods except LWNB and LBR, modest for many classification

tasks with moderate or small numbers of attributes.

NB and Logistic Regression

Logistic regression is the discriminative counterpart of NB. Our experimental results

reveal that logistic regression has a significant bias advantage and variance disadvan-

tage relative to NB. As discussed in Section 3.3.3.2, low bias algorithms appear to

have an advantage in error with larger training sets, while low variance algorithms

appear to have an advantage with small training sets. It follows that NB may de-

liver lower error than logistic regression at small data set sizes and logistic regression

may achieve lower error than NB at larger data set sizes. This is consistent with Ng

and Jordan’s finding that NB has higher asymptotic error than logistic regression,

but it can approach its asymptotic error much faster than logistic regression [Ng and

Jordan, 2001].

At training time, logistic regression is considerably slower than NB. The mean

training time on 60 data sets for logistic regression is 125217.82 seconds, while that

for NB is 15.55 seconds. Logistic regression has higher training time than NB on

every data set of our collection.
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Selection Between Semi-naive Bayesian Methods

As discussed previously, bias appears to dominate error when more data is avail-

able. When predictive error is of major concern, algorithms with low bias may prove

beneficial on large data sets. However, such algorithms usually have very high time

complexity, and may not be attractive when efficiency is an important issue. Gener-

ally, for large training data we recommend use of the lowest bias semi-naive Bayesian

method whose computational complexity satisfies the computational constraints of

the application context. For small training data we recommend the lowest variance

semi-naive Bayesian method that has suitable computational complexity. For inter-

mediate size training data, an appropriate trade-off between bias and variance should

be sought within the prevailing computational complexity constraints.

For extremely small data NB may prove best and for large data NBTree, LWNB,

BSEJ and LBR may have an advantage if their computational profiles are appropriate

to the task. AODE achieves very low variance and RMSE, intermediate bias, low

training time complexity and modest classification time complexity. Its low variance

makes AODE an attractive option for small data sets, meanwhile, its low training time

complexity makes it a desirable option for large data sets. In consequence, it may

prove competitive over a considerable range of classification tasks. MAPLMG further

enhances AODE by reducing bias and error and improving probability prediction at

the cost of substantially increased training overheads. Hence, it may excel for many

classification problems if its computational cost can fall within the computational

constraints of the given application.

Admittedly these guidelines are imprecise, as the relevant data size is relative to

the complexity of the decision surfaces that must be approximated, and in most appli-

cations this is unknown. Nonetheless, we believe that they provide a useful framework

within which to operate when choosing between semi-naive Bayesian methods.

3.4 Summary

This chapter examines NB and techniques for relaxing the attribute independence

assumption. It describes twelve representative semi-naive Bayesian algorithms and

provides details of their time and space complexity. NBTree, SP-TAN, BSEJ and
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APNB have relatively high training time complexity, while LBR and LWNB have

high classification time complexity. BSEJ has very high space complexity.

In the empirical part of this chapter, we compare the algorithms using the bias-

variance decomposition and RMSE on sixty natural domains from the UCI Machine

Learning Repository. To provide a baseline for comparison, we also present results

for logistic regression and LibSVM with parameter search. The study reveals the out-

standing performance of MAPLMG on our data collection. It achieves a considerable

advantage in error and probabilistic estimation over the other semi-naive Bayesian

methods. AODE also demonstrates high accuracy and probabilistic prediction perfor-

mance. NBTree provides substantial decrease in bias, and significantly wins against

the remaining algorithms other than LWNB, BSEJ and LBR. Due to their low bias,

NBTree, LWNB, BSEJ and LBR have great potential to reduce error on large data.

As variance tends to decrease and bias tends to be a larger portion of error when

training set size increases, we suggest using low bias methods for large data sets

and low variance methods for small data sets to obtain higher classification accuracy,

within the further constraints on applicable algorithms implied by the computational

constraints of the given application. Computation cost and the trade-off between bias

and variance should be considered for intermediate size data.



Chapter 4

Parent and Child Selection for

AODE

The extensive comparative study in the previous chapter showed that AODE is a pow-

erful alternative to NB, substantially improving NB’s classification and probability

estimation accuracy, while retaining much of its attractive simplicity and efficiency.

In theory, AODE would appear to be a promising candidate for attribute selection,

which has two potential beneficial effects, both improving accuracy and also reducing

classification time due to the need to process fewer attributes. Its error and classifi-

cation time overheads might be further reduced if harmful SPODEs were excluded.

When applied to NB, BSE has proved to be advantageous in domains with highly

correlated attributes. However, its straightforward application to AODE has pre-

viously proved unfruitful [Zheng and Webb, 2006; Yang, Webb, Cerquides, Korb,

Boughton and Ting, 2006]. This chapter investigates why previous approaches to

attribute selection for AODE have proved ineffective, and develops novel attribute

selection algorithms that do prove effective when applied to AODE.

4.1 Attribute Selection Is Effective on NB

NB treats attributes as independent and equally important. When two attributes

are related, NB may place too much weight on the influence from the two attributes,

and too little on the other attributes, which can result in classification bias. Deleting

one of these attributes may have the effect of alleviating the problem. The results

84
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of the Nemenyi test in Section 3.3.3 do not reveal a statistically significant difference

in error between BSE and NB. This is because 60 data sets are not sufficient to

differ BSE from NB when 15 algorithms are compared. To evaluate the effect of

attribute selection on NB, we replicate previous experiment results and perform a

win/draw/loss comparison.

Table 4.1 presents the win/draw/loss records for BSE against NB on sixty data

Table 4.1: Win/Draw/Loss: BSE vs. NB

BSE vs. NB

W/D/L p

Error 36/4/20 0.0220
Bias 52/3/5 <0.0001
Variance 11/4/45 <0.0001
RMSE 34/6/20 0.0380

Table 4.2: Win/Draw/Loss: FSS vs. NB

FSS vs. NB

W/D/L p

Error 29/3/28 0.5000
Bias 50/3/7 <0.0001
Variance 9/2/49 <0.0001
RMSE 33/2/25 0.1791

sets. Each win/draw/loss record is the number of data sets for which BSE obtains

lower, the same and higher value on a corresponding metric than NB. The p value is

the outcome of a one-tailed binomial sign test. We assess a difference as significant if

p < 0.05. The win/draw/loss records for FSS against NB is presented in Table 4.2.

The error, bias and RMSE advantages and variance disadvantage of BSE relative

to NB are evident. FSS significantly reduces the bias and increases the variance of

NB. The increase in variance outweighs the reduction in bias and results in an overall

increase in error. It is observed that FSS considerably improves NB’s accuracy in

domains with highly related attributes. For example, FSS reduces the error of NB

from 0.1276 to 0.0552 on King-rook-vs-king-pawn.

4.2 Attribute Selection for AODE

In theory, attribute selection should also have positive effect on AODE. While an

individual SPODE can factor out harmful attribute inter-dependencies in which the

parent is involved, it will not help when the parent is not. When there are many more

attributes than those that participate in a particular interdependency, the majority of

SPODEs will not factor out the interdependency, and hence it is credible that deleting
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one of the attributes should be beneficial. Why then have previous attempts [Zheng

and Webb, 2006; Yang et al., 2006] to apply attribute selection to AODE proved

unfruitful? There are two main differences between applying attribute selection in

NB and AODE:

Different complexity and variance. An AODE model has greater complexity

compared to an NB model, resulting in greater variance in estimates of performance as

the model is manipulated through attribute elimination and hence reduced reliability

in these estimates. The lower reliability of these estimates may result in poor choices

when they are used to select attributes for elimination. To explore this issue, we

evaluate the use of a statistical test to assess whether an observed difference in holdout

evaluation scores should be accepted as meaningful during the attribute selection

process.

Different roles. Attributes play multiple roles in an AODE model (either a parent

or a child) whereas they play only a single role of child in an NB model. To explore

this issue, we investigate the separate selection of attributes in each of the parent and

child roles, as well as in both roles together.

4.2.1 Statistical Test

It is quite likely that small improvements in leave-one-out accuracy may be at-

tributable to chance. In consequence it may be advantageous to use a statistical

test to assess whether an improvement is significant. A standard binomial sign test is

employed. Treating the examples for which an attribute addition or deletion corrects

a misclassification as a win and one for which it misclassifies a previously correct

example as a loss, a change is accepted if the number of wins exceeds the number of

losses and the probability of obtaining the observed number of wins and losses if they

were equiprobable was no more than 0.05.

Table 4.3 illustrates a hypothetical case in which the improvement is accepted as

significant using the binomial sign test at level of 0.05. In this example, 11 previously

misclassified examples are corrected, while 3 previously correct examples are misclas-

sified by the attribute selection under consideration. The outcome of a one-tailed

binomial sign test is 0.0287 < 0.05. Therefore, we accept this change as significant.
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Table 4.3: A change (11 wins and 3 losses) passes the binomial sign test (p = 0.0287 <
0.05 )

Before attribute selection After attribute selection Number of examples

× √
11

× × 9
√ × 3
√ √

7

×: examples that are misclassified√
: examples that are classified correctly

4.2.2 Parent and Child Roles in an AODE Model

In NB, all attributes play only a single role of child (Figure 4.1). Attribute selection

Y

X1 X2 Xi Xi+1 Xn

Figure 4.1: Single role: all attributes in an NB model are children

for NB is straightforward: removing or adding a complete attribute from the attribute

set. However, as shown in Figure 4.2, one attribute is both a parent in one SPODE

model and a child in another SPODE model. Since AODE averages the predictions

of all SPODEs, an attribute can be either a parent or a child in an AODE model. It

is possible that deletion might have quite different impact in the context of each of

these roles.

To formalize the various attribute selection strategies we introduce into AODE

the use of a parent (p) and a child (c) set, each of which contains the set of indices of

attributes that can be employed in respectively a parent or child role in the AODE.

The number of indices in each set is denoted respectively as | p | and | c | . We define
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Y

X1 X2 Xi Xi+1 Xn

Y

X1 X2 Xi Xi+1 Xn

(a) X1 is the SuperParent (b) Xi is the SuperParent

Figure 4.2: Multiple roles: attributes can be either a parent or a child in an AODE
model

AODEp,c as

argmax
y


 ∑

i∈p:F (xi)≥m

P̂ (y, xi)
∏
j∈c

P̂ (xj | y, xi)


.

4.3 Child Selection Might Have Greater Effect

than Parent Selection

In AODEp,c, a linear function is used to combine constituent SPODEs, and a multi-

plicative function is used to combine attributes within each SPODE. Large improve-

ments are possible due to the multiplicative influence, and hence exclusion of a child

may have greater effect than exclusion of a parent.

In addition, assuming that attribute xi is related to other attributes, and that

these harmful interdependencies can be detected and repaired by BSE or FSS, the

exclusion of xi from c may have influence on | p | − 1 SPODEs, while the exclusion

of xi from p will only factor out the effect of the single SPODE in which xi is the

parent.

4.4 AODE with BSE and FSS

In the context of AODE, BSE and FSS use Leave-One-Out cross validation error on

AODE as a selection criterion. Each available selection is attempted and the one
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that results in the lowest error is implemented. The process is repeated for successive

attributes until a stopping criterion has been met.

4.4.1 Four Types of Attribute Selection for AODE

There are four different types of attribute selection for AODE:

Parent selection. This approach selects a subset of complete constituent SPODEs.

Parent selection with BSE is called Parent Elimination (PE) and with FSS Parent

Addition (PA) [Yang et al., 2006].

Child selection. This approach selects a subset of attributes which are employed

in child roles within constituent SPODEs. We call child selection with BSE Child

Elimination (CE) and with FSS Child Addition (CA).

Parent and child selection. This approach selects a subset of attributes for use

in any role in the classifier. This strategy with BSE and FSS are called Parent and

Child Elimination (P∧CE) [Zheng and Webb, 2006] and Parent and Child Addition

(P∧CA) respectively.

Parent or child selection. This approach performs any one of the other types

of attribute selections (parent selection, child selection or parent and child selection)

at each step. Parent or child selection with BSE and FSS are denoted as Parent or

Child Elimination (P∨CE) and Parent or Child Addition (P∨CA) respectively.

The four types of attribute addition initialized p or c to the empty set and the

accuracy of resulting classifiers, called initial accuracy, was set to NB’s Leave-One-

Out cross validation accuracy [Zheng and Webb, 2007]. Subsequent research shows

that this value always prevents adding attributes at initial stage and increases error.

Thus, the current research sets the initial accuracy to zero for attribute addition

algorithms. For the four types of attribute elimination, the initial accuracy is set to

AODE’s Leave-One-Out cross validation accuracy. Stop on First Nonimprovement

(SFN) and Stop on First Reduction (SFR) (refer to Section 2.5.2.3) are incorporated

into attribute elimination and attribute addition respectively as these produce the

best performance (For conciseness, results of attribute elimination with SFR and
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attribute addition with SFN are not presented). When a statistical test described in

Section 4.2.1 is used, we only consider significant improvements.

4.4.1.1 Parent Elimination and Parent Addition

Table 4.4 outlines PE and PA. PE begins with p and c initialized to the full set of

{1 . . . n}. It deletes attribute indexes from p, effectively deleting a single SPODE at

each step. PA starts with p and c initialized to the empty and full sets respectively.

It adds attribute indexes to p, effectively adding a single SPODE at each step.

Algorithm: Parent Elimination

1. SET p to {1 . . . n}

2. SET c to {1 . . . n}

3. Evaluate AODE

4. Consider deleting every i ∈ p
from p and evaluate the current
AODEp,c

5. IF there is an attribute deletion
which improves accuracy THEN

5.1 Delete the attribute index
whose deletion improves
accuracy most from p

5.2 Go to step 4

6. ELSE

6.1 Return current AODEp,c

7. ENDIF

Algorithm: Parent Addition

1. SET p to ∅

2. SET c to {1 . . . n}

3. SET the initial accuracy to zero

4. Consider adding every i ∈ {1 . . . n} \ p
to p and evaluate the current
AODEp,c

5. IF there is an attribute addition
which does not reduce accuracy THEN

5.1 Add the attribute index
whose addition results in
the highest accuracy to p

5.2 Go to step 4

6. ELSE

6.1 Return current AODEp,c

7. ENDIF

Table 4.4: Parent Elimination (PE) with Stop on First Nonimprovement (SFN) and
Parent Addition (PA) with Stop on First Reduction (SFR). When a statistical test
is employed, only significant improvements satisfy the condition of step 5.
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4.4.1.2 Child Elimination and Child Addition

CE and CA are described in Table 4.5. CE starts with p and c initialized to the full

set of {1 . . . n}. It deletes attribute indexes from c, effectively deleting an attribute

from within every SPODE at each step. CA begins with p and c initialized to the

full and empty sets respectively. It adds attribute indexes to c, effectively adding an

attribute to within every SPODE at each step.

Algorithm: Child Elimination

1. SET p to {1 . . . n}

2. SET c to {1 . . . n}

3. Evaluate AODE

4. Consider deleting every i ∈ c
from c and evaluate the current
AODEp,c

5. IF there is an attribute deletion
which improves accuracy THEN

5.1 Delete the attribute index
which improves accuracy most
from c

5.2 Go to step 4

6. ELSE

6.1 Return current AODEp,c

7. ENDIF

Algorithm: Child Addition

1. SET p to {1 . . . n}

2. SET c to ∅

3. SET the initial accuracy to zero

4. Consider adding every i ∈ {1 . . . n} \ c
to c and evaluate the current
AODEp,c

5. IF there is an attribute addition
which does not reduce accuracy THEN

5.1 Add the attribute index
whose addition results in
the highest accuracy to c

5.2 Go to step 4

6. ELSE

6.1 Return current AODEp,c

7. ENDIF

Table 4.5: Child Elimination (CE) with Stop on First Nonimprovement (SFN) and
Child Addition (CA) with Stop on First Reduction (SFR). When a statistical test is
employed, only significant improvements satisfy the condition of step 5.
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4.4.1.3 Parent and Child Elimination and Parent and Child Addition

Starting with the full set for both p and c, P∧CE [Zheng and Webb, 2006] at each

step deletes the same value from both p and c, thus eliminating it from use in any

role in the classifier. Beginning with the empty set for both p and c, P∧CA at each

step adds the same value to both p and c, hence selecting it for use in any role in the

classifier. P∧CE with SFN and P∧CA with SFR are presented in Table 4.6.

Algorithm: Parent and Child Elimination

1. SET p to {1 . . . n}

2. SET c to {1 . . . n}

3. Evaluate AODE

4. Consider deleting every i ∈ p from
p and c and evaluate the current
AODEp,c

5. IF there is an attribute deletion
which improves accuracy THEN

5.1 Delete the attribute index
which improves accuracy most
from p and c

5.2 Go to step 4

6. ELSE

6.1 Return current AODEp,c

7. ENDIF

Algorithm: Parent and Child Addition

1. SET p to ∅

2. SET c to ∅

3. SET the initial accuracy to zero

4. Consider adding every i ∈ {1 . . . n} \ p
to p and c and evaluate the current
AODEp,c

5. IF there is an attribute addition
which does not reduce accuracy THEN

5.1 Add the attribute index whose
addition results in the highest
accuracy to p and c

5.2 Go to step 4

6. ELSE

6.1 Return current AODEp,c

7. ENDIF

Table 4.6: Parent and Child Elimination (P∧CE) with Stop on First Nonimprove-
ment (SFN) and Parent and Child Addition (P∧CA) with Stop on First Reduction
(SFR). When a statistical test is employed, only significant improvements satisfy the
condition of step 5.
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4.4.1.4 Parent or Child Elimination and Parent or Child Addition

Table 4.7 outlines P∨CE and P∨CA. P∨CE performs any one of the other types of

attribute eliminations (PE, CE or P∧CE) in each iteration, selecting the option that

best reduces error. P∨CA performs any one of the other types of attribute additions

(PA, CA or P∧CA) in each iteration, selecting the option that most improves the

accuracy.

Algorithm: Parent or Child Elimination

1. SET p to {1 . . . n}

2. SET c to {1 . . . n}

3. Evaluate AODE

4. Consider deleting every i ∈ p from
p, every j ∈ c from c and every k ∈
p ∩ c from p and c and evaluate the
current AODEp,c

5. IF there is an attribute deletion
which improves accuracy THEN

5.1 Delete the attribute index
which improves accuracy most
from p or c according to which
deletion is performed

5.2 Go to step 4

6. ELSE

6.1 Return current AODEp,c

7. ENDIF

Algorithm: Parent or Child Addition

1. SET p to ∅

2. SET c to ∅

3. SET the current accuracy to zero

4. Consider adding every i ∈ {1 . . . n} \ p
to p, every j ∈ {1 . . . n} \ c to c and
every k ∈ {1 . . . n}\p∪c to p and c and
evaluate the current AODEp,c

5. IF there is an attribute addition
which improves accuracy THEN

5.1 Add the attribute index which
improves accuracy most to p or
c according to which addition
is performed

5.2 Go to step 4

6. ELSE

6.1 Return current AODEp,c

7. ENDIF

Table 4.7: Parent or Child Elimination (P∨CE) with Stop on First Nonimprove-
ment (SFN) and Parent or Child Addition (P∨CA) with Stop on First Reduction
(SFR). When a statistical test is employed, only significant improvements satisfy the
condition of step 5.
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For ease of understanding, we use a hypothetical example with 4 attributes (X1,

X2, X3 and X4) to explain models established by different attribute selection algo-

rithms.

For PE and PA, c = {1, 2, 3, 4}. Assuming that PE deletes X2 and X4 (or PA adds

X1 and X3). The resulting p is {1, 3}. AODEp,c classifies an instance by averaging

the predictions of the two SPODEs illustrated in Figure 4.3.

Y

X1 X2 X3 X4

Y

X1 X2 X3 X4

Figure 4.3: The SPODES for p = {1, 3} and c = {1, 2, 3, 4}

For CE and CA, p is the entire set (p = {1, 2, 3, 4}). If CE deletes X2 and X4

(or CA adds X1 and X3), then c = {1, 3}. The SPODEs in the AODEp,c model are

presented in Figure 4.4.

Y

X1 X3

Y

X1 X2 X3

Y

X1 X3

Y

X1 X3 X4

Figure 4.4: The SPODES for p = {1, 2, 3, 4} and c = {1, 3}

For P∧CE and P∧CA, p is equivalent to c. If P∧CE deletes X2 and X4 (or P∧CA

adds X1 and X3), p = {1, 3} and c = {1, 3}. Figure 4.5 illustrates the SPODES in

the AODEp,c model in this case.

Assuming that P∨CE deletes X3 and X4 from p and X2 from c (or P∨CA adds

X1 and X2 to p and adds X1, X3 and X4 to c). The resulting p and c are {1, 2}
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Y

X1 X3

Y

X1 X3

Figure 4.5: The SPODES for p = {1, 3} and c = {1, 3}

and {1, 3, 4} respectively. The SPODES in the AODEp,c model are illustrated in

Figure 4.6.

Y

X1 X3 X4

Y

X1 X2 X3 X4

Figure 4.6: The SPODES for p = {1, 2} and c = {1, 3, 4}

4.4.2 Complexity

At training time PA and PE generate a three-dimensional table of probability es-

timates, as AODE does. They must also store the training data, with additional

space complexity O
(
tn

)
, to perform leave-one-out cross validation on AODE. A three-

dimensional table, indexed by instance, class and attribute, is introduced to speed up

the process of evaluating the classifiers, with space complexity O
(
tkn

)
. Therefore,

the resulting space complexity is O
(
tkn+k(nv)2

)
. Deleting attributes has time com-

plexity of O
(
tkn2

)
, as a single leave-one-out cross validation is order O(tk) and it is

performed at most O
(
n2

)
times. They have identical time and space complexity to

AODE at classification time.

As child selection requires modifying the probability estimates for | p | SPODEs

at each step, it has higher training time complexity than that of parent selection,

which only considers one SPODE at each step. The training time complexity of



Chapter 4. Parent and Child Selection for AODE 96

the strategies involving child selection is O
(
tkn3

)
, as a single leave-one-out cross

validation is order O(tkn). They have identical space complexity and classification

time complexity to PA and PE.

4.5 Experimental Results

We experimentally evaluate the performance of different types of attribute selection

on 60 data sets. The main goal in this comparison is to assess the efficacy of the

statistical test and study the influence of the use of different types of attribute se-

lection in AODE. We compare the classification performance of AODE with different

attribute selection techniques to AODE using the experimental method described in

Section 3.3.2.

Two variants of attribute selection were evaluated, one employing a binomial sign

test and the other not. Algorithms using a binomial sign test are superscripted by S.

Since algorithms with a binomial sign test have identical outcomes on many data sets

to AODE, 60 data sets are not sufficient to differentiate 17 algorithms by using the

Friedman and Nemenyi tests. Therefore, we use pairwise win/draw/loss comparison.

The number of times that an algorithm performs better, equally or worse to the others

is summarized into pairwise win/loss/draw records which are presented in Tables 4.8,

4.9, 4.10 and 4.11. 1 Algorithms are sorted in descending order on the value of wins

minus losses against AODE on each metric. Each entry compares the algorithm with

which the row is labelled (L) against the algorithm with which the column is labelled

(C). We assess a difference as significant if the outcome of a one-tailed binomial sign

test is less than 0.05.

Error

P∧CES, CES and P∨CES enjoy a significant advantage in error over AODE (p =

0.0318, p = 0.0481 and p = 0.0481 respectively). Attribute addition algorithms (both

with and without a statistical test) always have a significant disadvantage to AODE

with the exception that PA and P∧CA share a similar level of error with AODE. No

1To avoid breaking the flow of the main text, these tables are presented at the end of this chapter.
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significant differences are identified when the rest of algorithms are compared with

AODE.

The algorithms using attribute elimination share a similar level of error with the

exception that PE and P∨CE outperform CE and P∨CE outperform P∧CE. The

advantage of all the attribute elimination algorithms is significant compared with all

the attribute addition algorithms but PA and P∧CA . PA has a significant advantage

over CA, P∧CA and P∨CA (with and without statistical test). It also outperforms

PAS. The advantage of P∧CA over PAS, P∧CAS, CAS and CA is significant.

The reason the performance of child addition is disappointing might be that it

is susceptible to getting trapped into poor selections by local minima during the

first several additions. For example, on Letter Recognition, the average number of

attributes added (fifty runs) for CA is 1.063. That is, there is accuracy reduction

after adding less than 2 attributes (on average) to the c set, which results in the poor

error of 0.5071 (the error of AODE is 0.1365). In contrast, the average number of

attributes deleted for CE is 0.052 and the error of CE is 0.1362. On 16 data sets, the

attribute addition ratio of CA, which is obtained by dividing the number of attributes

added by the number of attributes across all iterations, is less than 0.1. On all the 60

data sets, attribute elimination ratio of CE, which is obtained by dividing the number

of attributes deleted by the number of attributes across all iterations, is less than 0.5.

Bias

All the attribute elimination algorithms, except PES, have a significant advantage

in bias over AODE and PES. P∧CE , CE and P∨CE outperform PE and the four

attribute elimination algorithms with a statistical test.

All the attribute addition algorithms with a statistical test, except PAS, have a

significant disadvantage in bias relative to AODE and PAS. The three attribute addi-

tion algorithms without a statistical test (PA , P∧CA and P∨CA ) have a significant

bias advantage over AODE and CA .

Variance

AODE enjoys a significant advantage over all the algorithms except the four attribute

elimination algorithms with a statistical test (PES, CES, P∧CES and P∨CES). These



Chapter 4. Parent and Child Selection for AODE 98

four algorithms share a similar level of variance and have a significant advantage over

all the other attribute selection algorithms.

Note that PAS has very low bias and high variance. Generally, statistical tests are

employed to reduce variance. However, for algorithms employing forward selection,

using a statistical test may increase variance in that less attributes are included. In

addition, as SFR is incorporated into attribute addition, PA continues adding parents

so long as there is no accuracy reduction. Unsurprisingly, PAS has higher variance

than PA. It is observed that large accuracy improvements occur during the first several

parent additions. This might be a possible reason PAS achieves relatively lower bias.

Different from parent addition, child addition is highly susceptible to local minima,

hence it always has high bias and variance.

RMSE

No attribute selection algorithms have significant advantage in RMSE compared to

AODE. All attribute addition algorithms, but P∧CA , have a significant disadvantage

relative to AODE. Attribute elimination algorithms with a statistical test have a

significant advantage over all the attribute addition algorithms except P∧CA.

The error, bias and variance win/draw/loss results are different from those pre-

sented in Zheng and Webb (2007), in which the algorithms are compared using 56

data sets and the accuracy of four types of attribute addition is initialized to NB’s ac-

curacy estimated by Leave-One-Out cross validation. These differences do not affect

win/draw/loss outcomes.

Information loss function penalizes a classifier extremely if it predicts a very small

probability for the actual class. In this thesis, a method that penalizes this case more

moderately, RMSE is used to compare the accuracy of probability estimates. Similar

probability prediction results to the earlier paper can be obtained if the information

loss function is employed.

Continue Search and Select Best

To observe the behaviors of parent and child selection, we also examine the attribute

selection techniques with CSSB. Due to the significantly increasing variance, all of

these selection approaches have proved ineffective. Figure 4.7 shows the error ratio
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Figure 4.7: Error ratio of parent and child selection using CSSB against AODE, as
function of the number of attributes
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of PA [Yang et al., 2006], PE [Yang et al., 2006], CA and CE against AODE as a

function of the number of attributes on 4 data sets with more than 3000 instances,

in which both selection of parent and child have lower error compared with AODE

(for conciseness, we have skipped other 6 data sets). The values on the x-axis are

the number of attributes in the p set for PA and PE, and the number of attributes

in the c set for CA and CE. The values on the y-axis are the classification error of

each selection algorithm divided by that for AODE. The smaller the ratio, the more

accuracy improvement can be obtained.

Slight error differences between PA and PE are observed as shown in the graph

(win/draw/loss being 27/8/25). Notice that PA tends to achieve the minima at an

early stage, while PE appears to reach it at a late stage.

CE has greater error reduction compared with PE until there are a small number

of children left, after which it increases error sharply. The error ratios for PE and CE

for the first attribute elimination are 0.98 and 0.94, 0.99 and 0.96, 1 and 0.83, and 0.98

and 0.79 for Adult, Nettalk, Hypothyroid and King-rook-vs-king-pawn respectively.

The performance of CA fluctuates over the first several attribute additions for

King-rook-vs-king-pawn. Similar behavior is observed for many other data sets in

our collection. In this circumstance, CA with SFN or SFR is likely to get trapped

into local minima.

4.6 Summary

AODE efficiently induces classifiers that have competitive classification performance

with other state-of-the-art semi-naive Bayesian algorithms. Its error and classification

time overheads might be further reduced if harmful SPODEs are excluded. In view

of their effectiveness with NB, it is surprising that previous applications of BSE to

AODE have proved ineffective. In this chapter we explore two explanations of this

phenomenon. One is that AODE has higher variance compared with NB, and hence

appropriate variance management is required. Another is that child selection appears

to have greater effect than parent selection, as SPODEs are combined using a linear

function but attributes within a SPODE are combined using a multiplicative function.

We describe four types of attribute selection for AODE and provide details of

their time and space complexity. Our extensive experiments suggest that the types of
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attribute elimination that remove child attributes from within the constituent ODEs

can significantly reduce bias and error, but only if a statistical test is employed to

provide variance management. In contrast, elimination of complete constituent ODEs

does not consistently provide error reduction. The types of attribute addition that

add child attributes to within the constituent ODEs do not provide any positive

benefits, possibly due to being misled early in the search by local minima. These

results suggest that the elimination of a child is more effective than the elimination

of a parent, leading to effective approaches to further enhance AODE’s accuracy.
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Chapter 5

Subsumption Resolution

The previous chapter has shown that the accuracy of NB can be significantly improved

by the addition of BSE and so can be the accuracy of AODE when a statistical test

is employed. However, due to repeated accuracy evaluation of attribute subsets on

algorithms to which it is applied, BSE tends to have high computational overheads,

especially when applied to algorithms with high classification time complexity. In

response to this drawback, we develop a new type of semi-naive Bayesian operation,

Subsumption Resolution (SR), that efficiently and effectively eliminates a special type

of closely related attributes at classification time.

This chapter first introduces three extreme types of interdependencies between

attributes: the generalization, substitution and duplication relationships. The rela-

tionships between them are examined. Further, we discuss the relationships between

surjection and generalization, bijection and substitution. Next, we present Subsump-

tion Resolution, a technique that can efficiently identify pairs of attribute values such

that one is a generalization of the other and deletes the generalization at classifi-

cation time. We show that this is the theoretically correct adjustment for such an

interdependence relationship and demonstrate experimentally that it can in practice

considerably improve both classification accuracy and the precision of conditional

probability estimates. We study the effect of SR on classification accuracy and prob-

abilistic prediction by applying it to NB and AODE and compare this method to five

state-of-the-art semi-naive Bayesian methods. Finally, we investigate the effect of SR

on NB and AODE by using both labeled and unlabeled data.
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5.1 The Generalization, Substitution and Duplica-

tion Relationships

One extreme type of interdependency between attributes results in a value of one

being a generalization of a value of the other. For example, let Gender and Pregnant

be two attributes. Gender has two values: female and male, and Pregnant has two

values: yes and no. If Pregnant=yes, it follows that Gender=female. Therefore,

Gender=female is a generalization of Pregnant=yes. Likewise, Pregnant=no is a

generalization of Gender=male. We formalize this relationship as:

Definition 1. (Generalization and Specialization) For two attribute values xi

and xj, if P (xj | xi) = 1.0 then xj is a generalization of xi and xi is a specialization

of xj.

In a special case when xi is a generalization and specialization of xj, xi is a

substitution of xj.

Definition 2. (Substitution) For two attribute values xi and xj, if P (xj | xi) = 1.0

and P (xi | xj) = 1.0, xi is a substitution of xj and so is xj of xi. For two attributes

Xi and Xj, we say that Xi is a substitution of Xj if the following condition holds:

∀a∃bP (xb
j | xa

i ) = P (xa
i | xb

j) = 1.0, where a, b ∈ {1, . . . , |Xi|}, xa
i is the ath

value of Xi and xb
j is the bth value of Xj.

Definition 3. (Duplication) For two attribute values xi and xj, if xi is a substitu-

tion of xj and xi = xj then xi is a duplication of xj. For two attributes Xi and Xj,

we say that Xi is a duplication of Xj if xi = xj for all instances.

In Table 5.1, because P (Xj=0 | Xi=0) = 1.0 and P (Xi=1 | Xj=1) = 1.0, Xj=0

is a generalization of Xi=0 and Xi=1 is a generalization of Xj=1.

Table 5.2 illustrates an example of substitution. P (Xj=2 | Xi=0) = 1.0 and

P (Xi=0 | Xj=2) = 1.0, hence Xj=2 is a substitution of Xi=0 and so is Xi=0 of

Xj=2. Likewise, Xj=0 is a substitution of Xi=1 and so is Xi=1 of Xj=0. As

both Xi=0 and Xi=1 have substitutions, Xi is a substitution of Xj. In Table 3.2

(Section 3.1.4), X0 is a substitution of X1, which is a negation of X0.

As illustrated in Table 5.3, Xi is a duplication of Xj.
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Table 5.1: Generalization

Xi Xj

0 0
0 0
0 0
1 0
1 0
1 0
1 1
1 1

Table 5.2: Substitution

Xi Xj

0 2
0 2
0 2
0 2
1 0
1 0
1 0
1 0

Table 5.3: Duplication

Xi Xj

0 0
0 0
0 0
0 0
1 1
1 1
1 1
1 1

From the perspective of set theory, the condition that P (xj | xi) = 1.0 is equivalent

to Txi
⊆ Txj

, where Txi
and Txj

are the sets of the training cases with value xi and

xj respectively. Therefore, the alternative of Definition 1 is:

Definition 1′. (Generalization and Specialization) For two attribute values xi

and xj, if Txi
⊆ Txj

then xj is a generalization of xi and xi a specialization of xj.

As P (xj | xi) = P (xi | xj) = 1.0 ≡ Txi
= Txj

(i.e. Txi
⊆ Txj

and Txj
⊆ Txi

),

Definition 2 is equivalent to:

Definition 2′. (Substitution) For two attribute values xi and xj, if Txi
= Txj

, xi

is a substitution of xj and so is xj of xi. For two attributes Xi and Xj, we say that

Xi is a substitution of Xj if the following condition holds:

∀a∃bTxa
i

= Txb
j
, where a, b ∈ {1, . . . , |Xi|}, Txa

i
is the set of training cases with

the ath value of Xi and Txb
j
is the set of training cases with the bth value of Xj.

Proposition 1. If Xj is a surjection of Xi, then every xi has a generalization xj.

Proof. Because Xj is a surjection of Xi, we have Xj = f(Xi). Then ∀a ∈ {1, . . . , |Xi|},
∃b ∈ {1, . . . , |Xj|} such that f(xa

i ) = xb
j, where xa

i is the ath value of Xi and xb
j is the

bth value of Xj. It follows that P (xb
j | xa

i ) = P (f(xa
i ) | xa

i ) = 1.0. Therefore, every xi

has a generalization xj.
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Proposition 2. Xj is a bijection of Xi if and only if Xj is a substitution of Xi.

Proof. Necessary condition: we assume that Xj is a bijection of Xi and we shall prove

that Xj is a substitution of Xi.

Xj = f(Xi). Then ∀a ∈ {1, . . . , |Xi|},∃b ∈ {1, . . . , |Xj|} such that f(xa
i ) = xb

j.

It follows that P (xb
j | xa

i ) = P (f(xa
i ) | xa

i ) = 1.0. As f is bijective, it has an inverse

function: f−1. Then f−1(xb
j) = xa

i and P (xa
i | xb

j) = P (f−1(xb
j) | xb

j) = 1.0. Therefore,

Xj is a substitution of Xi.

Sufficient condition: we assume that Xj is a substitution of Xi and we shall prove

that Xj is a bijection of Xi.

If Xj is a substitution of Xi, then we have ∀a∃bP (xb
j | xa

i ) = P (xa
i | xb

j) = 1.0,

where a, b ∈ {1, . . . , |Xi|}. Assuming that ∃c ∈ {1, . . . , |Xj|}, c 6= b such that P (xc
j |

xa
i ) = 1.0. But if P (xb

j | xa
i ) = 1.0 and P (xc

j | xa
i ) = 1.0, it follows that b = c.

That is, every element of Xi corresponds to one and only one element of Xj. Because

∀b∃aP (xb
j | xa

i ) = 1.0, each element in Xj is mapped to by some elements of Xi.

Therefore, Xj is a surjection of Xi.

Assuming that ∃d ∈ {1, . . . , |Xi|}, d 6= a such that P (xb
j | xd

i ) = 1.0. If P (xa
i |

xb
j) = 1.0 and P (xb

j | xd
i ) = 1.0, then P (xa

i | xd
i ) = 1.0. This can only be true when

a = d. That is, every element of the Xj is mapped to by exactly one element of Xi.

Therefore, Xj is a bijection of Xi.

Propositions 3 and 4 follow immediately from the definitions of the generalization,

substitution and duplication relationships.

Proposition 3. The duplication and substitution relationships are symmetrical and

transitive.

Proposition 4. The generalization relationship is transitive.

It is interesting that the specialization-generalization relationship can be de-

fined in terms of the definitions of Generalization, Specialization, Substitution

and Duplication. Assume that Generalization, Specialization, Substitution and

Duplication are four attributes, all of which have two values: yes and no. We

have P (Substitution=yes | Duplication=yes) = 1.0, P (Generalization=yes |
Substitution=yes) = 1.0 and P (Specialization=yes | Substitution=yes) = 1.0.
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Therefore, Duplication=yes is a specialization of Substitution=yes, which is a spe-

cialization of Generalization=yes and Specialization=yes. Since the specialization–

generalization relationship is transitive, Duplication=yes is also a specialization of

Generalization=yes and Specialization=yes. Figure 5.1 illustrates the relationship

between them.
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Figure 5.1: Relationship between Duplication, Substitution, Generalization and Spe-
cialization.

The generalization relationship is very common in many forms of real world

data. For example, City=Sydney is a specialization of Country=Australia and

CountryCode=61 is a substitution of Country=Australia. Given an example with

City=Sydney, Country=Australia and CountryCode=61, NB will effectively give

three times the weight to evidence relating to Country=Australia relative to the

situation if only one of these attributes were considered. Ignoring such redundancy

may reduce NB’s accuracy. The next section is devoted to resolving this problem.

5.2 Subsumption Resolution (SR)

Subsumption Resolution (SR) [Zheng and Webb, 2006] identifies at classification time

pairs of attribute values such that one appears to subsume (be a generalization of)

the other. It then deletes the generalization.
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5.2.1 Deletion of Generalizations

Theorem 1. If xj is a generalization of xi, 1 ≤ i ≤ n, 1 ≤ j ≤ n, i 6= j then

P (y | x1, . . . , xn) = P (y | x1, . . . , xj−1, xj+1, . . . xn).

Proof. Note, ∀Z, given P (xj | xi) = 1.0, it follows that P (Z | xi, xj) = P (Z | xi) and

hence P (xi, xj, Z) = P (xi, Z). Therefore,

P (y | x1, . . . , xn)

=
P (y, x1, . . . , xn)

P (x1, . . . , xn)

=
P (y, x1, . . . , xj−1, xj+1, . . . , xn)

P (x1, . . . , xj−1, xj+1, . . . , xn)

= P (y | x1, . . . , xj−1, xj+1, . . . , xn)

Given P (y | x1, . . . , xn) = P (y | x1, . . . , xj−1, xj+1, . . . xn), deleting the general-

ization xj from a Bayesian classifier should not be harmful. Further, such deletion

may improve a classifier’s estimates if the classifier makes unwarranted assumptions

about the relationship of xj to the other attributes when estimating intermediate

probability values, such as NB’s independence assumption.

To illustrate this, consider the data presented in Table 5.4 for a hypothetical exam-

Table 5.4: NB is adversely affected by the presence of generalizations.

Gender Pregnant MaleHormone Normal

male no 3 yes

female yes 3 yes

female yes 2 yes

female yes 2 yes

male no 1 no

female no 3 no

female no 4 no

female yes 4 no
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ple with three attributes Gender, Pregnant and MaleHormone and class Normal.

Pregnant=yes is a specialization of Gender=female and Gender=male is a spe-

cialization of Pregnant=no. As these two attributes are highly related, NB will

misclassify 〈Gender=male, Pregnant=no, MaleHormone=3〉 as Normal=no, even

though it occurs in the training data. In effect NB double counts the evidence

from Pregnant=no, due to the presence of its specialization Gender=male. The

new object can be correctly classified as Normal=yes by deleting attribute value

Pregnant=no.

In contrast, if Gender=female we cannot make any definite conclusion with re-

spect to the value of Pregnant, nor about the value of Gender if Pregnant=no. If

both of these values (Gender=female and Pregnant=no) are present, deleting either

one will lose information. Therefore, both should be used for classification if neither

attribute-value is a generalization of the other. In the case when xi is a substitution

of xj, only one of the two attribute-values is used for classification.

Figure 5.2 illustrates the process of deleting attribute values in the four different

�

�

� �

(a) Multiple Children (b) Multiple Parents

�

�

�

(c) Transitive Relation (d) Substitution

Figure 5.2: Deletion of generalizations. (a) Multiple Children: deleting children xj

and xk, (b) Multiple Parents: deleting child xj, (c) Transitive Relation: Deleting xj

and xk, and (d) Substitution: deleting either xi or xj.

cases. Parent nodes in the figure are specializations of child nodes. In the case
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of Figure 5.2 (a), we delete both xj and xk by applying Theorem 1 twice. When

an attribute value is a generalization of other attribute values (in Figure 5.2 (b),

xj is a generalization of xi and xk), we delete the attribute value (xj). If xk is a

generalization of xj and so is xj of xi, as illustrated in Figure 5.2 (c), we delete xk

and xj. In Figure 5.2 (d), xi is a substitution of xj (and so is xj of xi), we delete

either xi or xj.

Attribute selection is a well-studied problem in machine learning [Langley, 1994;

Kohavi and John, 1997; Blum and Langley, 1997; Guyon and Elisseeff, 2003; Liu and

Yu, 2005]. An in-depth theoretical analysis of interdependencies between attributes

can be found in [Jakulin, 2005]. The main difference between SR and other attribute

selection methods is that SR deletes attribute values while other methods delete

complete attributes. Section 5.6.6 shows experimentally that deletion of attribute

values and complete attribute may result in different effect on classification.

5.2.2 Criterion for Identifying Generalizations

SR requires a method for inferring from the training data whether one attribute value

is a generalization of another. It uses the criterion

|Txi
| = |Txi,xj

| ≥ l

to infer that xj is a generalization of xi, where |Txi
| is the number of training cases

with value xi, |Txi,xj
| is the number of training cases with both values, and l is a user-

specified minimum frequency. Figure 5.3 illustrates the criterion from the perspective

of set theory, as |Txi
| = |Txi,xj

| is equivalent to Txi
⊆ Txj

. That is, if |Txi
| ≥ l and

Txi
⊆ Txj

, xj is a generalization of xi. In the case when |Txi
| ≥ l and Txi

= Txj
, xj

is a substitution of xi. It might be thought that a less arbitrary technique than a

“magic number” l might be obtained using either statistical or information theoretic

approaches, but each would still require an arbitrary critical value, such as α.

5.2.3 Lazy Learning

It is superficially attractive to pre-check the generalization relation at training time.

The time complexity of creating the dependency matrix is O(n2v2), as it requires for



Chapter 5. Subsumption Resolution 114

�

�
��

�
��

�����	��
�	�	

Figure 5.3: Criterion to infer that xj is a generalization of xi. Txi
and Txj

are the
sets of the training cases with value xi and xj respectively.

each pair of attributes, every pairwise combination of their respective values to be con-

sidered. At classification time, scanning the dependency matrix to delete attributes

has time complexity of O(n2). However, if we check attribute-value pairs for general-

ization relationships at classification time (so there is no additional computation for

dependency matrix at training time), time complexity is O(n2) as well. Therefore, SR

delays the computation of elimination until classification time and deletes different

attributes depending upon which attribute values are instantiated in the object being

classified.

Unlike other lazy learning algorithms, SR does not need to keep all the training

examples at classification time as it only utilizes the tables of probability estimates

formed at training time to delete attributes. Hence, it has lower memory requirements

than other lazy learning algorithms.

5.3 NB and AODE with SR

SR is suited to algorithms without model selection, such as NB and AODE, as the

attribute value elimination can be directly applied to the algorithms at classification

time. However, it might not be suited to algorithms with model selection, such as

decision trees, as it may require different models to be built by the algorithm for each

object to be classified. This is because it is not known whether it is appropriate to

include an attribute-value into a model until it is known which other attribute-values

are present for an instance.



Chapter 5. Subsumption Resolution 115

NB and AODE are incremental. When a new instance is available, they do not

need to reexamine all earlier training instances but need only update probability

estimates. SR detects and eliminates highly dependent attribute values at classifica-

tion time using a two-dimensional table of probability estimates indexed by attribute

values generated at training time. This probability estimates table can be updated

incrementally. In consequence, SR does not interfere with NB and AODE’s capacity

for incremental learning.

5.3.1 NB with SR

In the context of NB, SR deletes generalization attribute values if a specialization

is detected and applies NB to the resulting attribute value set. We denote NB with

Subsumption Resolution as NBSR.

Classification of instance x = 〈x1, . . . , xn〉 consists of two steps:

1. Set R to {x1≤i≤n | ¬∃x1≤j≤n xi 6= xj ∧ P (xi | xj) = 1.0}.

2. Estimate P (y,x) by

P̂ (y,x) = P̂ (y)
∏
xi∈R

P̂ (xi | y).

To identify the specialization-generalization relationship, NBSR must generate at

training time a two-dimensional table of probability estimates for each attribute-

value, conditioned by each other attribute-value in addition to the two probability

estimate tables generated by NB, space complexity O(knv + (nv)2). The time com-

plexity of forming the additional two-dimensional probability estimate table is O(tn2).

Classification of a single example requires considering each pair of attributes to de-

tect dependencies and is of time complexity O(n2 + kn). The space complexity is

O(knv + (nv)2).

5.3.2 AODE with SR

When SR is applied to AODE, the resulting classifier acts as AODE except that

it deletes generalization attribute-values from use in any role in the classifier if a

specialization is detected, and aggregates the predictions of all qualified ODEs using
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the remaining attribute-values. We denote AODE with Subsumption Resolution as

AODESR.

Classification consists of two steps:

1. Set R to {x1≤i≤n | ¬∃x1≤j≤n xi 6= xj ∧ P (xi | xj) = 1.0}.

2. Estimate P (y,x) by

P̂ (y,x) =

∑
xi∈R∧F (xi)≥m P̂ (y, xi)

∏
xj∈R P̂ (xj | y, xi)

|{xi ∈ R : F (xi) ≥ m}| .

AODESR has identical time and space complexity to AODE. At training time

it behaves identically to AODE. At classification time, it must check all attribute-

value pairs for generalization relationships, an additional operation of time complexity

O(n2). However, the time complexity of AODE at classification time is O(kn2) and

so this additional computation does not increase the time complexity.

5.4 NB and AODE with BSE

The previous chapter has shown that the types of attribute elimination that remove

child attributes from within the constituent ODEs can significantly reduce bias and

error of AODE, but only if a statistical test is employed to provide variance manage-

ment. CES, P∧CES and P∨CES share a similar level of error and RMSE. P∨CES

performs three types of attribute eliminations and selects the option that most im-

proves accuracy at each step, hence in practice it has substantially higher training

time overheads compared to CES and P∧CES. P∧CES obtains lower error than CES

eight times and higher error seven times. For simplicity, in this chapter, we only

consider P∧CES. We use AODEBSE to indicate P∧CES and NBBSE to indicate NB

with BSE.

5.5 Complexity Summary

Table 5.5 summarizes the complexity of NB, NBSR, NBBSE, AODE, AODEBSE and

AODESR. AODEBSE and NBBSE have the highest and second highest training
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time complexity. NB and NBBSE have relatively low classification time complexity.

AODEBSE has the highest training space complexity.

Table 5.5: Complexity of NB and AODE with SR and BSE

Training Classification

Algorithm Time Space Time Space

NB O(tn) O(knv) O(kn) O(knv)

NBSR O(tn2) O(knv + (nv)2) O(n2 + kn) O(knv + (nv)2)

NBBSE O(tkn2) O(tn + knv) O(kn) O(knv)

AODE O(tn2) O(k(nv)2) O(kn2) O(k(nv)2)

AODESR O(tn2) O(k(nv)2) O(kn2) O(k(nv)2)

AODEBSE O(tkn3) O
(
tkn + k(nv)2

)
O(kn2) O(k(nv)2)

5.6 Experimental Results

In this section, we evaluate the efficacy of SR by applying it to NB and AODE.

We first perform an empirical study to select a minimum frequency for identifying

generalizations. Pairwise win/draw/loss comparisons for NB and its variants (NB

with SR and BSE) and AODE and its variants (AODE with SR and BSE) come next.

Then, we use the Friedman and Nemenyi tests to compare NBSR and AODESR with

five semi-naive Bayesian algorithms, all of which significantly reduce NB’s error. The

experiments are run in the same manner as the experiments described in Section 3.3.2.

5.6.1 Minimum Frequency for Identifying Generalizations

As there does not appear to be any formal method to select an appropriate value for

l, we perform an empirical study to select it. We present the error and RMSE results

in the range of l = 10 to l = 150 with an increment of 10.
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5.6.1.1 Mean Error and RMSE

Averaged results across all data sets provides a simplistic overall measure of relative

performance. We present the averaged error and RMSE of NBSR and AODESR across

60 data sets as a function of l in Figure 5.4 and 5.5. The values on the x-axis are the

minimum frequencies and the values on the y-axis are the averaged error and RMSE

across 60 data sets. In order to provide comparison with NB and AODE, we also

include NB and AODE’s error and RMSE in each graph.
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(a) NB and NBSR with l (b) AODE and AODESR with l

Figure 5.4: Averaged error across 60 data sets, as function of l.

As can be seen that NBSR and AODESR enjoy lower mean error and RMSE at all

settings of l compared to NB and AODE respectively.

5.6.1.2 Error

Table 5.6 presents the win/draw/loss records of error for NB against NBSR and AODE

against AODESR. The p value is the outcome of a one-tailed binomial sign test. We

assess a difference as significant if p is less than 0.05. Boldface numbers indicate that

wins against losses are statistically significant.

SR significantly improves NB and AODE’s accuracy when 20 ≤ l ≤ 150. It

marginally improves AODE’s accuracy when l = 10.
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Figure 5.5: Averaged RMSE across 60 data sets, as function of l.

5.6.1.3 RMSE

The win/draw/loss records of RMSE for NB against NBSR and AODE against

AODESR are presented in Table 5.7.

At all settings of l, NB and AODE’s RMSE can be significantly reduced by the

addition of SR.

5.6.1.4 Minimum Frequency Selection

A larger value of l can reduce the risk of incorrectly inferring that one value subsumes

another, but at the same time reduces the number of true generalizations that are

detected. In the current work, the setting l = 30 is selected as it is a widely used

heuristic for the minimum number of examples from which an inductive inference

should be drawn.
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5.6.2 Effect of SR on NB

To explore the effect of SR, we compare the error, bias, variance and RMSE of NBSR

using the minimum frequency of 30 to NB. We also provide a comparison with NBBSE.

Two variants of BSE are evaluated, one employing a binomial sign test and the other

not. Both significantly improve upon NB’s accuracy. NBBSE without a binomial sign

test enjoys a significant error advantage over with (win/draw/loss being 36/4/20).

Therefore, we only present the results of NBBSE without a binomial sign test.

Table 5.8 presents the win/draw/loss records for NBSR against NB and NBBSE

on sixty data sets. The win/draw/loss records for NBBSE against NB and NBSR is

shown in Table 5.9.

Table 5.8: Win/Draw/Loss: NBSR vs. NB and NBBSE

NB NBBSE

W/D/L p W/D/L p

Error 30/19/11 0.0022 25/4/31 0.2522

Bias 31/18/11 0.0014 12/3/45 <0.0001

Variance 13/23/24 0.0494 43/4/13 <0.0001

RMSE 31/22/7 0.0001 27/4/29 0.4469

Table 5.9: Win/Draw/Loss: NBBSE vs. NB and NBSR

NB NBSR

W/D/L p W/D/L p

Error 36/4/20 0.0220 31/4/25 0.2522

Bias 52/3/5 <0.0001 45/3/12 <0.0001

Variance 11/4/45 <0.0001 13/4/43 <0.0001

RMSE 34/6/20 0.0380 29/4/27 0.4469

Figure 5.6 graphs the relative error, bias, variance and RMSE of the three classi-

fiers. The values on the y-axis are the outcome for NBBSE divided by that for NB.
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The values of the x-axis are the outcome for NBSR divided by that for NB. Each

point on the graph represents one data set. Points on the left of the vertical line at

NBSR/ NB= 1 in each subgraph are those for which NBSR has better results than

NB. Points below the horizontal line at NBBSE/ NB = 1 indicate that NBBSE wins

in those domains compared with NB. Points below the line X = Y represent that

NBSR has higher values than those of NBBSE.

To scale Figure 5.6 appropriately, we present results on all data sets except Mush-

room, on which SR and BSE reduce NB’s error, bias and RMSE substantially. The

error of NB on Mushroom is 0.0519 and that of NBSR and NBBSE are 0.0208 and

0.0108 respectively. The RMSE of NB is 0.1986 and that of NBSR and NBBSE are

0.1221 and 0.1091 respectively.

Error

The win/draw/loss records indicate that both NBBSE and NBSR enjoy a significant

advantage over NB. NBBSE frequently achieves lower error than NBSR. However, the

frequency of these differences does not quite achieve the level of statistical significance.

From the error graph in Figure 5.6 we can see that the majority of the points are

below the horizontal line at NBBSE/ NB = 1 and on the left of the vertical line at

NBSR/ NB = 1.

Bias

The win/draw/loss records for bias show that the advantages of NBBSE and NBSR

are significant compared to NB. The advantage of NBBSE in bias over NBSR is also

significant. Most of points are on the left of the vertical line at NBSR/ NB = 1 and

below the line X = Y in the bias graph.

Variance

NB enjoys a significant variance advantage over NBBSE and NBSR. The advantage

of NBSR in variance over NBBSE is clear. In the variance graph, most points are on

the right of the vertical line at NBSR/ NB = 1 and above the line X = Y .
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Figure 5.6: Comparison of error, bias, variance and RMSE for NB, NBSR and NBBSE.
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RMSE

Both NBBSE and NBSR significantly reduce the RMSE of NB. NBBSE frequently

achieves lower RMSE than NBSR. However, there is no significant difference identi-

fied. Most of points are on the left of the vertical line at NBSR/ NB = 1 and below

the horizontal line at NBBSE/ NB = 1 in the RMSE graph.

5.6.3 Effect of SR on AODE

The win/draw/loss records for AODESR against AODE and AODEBSE on sixty data

sets are shown in Table 5.10. Table 5.11 presents the win/draw/loss records for

AODEBSE against AODE and AODESR.

Table 5.10: Win/Draw/Loss: AODESR vs. AODE and AODEBSE

AODE AODE BSE

W/D/L p W/D/L p

Error 31/18/11 0.0014 27/15/18 0.1163

Bias 38/18/4 <0.0001 34/15/11 0.0004

Variance 14/17/29 0.0158 17/14/29 0.0519

RMSE 35/15/10 0.0001 35/12/13 0.0010

Table 5.11: Win/Draw/Loss: AODEBSE vs. AODE and AODESR

AODE AODESR

W/D/L p W/D/L p

Error 14/41/5 0.0318 18/15/27 0.1163

Bias 16/41/3 0.0022 11/15/34 0.0004

Variance 6/40/14 0.0577 29/14/17 0.0519

RMSE 12/41/7 0.1796 13/12/35 0.0010

The relative error, bias, variance and RMSE of the three classifiers are presented

in Figure 5.7. Each point on the graph represents one of the 60 data sets. The
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values of the x-axis are the outcome for AODESR divided by that for AODE, and

on the y-axis are the outcome for AODEBSE divided by that for AODE. Points on

the left of the vertical line at AODESR/ AODE = 1 in each subgraph are those for

which AODESR has lower metrics than AODE. Points below the horizontal line at

AODEBSE/ AODE = 1 are those for which AODEBSE has better results than AODE.

Points above the line X = Y indicate that AODESR has lower values than those of

AODEBSE.

Error

The win/draw/loss records indicate that SR and BSE significantly reduce error of

AODE. AODESR frequently obtains lower error than AODEBSE, but this difference

is not significant. The error graph in Figure 5.7 shows that the majority of points are

on the left of the line at AODESR/ AODE = 1. As AODEBSE has identical error to

AODE on 41 data sets, most points are on the horizontal line at AODEBSE/ AODE

= 1.

The error ratios of AODESR and AODEBSE over AODE on King-rook-vs-king-

pawn (the point at the bottom of the graph) are 0.8478 and 0.8044 respectively.

The error ratio of AODEBSE over AODESR is 0.9489. That is, both AODESR and

AODEBSE reduce the error of AODE considerably, while AODEBSE has substantial

lower error than AODESR on this data set. Similar results can be observed when

NB, NBBSE and NBSR are compared. It is possible that BSE can rectify a wider

range of interdependencies than SR, which can only detect a special dependency

relationship. Hence, BSE might have an advantage on King-rook-vs-king-pawn, in

which there are strong dependencies between the presence and position of pieces on

the board. However, it appears that BSE does not scale well to the data sets with

many attributes, such as Audiology which has 69 attributes. The error of AODESR

and AODEBSE on Audiology are 0.3126 and 0.3863 respectively. That of NBSR and

NBBSE are 0.3204 and 0.3888 respectively.

Bias

AODESR has a significant bias advantage over AODE and AODEBSE. The advantage

of AODEBSE compared to AODE is significant. The majority of points in the bias

graph are on the left of the line at AODESR/ AODE = 1 and above the line X = Y .
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Figure 5.7: Comparison of error, bias, variance and RMSE for AODE, AODESR and
AODEBSE.
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Variance

AODE enjoys a significant advantage in variance compared to AODESR and a

marginal advantage compared to AODEBSE. The advantage of AODEBSE over

AODESR is marginal. In the variance graph, most points are on the right of the

line at AODESR/ AODE = 1.

RMSE

SR significantly reduces AODE’s RMSE. It also has a significant advantage over

AODEBSE, which shares a similar level of RMSE with AODE. Most points on the

RMSE graph are to the left of the line at AODESR/ AODE = 1, above the line X = Y

and on the horizontal line at AODEBSE/ AODE = 1. On Mushroom (the point on

the right of the graph), the RMSE of AODE, AODESR and AODEBSE are 0.0226,

0.0261 and 0.0226 respectively.

5.6.4 Compute Time Results

Empirical running time is presented here to provide a adjunct to computational com-

plexity analysis in Section 5.5. The pairwise win/draw/loss records on training time

are presented in Table 5.12 and that on classification time are presented in Table 5.13.

The mean training and classification time across 60 data sets are presented in Fig-

ures 5.8 and 5.9 respectively.

Table 5.12: Win/Draw/Loss records on training time.

Training time Training time

W/L/D NB NBSR AODEBSE W/L/D AODE AODESR AODEBSE

NB AODE

NBSR 4/1/55 AODESR 26/1/33

NBBSE 0/0/60 0/0/60 AODEBSE 0/0/60 0/0/60
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Figure 5.8: Mean training time across 60 data sets.

5.6.4.1 Training Time

The disadvantage of NBBSE in training time relative to NB and NBSR is evident

(in no cases, NBBSE has less training time than NB and NBSR). Similar results are

observed when AODEBSE is compared to AODE and AODESR. When SR is applied

to NB, it has a significant training time disadvantage relative to NB. In the context

of AODE, it shares a similar level of training time with AODE.

NB has the lowest mean training time (13.43 seconds). The differences between

AODE, AODESR and NBSR are small (24.73, 26.13 and 26.39 seconds respectively).

As discussed in Section 5.6.2, we present the results of NBBSE without a binomial

sign test as it outperforms NBBSE with a binomial sign test. AODEBSE employs a

binomial sign test to assess whether an accuracy improvement is significant. Algo-

rithms with a binomial test usually have lower training time than those without, as

if the selection of the attribute whose elimination or addition most improves leave-

one-out accuracy does not pass the binomial test, the algorithms with the sign test

terminate the attribute selection, resulting in less iterations and hence lower training

time. For example, an attribute deletion corrects 8 misclassifications and misclassi-

fies 2 previously correct examples. The outcome of one-tailed binomial sign test is

0.0547 > 0.05. Algorithms with the sign test terminate the attribute selection because

this improvement is assessed as insignificant, while those without perform attribute

selection continually as long as there is an accuracy improvement. This may explain

why NBBSE has the highest mean training time (1444.63 seconds) and has higher

training time than AODEBSE on many data sets.
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Table 5.13: Win/Draw/Loss records on classification time.

Classification time Classification time

W/L/D NB NBSR NBBSE W/L/D AODE AODESR AODEBSE

NB AODE

NBSR 4/1/55 AODESR 30/2/28

NBBSE 35/4/21 55/1/4 AODEBSE 33/2/25 28/1/31
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Figure 5.9: Mean classification time across 60 data sets.

5.6.4.2 Classification Time

Compared to NBSR, NB and NBBSE enjoy a considerable advantage in classification

time. The advantage of NBBSE over NB is also significant. No statistically significant

classification time difference is identified between AODE, AODESR and AODEBSE.

Since AODESR has an additional step to detect the generalization relationship, it is

expected to have higher classification time than AODE. However, due to the large

number of attribute values deleted (refer to elimination ratios in Section 5.6.5), which

results in substantial speed-up, it has lower classification time on 30 data sets com-

pared to AODE.

NBBSE has the lowest mean classification time (2.62 seconds). NB and NBSR

obtain the second and third lowest mean classification time (2.64 and 6.5 seconds).
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As AODESR deletes many of attributes on some data sets, such as Connect-4 Opening,

it has lower mean classification time than that of AODEBSE and AODE.

5.6.5 Elimination Ratio

To observe the number of attributes that are deleted by SR and BSE, we calculate

the elimination ratio of SR and BSE respectively.

5.6.5.1 Elimination Ratio of SR

Figures 5.10 shows average attribute elimination ratios for SR (denoted as rSR) on

each data set. This value is obtained by dividing the number of attributes deleted by

the number of attributes across all the test examples and iterations:

rSR =

∑u
i=1

∑|T |
t=1 di

t

|T |nu
,

where u is the number of iterations (it is 50 in our experiment), di
t is the number of

attributes deleted for the tth instance in the ith iteration.
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Figure 5.10: Average attribute elimination ratio of SR (The data sets are in the
number sequence of Table 3.4)

An elimination ratio of zero represents no deletions. The larger the elimination

ratio, the more attributes that are deleted. The data sets in Figures 5.10 are in
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the number sequence of Table 3.4. Since the attributes deleted do not change from

classification algorithm to algorithm, NBSR and AODESR have identical elimination

ratios on the same data set. As illustrated in Figure 5.10, elimination occurs on 49

out of 60 data sets, which suggests that the specialization–generalization relation is

common in real world data. For almost 10% data sets, over 50% of attribute values

are eliminated. For more than 50% of data sets, more than 10% of attribute values

are eliminated.

The elimination ratios on 5 data sets (Audiology, Connect-4 Opening, Liver Disor-

ders, Sonar Classification and Waveform-5000) are greater than 0.5. NBSR has lower

error and RMSE than NB on Audiology and Connect-4 Opening, and identical error

and RMSE to NB on Liver Disorders and Waveform-5000. It has higher error but

lower RMSE than NB on Sonar Classification. Compared to AODE, AODESR has

lower error and RMSE on Audiology, Connect-4 Opening and Waveform-5000. It has

identical error and RMSE to AODE on Liver Disorders. On Sonar Classification, it

has higher error but lower RMSE.

Due to the large number of attribute values deleted, which results in substantial

speed-up, AODESR has lower classification time on all the 5 data sets and another

25 data sets compared to AODE. For example, the elimination ratio on Connect-4

Opening is 0.6302 (26 attributes out of 42 attributes are deleted). The classification

time of AODE on Connect-4 Opening is 1418.59 seconds, while that of AODESR is

379.16 seconds.

5.6.5.2 Elimination Ratio of BSE

Figures 5.11 shows average attribute elimination ratios for BSE (denoted as rBSE) on

each data set obtained by dividing the number of attributes deleted by the number

of attributes across all iterations:

rBSE =

∑u
i=1 di

nu
,

where di is the number of attributes deleted in the ith iteration.

BSE considers specific classification algorithms in the process of deletion, which

may result in different attribute subsets for different algorithms. All elimination ratios
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Figure 5.11: Average attribute elimination ratio of NBBSE and AODEBSE (The data
sets are in the number sequence of Table 3.4)

of NBBSE and AODEBSE are less than 0.55. For NBBSE, elimination occurs on all

data sets except Liver Disorders and Volcanoes. The elimination ratios of NBBSE

on three data sets (Adult, Nettalk and Page Blocks) are lager than 0.4. It reduces

NB’s error and RMSE substantially on these three data sets. More than 10% of

attributes are eliminated on 50% data sets. As AODEBSE employs a binomial sign

test, the elimination ratios for all data sets are less than 0.1. On 23 data sets, the

elimination ratios of AODEBSE are larger than zero. NBBSE has lager elimination

ratios than AODEBSE on all data sets except Liver Disorders and Volcanoes, on which

the elimination ratio of NBBSE and AODEBSE are zero.

5.6.6 Lazy and Eager Elimination

Eager learning algorithms perform learning at training time, while lazy learning algo-

rithms delay learning until classification time. BSE deletes attributes whose elimina-

tion can improve leave-one-out classification accuracy at training time and classifies

a new example using the selected attribute subset. In contrast, SR deletes attributes

at classification time depending upon which attribute values are instantiated in the

object being classified and classifies a new example using the remaining attributes.

The attribute subset selected by SR does not change from classification algorithm to

algorithm, while that by BSE is different from algorithm to algorithm.
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Lazy learning algorithms usually seek to find a model that is most appropri-

ate to the test example. SR deletes attributes that appear to subsume other at-

tributes for each test example, and hence uses different attribute subsets to clas-

sify test examples. This may have a different effect on classification compared to

deleting complete attributes. For instance, in the data set German, the 20th at-

tribute is ForeignWorker which has two values, yes and no and the 3th attribute is

CreditHistory with the 5 values A30, A31, A32, A33 and A34. For all the instances

in German, if CreditHistory is A33, which is “delay in paying off in the past”, then

ForeignWorker is yes. SR can detect this relationship and delete ForeignWorker

when these two values are instantiated in the test example. Both CreditHistory and

ForeignWorker are used if ForeignWorker=no.

When we apply SR to NB but restrict its application to deleting only values of

ForeignWorker (indicated as NBSR
FW ), it has error of 0.2633. The error of NBBSE

and NB are 0.2651 and 0.2635 respectively. If we delete ForeignWorker for all test

examples (indicated as NB FW ), it has error of 0.2644. In the context of AODE,

the elimination of the complete attribute ForeignWorker (indicated as AODE FW )

increases error of AODE from 0.2587 to 0.2607. AODE has error of 0.2586 by the

addition of SR with restriction of deleting only values of ForeignWorker (indicated

as AODESR
FW ). AODEBSE has identical error to AODE. Table 5.14 presents these

Table 5.14: Errors on German

Error

NB NB FW NBSR
FW NBBSE

0.2635 0.2644 0.2633 0.2651

Error

AODE AODE FW AODESR
FW AODEBSE

0.2587 0.2607 0.2586 0.2587

error results.

In this case, the elimination of the complete attribute ForeignWorker increases

the errors of NB and AODE, while the elimination of attribute ForeignWorker

when SR detects the generalization relationship between CreditHistory and
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ForeignWorker decreases the errors. These observations suggest that lazy elimina-

tion may have a different effect from eager elimination. When a value of an attribute

is highly related to some values, but not all values, of another attribute, elimination of

the complete former attribute may lose information, while elimination of the former

attribute-value may have positive effect.

5.6.7 Comparing NBSR and AODESR with Other Semi-naive

Bayesian Classifiers

In this section, we use the Friedman and Nemenyi tests to compare NBSR and

AODESR with NB and the five semi-naive Bayesian methods that significantly re-

duce NB’s error on sixty data sets. As LBR was executed on a different machine, we

exclude LBR from the time comparison.

The Friedman statistics for error (10.5755), bias (24.0746), variance (11.6310) and

RMSE (12.9193) are greater than the critical value of F (7, 413) for α = 0.05 (2.0318).

The Friedman statistics for training time (143.8973) and classification time (236.1678)

are greater than the critical value of F (6, 413) for α = 0.05 (2.1242). Therefore, we

reject all the null-hypotheses. The Critical Differences using the Nemenyi test for 8

and 7 algorithms are 1.3555 and 1.1631 respectively (α = 0.05). Figure 5.12 presents

the outcomes of error and RMSE, Figure 5.13 bias and variance and Figure 5.14

training time and classification time.

5.6.7.1 NBSR

NBSR has lower mean ranks of bias, error and RMSE compared to NB, and higher

compared to the remaining algorithms. The error differences between NBSR and

NB, SP-TAN and LBR are not statistically significant. MAPLMG, AODESR, AODE

and LWNB have significantly lower mean error ranks than NBSR. Two algorithms,

MAPLMG and AODESR have significant advantage in RMSE over NBSR, which

shares a similar level of RMSE with NB, SP-TAN, LWNB, LBR and AODE. NBSR

has significantly higher mean bias ranks than all the other algorithms except NB and

AODE. It has the third lowest mean variance rank, shares a similar level of variance

with NB, AODE, MAPLMG and AODESR, and outperforms the rest of algorithms.
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Figure 5.12: Error and RMSE comparison of NBSR, AODESR, NB, MAPLMG, LBR,
AODE, LWNB and SP-TAN with the Nemenyi test on 60 data sets. CD = 1.3555.

NBSR has significant training time disadvantage relative to NB and advantage

over SP-TAN and MAPLMG. There is no significant training time differences between

NBSR and LWNB, AODE and AODESR. NBSR shares a similar level of classification

time with SP-TAN and has a significantly higher mean classification time rank than

NB and significantly lower than AODE, AODESR, MAPLMG and LWNB.

5.6.7.2 AODESR

AODESR achieves the second lowest mean rank for error and RMSE. It has higher

mean error rank than MAPLMG, lower than LWNB, AODE, LBR and SP-TAN

and significantly lower than NBSR and NB. With respect to RMSE, it has slightly

higher mean rank than MAPLMG and a significant advantage over all the remaining

algorithms except AODE and LBR.

The bias difference between AODESR and MAPLMG is very small. They have

significant higher mean bias rank than LWNB and lower than NBSR and NB. The

bias differences between AODESR, MAPLMG, SP-TAN and LBR are also small.

AODESR has higher mean variance rank than NB, AODE, NBSR and MAPLMG,
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Figure 5.13: Bias and variance comparison of NBSR, AODESR, NB, MAPLMG, LBR,
AODE, LWNB and SP-TAN with the Nemenyi test on 60 data sets. CD = 1.3555.

but the differences are not significant. The variance advantage of AODESR over

LBR, LWNB and SP-TAN is clear.

Turning to computing time, there is only slight training time difference between

AODESR and AODE. They share a similar level of training time with NBSR and

have a clear disadvantage relative to NB and LWNB. The disadvantages in train-

ing time of MAPLMG and SP-TAN relative to the rest of algorithms are evident.

Four groups of algorithms can be identified when classification time is compared.

MAPLMG, AODESR and AODE have significantly lower mean ranks than LWNB

and significantly higher than all the other algorithms.

The win/draw/loss comparisons in Sections 5.6.2 and 5.6.3 showed that SR can

significantly reduce the error, bias and RMSE of NB and AODE. However, in this

comparison, SR substantially, but not significantly, reduces those of NB and AODE.

This is because this comparison involves 8 algorithms and hence the Nemenyi test

is not powerful enough to detect significant differences between NBSR and NB and

AODESR and AODE.
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Figure 5.14: Computing time comparison of NBSR, AODESR, NB, MAPLMG, AODE,
LWNB and SP-TAN with the Nemenyi test on 60 data sets. CD = 1.1631.

5.6.7.3 Discussion

SR is effective at reducing NB’s bias, error and RMSE. However, the computational

complexity of NBSR is similar to that of AODE, while the improvement in accu-

racy it produces is not generally as great. In contrast, the bias, error and RMSE

of AODE can be substantially reduced by the addition of SR with identical compu-

tational complexity to AODE. AODESR demonstrates competitive error and RMSE

with MAPLMG, a powerful variant of AODE. The advantage of AODESR in compu-

tation efficiency relative to MAPLMG is substantial. In addition, AODESR, but not

MAPLMG, inherits AODE’s capacity for incremental learning.

Compared to LBR, AODESR has considerably lower classification time in all cases

and to LWNB in cases when the number of attributes is not large. It is also space

efficient as it only uses frequency tables formed at training time to perform classi-

fication and hence does not need to retain training data. Compared to SP-TAN, it

provides considerably faster training. AODESR has significant RMSE advantage over

LWNB and SP-TAN, but not LBR.
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AODESR enjoys competitive classification accuracy, probabilistic prediction and

computation efficiency. In consequence, it may prove desirable for many classification

tasks.

5.7 Semi-Supervised Subsumption Resolution

(SSSR)

Learning algorithms that make use of both labeled and unlabeled data for training

are referred to as semi-supervised learning algorithms. Since SR only needs to use fre-

quencies of two attribute values to detect whether one is a generalization of another,

it can use not only labeled but also unlabeled data to identify the generalization

relationship. Compared to labeled data, unlabeled data is relatively easy to collect.

For example, unlabeled web pages can be inexpensively collected using web crawlers,

while hand labeled web pages are very expensively to obtain. As discussed previously,

variance may decrease with increasing training sample size. Consequently, the addi-

tion of large amounts of unlabeled data is expected to reduce the variance of SR. We

call Subsumption Resolution that uses both labeled and unlabeled data for training

Semi-Supervised Subsumption Resolution (SSSR). When SSSR is applied to NB (or

AODE), the resulting classifier acts as NBSR (or AODESR) except that unlabeled

data is also used to identify and delete generalizations. We denote NB with SSSR as

NBSSSR and AODE as AODESSSR.

To evaluate the effect of SSSR, we compare NBSSSR to NBSR and AODESSSR to

AODESR. In these experiments, training data is randomly divided into approximately

equal-sized training set and test set, and a test set without class information is used as

unlabeled data 1. When training data has quantitative attributes, MDL discretization

module in Weka discretizes them using both training set and test set (including class

information) for SSSR, while only training set for SR. Cut points generated from

training set and those from training set together with test set are usually different.

Therefore, the resulting training set for SSSR and that for SR may be different.

1In a semi-supervised setting, an algorithm performs learning using labeled and unlabeled data
and makes predictions for unseen examples. In a transductive setting, an algorithm predicts the
labels of known unlabeled examples. In these experiments, since we use test data as unlabeled data,
NBSSSR and AODESSSR perform transductive learning. However, SR can be naturally used on
unseen data and perform semi-supervised learning.
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In addition, when training data has missing values, mode for qualitative attributes

and mean for quantitative attributes in training set may be different from those in

training set together with test set. To avoid this problem, these experiments are run

in the same manner as those described in Section 3.3.2 except that training data with

quantitative attributes is preprocessed by using MDL discretization and with missing

values by replacing them using mode or mean in the whole training data.

Table 5.15 presents the win/draw/loss records for NBSSSR against NBSR on sixty

Table 5.15: Win/Draw/Loss:NBSSSR vs. NBSR

NBSSSR vs. NBSR

W/D/L p

Error 10/24/26 0.0057
Bias 8/24/28 0.0006
Variance 21/28/11 0.0551
RMSE 11/24/25 0.0144

Table 5.16: Win/Draw/Loss: AODESSSR vs.
AODESR

AODESSSR vs. AODESR

W/D/L p

Error 12/24/24 0.0326
Bias 12/25/23 0.0448
Variance 22/26/12 0.0607
RMSE 11/23/26 0.0100

data sets and Table 5.16 for AODESSSR against AODESR. The addition of unlabeled

data substantially, but not significantly, reduces the variance of SR. However, the

increase in bias outweighs the reduction in variance and results in an overall increase in

error and RMSE. While the use of unlabeled data to improve SR appears in principle

to be a promising idea, further development is required.

5.8 Summary

BSE uses a wrapper approach to identify and remove harmful interdependencies and

has been applied profitably in domains with highly correlated attributes. However,

it imposes high training time overheads on learning algorithms, especially those with

high classification time complexity. Based on a theoretical analysis of attribute-

value interdependencies, we have proposed a novel technique, SR, to efficiently detect

the specialization–generalization relationship, a special form of interdependency, and

delete generalizations at classification time. Unlike other lazy methods, it is time and

space efficient.



Chapter 5. Subsumption Resolution 141

We investigate the effect of BSE and SR on classification accuracy and probabilis-

tic prediction by applying them to NB and AODE. Extensive experimental results

(win/draw/loss records) show that both significantly improve upon NB’s accuracy

and probability estimates and AODE’s accuracy. However, the probability estimates

of AODE can be significantly enhanced by the addition of SR, but not BSE. The

advantage of SR in probabilistic prediction and computation efficiency over BSE is

significant in the context of AODE. In addition, SR inherits NB and AODE’s capacity

for incremental learning and is suited to semi-supervised learning. Nonetheless, it is

only applicable to algorithms without model selection, such as NB and AODE. BSE

is more widely applicable, but does not support incremental and semi-supervised

learning and has high computational overheads. We believe that the appropriate

conclusion to draw from our results is that SR is effective at reducing error, rather

than that it is necessarily superior to the BSE strategy in this respect in the AODE

context.

We use the Friedman and Nemenyi tests to compare NBSR and AODESR with

five state-of-the-art semi-naive Bayesian methods. The results show that AODESR

competes favorably with MAPLMG, LBR, AODE, LWNB and SP-TAN on our data

collection. It achieves competitive classification accuracy without incurring the high

training time overheads of MAPLMG and SP-TAN and high classification time over-

heads of LWNB and LBR. Further, it enjoys a considerable advantage in probabilis-

tic estimation over LWNB and SP-TAN. We believe AODESR provides a reasonable

trade-off between classification accuracy and computational efficiency and appears to

be a promising approach for a wide range of classification problems.



Chapter 6

Near-Subsumption Resolution

The previous chapter has addressed the specialization-generalization relationship and

the Subsumption Resolution technique to resolve this type of interdependence prob-

lem. In practice, errors are common in data, especially in large data. It is possible

that noisy or erroneous data might prevent detection of a specialization–generalization

relationship. Also, in many cases an attribute value cannot be classified with full cer-

tainty, but can with strong possibility, as the generalization of another. Further,

when we assume a specialization–generalization relationship exists in the sample, it

is likely that the relationship is actually a near specialization–generalization relation-

ship in the population from which the sample is drawn. In consequence, it is useful

to investigate the effect of elimination of near-generalizations.

In this chapter, we first introduce the near specialization-generalization relation-

ship, which relaxes the perfect relationship by allowing some uncertainty. Next, we

extend Subsumption Resolution to Near-Subsumption Resolution and apply it to NB

and AODE. An extensive empirical study is performed to investigate the effect of

different lower bounds on the strength of allowed near-generalizations. Finally, we

examine the reasons elimination of near-generalizations often proves profitable based

on three exemplar data sets.

142
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6.1 The Near Specialization-generalization Rela-

tionship

For two attribute values xi and xj, if P (xj | xi) = 1.0, xj is classified as the gen-

eralization of xi. We extend the definition to a near-generalization by relaxing the

condition from equal to approximately equal:

Definition 4. (Near-Generalization and Near-Specialization) For two attribute values

xi and xj, if P (xj | xi) ≈ 1.0 then xj is a near-generalization of xi and xi is a near-

specialization of xj.

There are many real world examples in which one attribute value approximately

subsumes another. For instance, given attribute Short−term−visitor with two values

of yes and no and attribute Local−number−registered with two values of yes and no.

It is logical to infer that most short term visitors do not register a local phone number

under their names, while most local residents register their own phone numbers.

However, some short term visitors register a local phone number and some local

residents do not. Hence, Local−number−registered=no is a near-generalization of

Short−term−visitor=yes and Short−term−visitor=no is a near-generalization of

Local−number−registered=yes.

6.2 Near-Subsumption Resolution (NSR)

SR can be simply extended to manipulate the near specialization–generalization re-

lationship by relaxing the criterion to accept generalizations. This extension, called

Near-Subsumption Resolution (NSR), identifies at classification time pairs of attribute

values such that one appears to approximately subsume (be a near-generalization of)

the other. It then deletes the near-generalization.

6.2.1 Lower Bounds

A lower bound is required on when to accept a near specialization-generalization

relationship. We use P (xj | xi) to estimate how approximately xi and xj have the

specialization–generalization relationship. Let r be a user-specified lower bound value,

0 ≤ r ≤ 1.0. If 1.0 > P (xj | xi) ≥ r ≈ 1.0, xj is a near-generalization of xi.
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For all Z, given P (xj | xi) ≈ 1.0, we have

P (xi, xj, Z) ≈ P (xi, Z),

and hence

P (y | x1, . . . , xn) ≈ P (y | x1, . . . , xj−1, xj+1, . . . xn).

If an appropriate r is selected, removing xj from a Bayesian classifier might posi-

tively affect a Bayesian classifier. However, there does not appear to be any satisfac-

tory a priori method to select an appropriate value for r. The classification perfor-

mance is sensitive to the selection of lower bounds to accept the near specialization-

generalization relationship. Deleting weak near-generalizations might prove effective

on some data sets, while only eliminating strong near-generalizations may prove more

desirable on other data sets.

6.2.2 Criterion for Identifying Near-Generalizations

NSR uses the following criterion

|Txi,xj
| ≥ l ∧ |Txi

| > |Txi,xj
| ≥ r|Txi

|

to infer that xj is a near-generalization of xi. We use SR’s default l = 30 as the

minimum frequency at which to accept the near specialization-generalization rela-

tionship. Figure 6.1 illustrates the criterion from the perspective of set theory. If

the number of elements in intersection of Txi
and Txj

is greater than l and than r

multiplies the number of elements in Txi
, but less than the number of elements in Txi

,

xj is a near-generalization of xi.

6.3 NB and AODE with NSR

Compared to SR, NSR only changes the criterion to accept the relationship and hence

does not incur any additional computational complexity. We denote NB with Near-

Subsumption Resolution as NBSR
r and AODE with Near-Subsumption Resolution as

AODESR
r , where r is the critical r-value used to accept or reject a candidate near-

generalization.
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Figure 6.1: Criterion to infer that xj is a near-generalization of xi. Txi
and Txj

are
the sets of the training cases with value xi and xj respectively. In the current work
l = 30.

6.3.1 NB with NSR

In the context of NB, NSR deletes near-generalization attribute values if a near-

specialization is detected. It also deletes generalization attribute values. Indepen-

dence is assumed among the resulting attribute-values given the class.

Classification of instance x = 〈x1, . . . , xn〉 consists of two steps:

1. Set R to {x1≤i≤n | ¬∃x1≤j≤n xi 6= xj ∧ P (xi | xj) ≥ r}.

2. Estimate P (y,x) by

P̂ (y,x) = P̂ (y)
∏
xi∈R

P̂ (xi | y).

6.3.2 AODE with NSR

When NSR is applied to AODE, the resulting classifier acts as AODESR except that

it deletes near-generalization attribute-values from use in any role in the classifier

if a near-specialization is detected, and aggregates the predictions of all qualified

classifiers using the remaining attribute-values.

Classification consists of two steps:

1. Set R to {x1≤i≤n | ¬∃x1≤j≤n xi 6= xj ∧ P (xi | xj) ≥ r}.



Chapter 6. Near-Subsumption Resolution 146

2. Estimate P (y,x) by

P̂ (y,x) =
∑

xi∈R∧F (xi)≥m

P̂ (y, xi)
∏

xj∈R

P̂ (xj | y, xi).

6.4 Effect of Different Lower Bounds: An Empir-

ical Study

The key issue for the near specialization–generalization relationship is how to select

an appropriate lower bound at which to accept the relationship. An empirical study

is performed to investigate whether an appropriate value of r can be found. As initial

exploratory investigations found NBSR
r using values smaller than 0.990 frequently

obtains higher error compared to NBSR and the difference between AODESR
r using

values smaller than 0.990 and AODESR is not statistically significant, we present the

error and RMSE results in the range of r = 0.999 to r = 0.990 with a decrement of

0.001.

6.4.1 Mean Error and RMSE

The averaged error and RMSE of NBSR
r and AODESR

r across 60 data sets as a function

of r are presented in Figures 6.2 and 6.3. The values on the x-axis are the lower

bounds to accept a candidate near-generalization and the values on the y-axis are

the averaged error and RMSE across 60 data sets. The error and RMSE of NB and

NBSR are included in Figure 6.2 and that of AODE and AODESR are included in

Figure 6.3.

NBSR
r has lower mean error and RMSE at all settings of r compared to NB and

NBSR. Similarly, at all settings of r, AODESR
r has lower mean error and RMSE

compared to AODE and AODESR.

6.4.2 NBSR
r

Table 6.1 presents the win/draw/loss records of error for NB and NBSR against NBSR
r .

The p value is the outcome of a one-tailed binomial sign test. Table 6.2 presents the

win/draw/loss records of RMSE for NB and NBSR against NBSR
r .



Chapter 6. Near-Subsumption Resolution 147

 0.2155

 0.216

 0.2165

 0.217

 0.2175

 0.218

 0.2185

 0.219

 0.2195

r=0.990

r=0.991

r=0.992

r=0.993

r=0.994

r=0.995

r=0.996

r=0.997

r=0.998

r=0.999

NB SR
NB

A
ve

ra
ge

d 
er

ro
r

 0.196

 0.1965

 0.197

 0.1975

 0.198

 0.1985

 0.199

 0.1995

 0.2

r=0.990

r=0.991

r=0.992

r=0.993

r=0.994

r=0.995

r=0.996

r=0.997

r=0.998

r=0.999

AODE SR

AODE
A

ve
ra

ge
d 

er
ro

r

(a) NB, NBSR and NBSR
r with r (b) AODE, AODESR and AODESR

r with r

Figure 6.2: Averaged error across 60 data sets, as function of r.
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Error

For every setting of r, 0.990 ≤ r ≤ 0.999, NBSR
r enjoys a significant error advantage

over NB. The error differences between NBSR
r and NBSR are small.

RMSE

The RMSE advantage of NBSR
r , at all settings of r, compared to NB is clear. It shares

a similar level of RMSE with NBSR.

6.4.3 AODESR
r

Tables 6.3 and 6.4 present the win/draw/loss records of error and RMSE for AODE

and AODESR against AODESR
r .

Error

At all settings of r, the error advantage of AODESR
r relative to AODE is statistically

significant. It enjoys a significant error advantage compare to AODESR at all settings

of r except r = 0.999, r = 0.998 and r = 0.992. The advantage of AODESR
0.992

compared to AODESR is marginal (p = 0.0669).

RMSE

AODESR
r significantly reduces AODE’s RMSE for every setting of r. It also sig-

nificantly reduces the RMSE of AODESR at all settings of r except r = 0.999 and

r = 0.998. The advantage of AODESR compared to AODESR
0.998 is marginal (p =

0.0898).
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6.4.4 Learning Curve

To examine the behaviors of NBSR
r and AODESR

r with different lower bounds, we gen-

erate learning curves in which each point represents the error of NBSR
r and AODESR

r

corresponding to each r on the x-axis. As there are only small differences within

intervals of less than 0.01, we present the results in the range of r = 0.99 to r = 0.80

with a decrement of 0.01. The two decimal numbers on the x-axis are the lower

bounds of the near specialization–generalization relationship. The error of NB and

NBSR are also included in each graph for NBSR
r and that of AODE and AODESR are

included in each graph for AODESR
r .

Five main patterns are observed in our experiments when the error of NB with

NSR and AODE with NSR are considered:

• Error reduces continuously with slight fluctuations. Examples include Abalone

(Figures 6.4), Connect-4 Opening, Letter Recognition, Syncon and Waveform-

5000 for both NBSR
r and AODESR

r . On some data sets, such as Pen Digits,

NBSR
r has a largely downwards trend in error with decreasing values of r, while

AODESR
r does not have error reduction. Similarly, on some other data sets,

such as Auto Imports and Vowel, the error of NBSR
r first decreases and then

increases after r = 0.88, while that of AODESR
r continuously decreases with

slight fluctuations.
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Figure 6.4: Error on Abalone.
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• Error reduces first and then increases, such as the pattern on Adult (Figure 6.5),

Annealing, Audiology, Credit Screening, Horse Colic, King-rook-vs-king-pawn,

Segment, Sign and Vehicle for both NBSR
r and AODESR

r .
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Figure 6.5: Error on Adult.

• Error increases initially and then reduces. It increases again when small r is

used. Example includes Pima Indians Diabetes (Figure 6.6) for both NBSR
r and

AODESR
r .
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Figure 6.6: Error on Pima Indians Diabetes.
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• Error increases continuously with slight fluctuations, such as the pattern on

Hepatitis (Figures 6.7), House Votes 84, LED, Primary Tumor and Wine Recog-

nition for NBSR
r and AODESR

r .
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Figure 6.7: Error on Hepatitis.

• Error does not change for most values of r, such as the pattern on Splice-junction

Gene Sequences (Figure 6.8) and Nettalk.
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Figure 6.8: Error on Splice-junction Gene Sequences.

In some cases, NSR has a positive effect on AODE but a negative effect on NB.

In other cases, NSR has a negative effect on AODE but a positive effect on NB. For

example, on Hypothyroid, NB with NSR has higher error at all settings of r compared
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to NB, while AODE with NSR using 0.96 ≤ r ≤ 1.00 has lower error compared to

AODE (Figure 6.9). NSR reduces the error of NB when 0.82 ≤ r ≤ 0.99 on German,

while NSR increases the error of AODE at all settings of r (Figure 6.10).
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Figure 6.9: Error on Hypothyroid(Garavan) .
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Figure 6.10: Error on German.

We obtain a horizontal learning curve on nine data sets (Car Evaluation,

Contact-lenses, Labor negotiations, Liver Disorders, Lung Cancer, Nursery, Promoter

Gene Sequences, Tic-Tac-Toe Endgame, Volcanoes). Among these data sets, the

specialization–generalization relationship is detected on two data sets (Liver Disor-

ders, Volcanoes).
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6.5 Why Do We Delete Near-Generalizations?

The specialization–generalization relation is common in real world data, as shown

in Figure 5.10. However, it is difficult to satisfy the exact relationship in many

scenarios and hence it is more practical to relax the condition. For example, in

a noisy data set in which a single male is indicated as pregnant, we can not infer

P (Gender=female | Pregnant=yes) = 1.0. A simple solution is to weaken the

condition by using a threshold less than P (xj | xi) = 1.0.

From the experimental results in Section 6.4 we can see that AODESR
r with 0.990 ≤

r ≤ 0.999 except r = 0.999, r = 0.998 and r = 0.992 enjoy a significant advantage

in error over AODESR. Nonetheless, NBSR
r shares a similar level of error with NBSR

at all settings of r. It is not immediately obvious why those values of r should be

desirable in the context of AODE. In this section, we explore the reasons deleting

near-generalizations often proves advantageous based on three exemplar data sets

(Adult, Abalone and Pima Indians Diabetes). We use r = 0.990 as the lower bound.

Similar results can be obtained using 0.990 < r ≤ 0.999 on these three data sets.

6.5.1 Adult

The classification task of adult is to predict whether income exceeds fifty thousand

US dollars a year. It has 14 attributes (6 continuous and 8 discrete) besides the

class label. The attribute Education−num (the 5th attribute) recodes the attribute

Education (the 4th attribute) from a descriptive to a numeric format and hence

Education−num is a substitution of Education (refer to the Definition 2 in Sec-

tion 5.1). Given Education, Education−num is redundant. This redundancy can be

detected by applying SR to NB and AODE. The errors of AODE with all attributes

and all attributes except Education−num are 0.1474 and 0.1439 respectively using

the experimental method mentioned in Section 3.3.2. However, NB with all attributes

has lower error (0.1617) than NB with all attributes except Education−num (0.1674).

The error of NBSR and AODESR are 0.1636 and 0.1424 respectively. As has been dis-

cussed in Section 5.6.6, NBSR and AODESR delete attributes depending upon which

attribute values are instantiated in the object being classified, hence they may have

different results from that of NB and AODE by deleting complete attributes. These
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error results are presented in Table 6.5, where NB EN and AODE EN indicate NB and

AODE with all attributes except Education−num respectively.

Table 6.5: Errors on Adult

Error

NB NB EN NBSR NBSR
0.99

0.1617 0.1674 0.1636 0.1408

Error

AODE AODE EN AODESR AODESR
0.99

0.1474 0.1439 0.1424 0.1338

NB EN : NB with all attributes except Education−num

AODE EN : AODE with all attributes except Education−num

NBSR
0.99 improves upon NBSR substantially (the error reduces from 0.1636 to

0.1408). AODESR
0.99 also has a considerable error reduction on AODESR (from 0.1424

to 0.1338). We investigate the attributes that are deleted by NBSR and NBSR
0.99 (NBSR

deletes identical attributes to AODESR, and so does NBSR
0.99 to AODESR

0.99). Our ex-

periment reveals that both NBSR and NBSR
0.99 delete Education−num for those test

instances of which the frequencies in the training set of the value of Education−num

are larger than l = 30, and NBSR
0.99 also deletes two other types of attributes. The first

one is near-generalizations and the second one is attributes with noise.

6.5.1.1 Near-Generalization

Attribute Marital−status (the 6th attribute) has 7 values: married−civ−spouse,

divorced, never−married, separated, widowed, married−spouse−absent and

married−AF−spouse. It is closely associated with attribute Relationship (the

8th attribute) which has 6 values: wife, own−child, husband, not−in−family,

other−relative and unmarried. If a person is classified as a wife (or husband), she

(or he) must be a married person. However, we could not make the further judgement

whether a married person is either a married−civ−spouse or married−AF−spouse



Chapter 6. Near-Subsumption Resolution 157

due to two types of marriage being listed in the data set. There are 22379 in-

stances of Married−civ−spouse and 37 instances of Married−AF−spouse. It

is obvious that civilian marriages account for the majority of marriages. There-

fore, we can approximately infer that a married person belongs to a civilian mar-

riage. That is, Marital−status=married−civ−spouse is a near-generalization of

Relationship = husband and Relationship=wife.

To evaluate the effect of deleting Marital−status=married−civ−spouse using

r = 0.99, we apply NSR to NB and AODE but restrict its application to deleting

only values of Marital−status. The error of NBSR
0.99 is 0.1457 < 0.1617 and that of

AODESR
0.99 is 0.1383 < 0.1474. These results suggest that the elimination of a near-

generalization accounting for a large part of population to which near-specializations

belong can be positive.

6.5.1.2 Attributes with Noise

Attribute Sex (the 10th attribute) has two values: female and male. These values

have a clear specialization–generalization relationship with the two values (husband

and wife) of attribute Relationship. That is, Sex=female is a generalization of

Relationship=wife and Sex=male is a generalization of Relationship=husband.

However, due to noise in the data, the relation can not be detected by NBSR and

AODESR.

The values of Relationship and Sex of the 7110th instance in Adult are husband

and female respectively. Another two instances with noise are the 576th and 27142th

instances in which Relationship=wife and Sex=male. When we apply NSR to NB

and AODE but restrict its application to deleting only values of Sex, NBSR
0.99 and

AODESR
0.99 have errors of 0.1551 (< 0.1617) and 0.1449 (< 0.1474) respectively. These

results indicate that the near-generalization technique can be useful in at least some

cases of noise.

6.5.2 Abalone

In Abalone, the classification task is to predict the age of an abalone from its physical

measurements, many of which are closely correlated to one another. Since NB and
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AODE cannot handle numeric classes, we select the only attribute (Sex) that has

categorial values (M , F and I) as the class.

Figure 6.11 (a) presents the scatter graph that plots the values of Length ver-

sus the corresponding values of Diameter and Figure 6.11 (b) plots the values of

Shell weight versus the corresponding values of Diameter. While the data are dis-

cretized in our experiments, we do not show discretized values here as the discretiza-

tion cut points will change from one cross-validation run to another and between cross-

validation folds. It can be seen that the relationship between Diameter and Length

is linear and that of Diameter and Shell weight is roughly linear. Similar relation-

ships are observed for other attributes (scatter graphs are not presented), specif-

ically Shucked weight and V iscera weight are linearly related and Whole weight

and Length are roughly linearly related.

(a) Length vs. Diameter (b) Shell weight vs. Diameter

Figure 6.11: Close correlation

As Diameter and Length are positively linearly related, it is logical to infer that

an abalone with small diameter is shorter. However, there are some exceptional

cases where abalones with small diameter measure longer than average. Due to these

outliers, NBSR and AODESR often cannot identify the relationship, while NBSR
r and

AODESR
r may detect it if a small value of r is used. For instance, NBSR and AODESR

find the relationship between Diameter and Length 9786 times in 50 runs of two-fold

cross validation experiments, while NBSR
0.99 and AODESR

0.99 detect the relationship 29357

times. Note that when the relationship is detectable, a deletion will only occur for
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test cases that are not themselves outliers as, for example, a long abalone with small

diameter will not be an instance of the detected near-generalization relationship.

For attributes, such as Diameter and Shell weight, that are not perfectly corre-

lated (but closely correlated), NBSR and AODESR cannot find the relations most of

the time. If highly associated attributes can be excluded, NB and AODE’s accuracy

might be further improved. As shown in Figure 6.4, NBSR
r and AODESR

r have a

largely downwards trend in error with decreasing values of r for this data.

6.5.3 Pima Indians Diabetes

All the 768 instances in Pima Indians Diabetes are females at least 21 years

old. There is a strong relationship between age and the number of times that

a female was pregnant. It is generally true that a young female will have had

few pregnancies. To analyze the relationship between Age (the 8th attribute)

and Number of times pregnant (the 1st attribute), we use MDL discretization

to discretize the continuous attributes. The resulting cut points for Age and

Number of times pregnant are 28.5 and 6.5 respectively.

Table 6.6 cross-tabulates the frequency of each range of values for each at-

tribute. As we can see, there are only two outliers where females younger than

28.5 have been pregnant more than 6.5 times. Age>28.5 is a near-generalization

of Number of times pregnant>6.5 and Number of times pregnant≤6.5 is a near-

generalization of Age≤28.5. NBSR and AODESR detect the relationship in few of the

50 runs in the experiment (those where both outliers are in the test set) and reduce

NB and AODE’s error from 0.2580 to 0.2569 and from 0.2541 to 0.2535 respectively.

Table 6.6: Frequency table for Number of times pregnant and Age

Number of times pregnant ≤ 6.5 Number of times pregnant > 6.5

Age ≤ 28.5 365 2

Age > 28.5 234 167
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However, as shown in Figure 6.6, NBSR
0.99 has a higher error than that of NBSR

and NBSR
r (0.80 ≤ r ≤ 0.98). Similar results can be observed for AODESR

0.99. We

examine those instances that are classified to different classes by NBSR and NBSR
0.99.

The probability estimates of the two classes for these instances are close to 0.5. For

example, NBSR correctly classifies the 267th instance to the first class (the probability

estimates for the two classes are 0.5659 and 0.4341), while NBSR
0.99 incorrectly classifies

the instance to the second class (the probability estimates for the two classes are

0.4947 and 0.5053). NBSR
0.99 misclassifies 144 instances that are correctly classified by

NBSR and corrects 118 misclassifications of NBSR in the 50 runs. Nonetheless, NBSR
0.98

frequently and substantially improves probabilistic prediction of NBSR and NBSR
0.99.

For example,NBSR and NBSR
0.99 misclassify the 503th instance to the second class (the

probability estimates for the two classes are 0.4666 and 0.5334), and NBSR
0.98 correctly

classifies it to the first class (the probability estimates for the two classes are 0.6220

and 0.3780). NBSR
0.98 corrects 480 misclassifications of NBSR and misclassifies 418

instances that are correctly classified by NBSR in the 50 runs. NBSR
0.93 has the lowest

error, correcting 710 misclassifications of NBSR and misclassifying 502 instances that

are correctly classified by NBSR in the 50 runs. There does not appear to be any

systematic reason for particular values of r performing better or worse with this

data. Decreasing the value of r produces some advantageous attribute-value deletions

together with some disadvantageous deletions, and it appears to be a matter of chance

whether the advantageous or disadvantageous deletions dominate for any particular

value of r.

6.6 Summary

In this chapter, we extend SR to NSR which detects near specialization-generalization

relationship and deletes near-generalizations. We explore the reasons NSR proves

profitable based on three exemplar data sets. When a near-generalization accounts for

the majority of the population to which the corresponding near-specialization belongs,

elimination of the near-generalization may excel. It might have an advantage when

attributes are closely rather than perfectly associated. Furthermore, it may provide

tolerance for noise.



Chapter 7

Conclusions and Future Work

This thesis has analyzed the strengths and weaknesses of previous semi-naive Bayesian

techniques and proposed new algorithms that further improve the classification and

conditional probability estimation accuracy of NB and AODE. We provide in the

following sections a summary of its main results, some directions for future research

and conclusions.

7.1 Summary of Results

In this section, we briefly summarize the results from this thesis.

Systematic Survey

• A taxonomy of previous semi-naive Bayesian methods

This thesis provides a four category taxonomy of semi-naive Bayesian methods.

The first group forms a new attribute set by deleting or joining attributes to

remove harmful interdependencies and applies conventional NB to this attribute

set. Examples include BSE, FSS and BSEJ. The second group directly addresses

interdependencies between attributes by adding explicit arcs into NB’s struc-

ture. Examples include TAN, SP-TAN, NBTree, LBR, AODE and MAPLMG.

The third group accommodates violations of the attribute independence as-

sumption by applying NB to a subset of training set. Examples include LWNB,

NBTree and LBR. Therefore, the third group and the second group are not
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mutually exclusive. The fourth group performs corrections to NB’s probability

estimates by making adjustments to the class or attribute conditional probabil-

ities. Examples include APNB and IB. LBR and LWNB are lazy methods as

they defer learning until classification time, and BSE, FSS, BSEJ, TAN, SP-

TAN, NBTree, AODE, MAPLMG, APNB and IB are eager methods because

they perform learning at training time.

• Detailed time and space complexity analysis

The training time complexity of BSEJ and SP-TAN are O
(
tkn3

)
, that of NBTree

is O
(
t2kn2/v

)
and that of APNB is O

(
tn + t2k2

)
. Hence, BSEJ and SP-TAN

have very high training time if the number of attributes is large, NBTree if

the number of instances and attributes are large and APNB if the number of

instances and classes are large. These four algorithms have identical classifi-

cation time complexity to NB. That is, classification time complexity is linear

in the number of classes and attributes. Therefore, once models are formed,

they can efficiently classify test instances. MAPLMG, BSE and FSS have rela-

tively higher training time complexity than TAN, AODE and IB, whose training

time complexities are moderate. The classification time complexity of LBR is

O
(
tkn3

)
. This hampers LBR’s application when large numbers of examples

are to be classified, although its low training time complexity makes it highly

efficient when few classifications are required. LWNB is also a lazy method,

but its classification time complexity, O
(
tn + kn

)
, is substantially lower than

that of LBR. The classification time complexity of AODE and MAPLMG is

O
(
kn2

)
, which is higher than all the other methods except LBR and LWNB

and considerably lower than that of LWNB when t is substantially greater than

n and k (a usual case in the real world) and that of LBR. BSEJ has very high

training space complexity of O
(
tn + kvn

)
.

• Empirical comparison of twelve semi-naive Bayesian methods on sixty data sets

using the Friedman and Nemenyi tests

◦ Error

Five semi-naive Bayesian methods, MAPLMG, LBR, AODE, LWNB

and SP-TAN, significantly outperform NB. MAPLMG, LBR and AODE



Chapter 7. Conclusions and Future Work 163

achieve the lowest, second lowest and third lowest mean error ranks. The

error of MAPLMG is not significantly lower than that of LBR, AODE,

LWNB, SP-TAN and BSEJ.

◦ Bias

All semi-naive Bayesian methods, except APNB and IB, have significantly

lower mean bias ranks than NB. NBTree and LWNB have the lowest and

second lowest mean bias ranks. The bias differences between NBTree and

LWNB, BSEJ and LBR are not statistically significant.

◦ Variance

All semi-naive Bayesian methods, except AODE, MAPLMG, APNB and

IB, significantly increase the variance of NB. NBTree has the highest mean

variance rank, which is higher, but not significantly higher, than the mean

variance ranks of FSS, TAN, LWNB and BSEJ.

◦ RMSE

Four semi-naive Bayesian methods, MAPLMG, AODE, LBR and SP-TAN,

significantly reduce the RMSE of NB. MAPLMG achieves the lowest mean

RMSE rank, AODE comes next and LBR obtains the third lowest mean

RMSE rank.

◦ Computing time

Computing time results are provided as an adjunct to time complexity

analysis. These results should be treated with caution as various im-

plementations may result in differences in efficiency. In our data collec-

tion, NBTree, MAPLMG, SP-TAN and BSEJ have high training time and

LWNB has high classification time. LBR was excluded from time compar-

ison as it was executed on a different machine. It is substantially slower

than all the other methods at classification time.

• Empirical comparison of NB, MAPLMG, LBR, AODE, LWNB, SP-TAN, lo-

gistic regression and LibSVM

LibSVM has the lowest mean error rank and significantly outperforms logistic

regression and NB. MAPLMG has slightly higher mean error rank but substan-

tially lower training time than LibSVM. All methods, but NB, have lower mean
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error ranks than logistic regression, which has higher variance and significantly

lower bias than NB.

• Recommendations for selection between semi-naive Bayesian methods

These recommendations are based on the observations that low bias algorithms

appear to have an advantage in error with large training sets, while low variance

algorithms appear to have an advantage with small training sets. For extremely

small data NB may prove best and for large data NBTree, LWNB, BSEJ and

LBR may have an advantage if their computational profiles are appropriate

to the task. AODE may prove advantageous for many classification tasks as it

achieves very low variance and RMSE, intermediate bias, low training time com-

plexity and modest classification time complexity. MAPLMG further reduces

AODE’s error and RMSE with substantially increased training time, therefore,

it may excel for many classification problems if its computational cost can fall

within the computational constraints of the given application.

Child Elimination for AODE

• Development of new elimination strategies: Parent and Child Elimination, Child

Elimination and Parent or Child Elimination

• Two explanations for why straightforward application of BSE to AODE proves

ineffective

◦ AODE has higher variance compared with NB, and hence appropriate

variance management is required.

◦ Child selection appears to have greater effect than parent selection, as

ODEs are combined using a linear function but attributes within an ODE

are combined using a multiplicative function.

• Effective child elimination strategies for AODE

Our extensive experiments on sixty data sets suggest that the types of attribute

elimination that remove child attributes from within the constituent ODEs can

significantly reduce bias and error, but only if a statistical test is employed to
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provide variance management. In contrast, elimination of complete constituent

ODEs does not consistently provide error reduction.

Subsumption Resolution

• Identification and analysis of extreme but common relationships: generalization,

substitution and duplication relationships

A duplication relationship is a special case of a substitution relationship, which

in turn is a special case of generalization relationship. These relationships are

common in the real world. In our data collection, the generalization relationship

is detected on 49 out of 60 data sets.

• Prove that deletion of generalizations is theoretically correct

• Development of a new learning technique, SR, for efficiently identifying occur-

rences of the generalization relationship and removing generalizations at classi-

fication time

• SR can in practice significantly improve both classification accuracy and the

precision of conditional probability estimates.

SR efficiently identifies and deletes generalizations at classification time. When

applied to NB, it significantly improves both classification and conditional prob-

ability estimation accuracy with increasing time complexity. When applied to

AODE, it significantly improves both classification and conditional probability

estimation accuracy with identical time complexity. Compared to BSE, it has

significant advantages in probabilistic prediction and computation efficiency in

the context of AODE.

• Incrementality

SR only uses a two-dimensional table of probability estimates indexed by at-

tribute values generated at training time to detect and delete generalizations.

This probability estimates table can be updated incrementally. In consequence,

SR does not interfere with NB and AODE’s capacity for incremental learning.

• The application of SR to AODE competes favorably with state-of-the-art semi-

naive Bayesian methods.
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The Nemenyi test indicates that AODESR has lower mean error and RMSE

ranks than AODE, LBR, LWNB and SP-TAN and higher than MAPLMG.

This test does not differentiate AODESR from AODE as the power of the test is

low when a large number of methods are compared. AODESR has considerably

lower training time complexity relative to MAPLMG and SP-TAN, classification

time complexity relative to LWNB in most cases and LBR and identical time

complexity relative to AODE. We believe AODESR provides a reasonable trade-

off between classification accuracy and computational efficiency and appears to

be a promising approach for a wide range of classification problems.

Semi-Supervised Subsumption Resolution

• Development of a new learning technique, SSSR, for using both labeled and un-

labeled data to identify occurrences of the generalization relationship and remove

generalizations at classification time

SSSR substantially reduces the variance of SR in the context of NB and AODE.

Near-Subsumption Resolution

• Development of a new learning technique, NSR, for efficiently identifying occur-

rences of the near-generalization relationship and removing near-generalizations

at classification time

• Theoretical and experimental analysis of the circumstances in which elimination

of near-generalizations proves profitable

NSR proves profitable when:

◦ A near-generalization accounts for the majority of the population to which

the corresponding near-specialization belongs.

◦ Attributes are closely rather than perfectly associated.

◦ Data contains noise that may prevent detection of generalization relation-

ships.
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7.2 Future Work

This section discusses several interesting research topics that would allow us to further

explore and expand the findings of this thesis.

• To avoid the problems that result from zero frequencies and zero probabili-

ties, Laplace estimation, in keeping with Weka’s default probability estimation

method, was employed to estimate the base probabilities of semi-naive Bayesian

methods. However, in our preliminary experiments, m-estimation (m = 1) of-

ten appears to lead to more accurate probabilities than Laplace estimation for

NB and its variants we tested. It would be interesting to examine the rela-

tive performance of semi-naive Bayesian methods using m-estimation. Kohavi,

Becker and Sommerfield (1997) reported that the classification accuracy of NB

using m < 1 is usually higher than m = 1. Nonetheless, the effect of different

values of m on NB still remains unclear. A promising research direction would

seem to be detailed investigation into the effect of different values of m on NB

and its variants and the selection of an appropriate m for them.

• The largest data set sizes employed in this thesis are modest relative to many

data mining applications. It would be interesting to observe behaviors of semi-

naive Bayesian algorithms on relatively large data sets.

• Since SR detects and deletes generalizations at classification time, it might be

directly applied to lazy methods, such as k-nearest neighbors. However, the

effect of elimination of generalizations on distance functions is not immediately

clear. For example, assume that there are two attributes Pregnant and Gender,

the test instance is 〈Gender=female, Pregnant=yes〉 and the distance between

two instances is defined as the number of attributes that have different values.

The distance between the test instance and 〈Gender=female, Pregnant=no〉
is one and that of the test instance and 〈Gender=male, Pregnant=no〉 is two.

If the generalization Gender=female is deleted, both distances are one. In

such case, elimination of generalizations may have negative effect on distances.

In other cases, such as the case with presence of perfectly correlated attributes,

elimination of generalizations may have positive effect. Investigation of the

effect of SR on lazy methods would appear to be another interesting research
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topic. In addition, SR may also be applied to methods that can deal with

missing values as generalizations can be treated as missing values.

• This thesis explored the reasons Near-Subsumption Resolution proves profitable

based on three exemplar data sets. However, the investigation does not provide

any a priori guidelines for identifying in advance when Near-Subsumption Res-

olution is likely to be advantageous and this remains an open issue for future

research.

• SR can provide a theoretically correct adjustment for the duplication, sub-

stitution and generalization relationships, however, it does not exploit other

interdependence relationships. It would be useful to explore new techniques for

repairing other forms of harmful interdependencies. A challenge in this work is

how to efficiently identify interdependence relationships between attributes and

remove them.

7.3 Concluding Remarks

The elegant simplicity, computational efficiency and classification efficacy of NB fos-

ters ongoing interest in exploring semi-naive Bayesian algorithms that improve NB’s

accuracy by alleviating the attribute interdependence problem. This thesis analyzes

twelve key semi-naive Bayesian techniques and provides insight into the strengths and

weaknesses of them. Armed with such insight and an extensive comparative study, it

offers general suggestions for selection between these techniques.

The comparative study conducted in this thesis supports previous findings of

strong performance from AODE, which significantly improves the accuracy of NB

with modest training and classification time. Motivated by the desire to further im-

prove classification and conditional probability estimation accuracy of AODE, this

thesis develops several novel and effective semi-naive Bayesian techniques. The first

three techniques eliminate child attributes from within the constituent ODEs, thereby

significantly improving AODE’s prediction accuracy. We provide theoretical explana-

tions for why child elimination techniques might be effective, and empirical evidence,

as observed in real world data sets.
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This thesis also proposes, from a fresh perspective, a new technique SR to effi-

ciently identify a frequently observed interdependence between two attribute values

such that one is a generalization of the other and remove the interdependence by

deleting generalizations at classification time. We prove the theorem that elimina-

tion of generalizations is theoretically correct and demonstrate experimentally that

it can in practice significantly improve both classification accuracy and the precision

of conditional probability estimates. When applied to AODE, SR achieves a desir-

able balance between classification accuracy and computational efficiency, competing

favorably with state-of-the-art semi-naive Bayesian methods without undue time com-

plexity. In addition, SR is suited to incremental and semi-supervised learning. This

thesis also explores circumstances under which elimination of near-generalizations

proves beneficial.

The success of our child elimination techniques lends support to the approach

we followed of seeking to improve a learner’s classification accuracy by seeking an

appropriate balance between bias and variance. The success of our Subsumption

Resolution technique suggests that it might be profitable to explore further approaches

to efficiently identify and remove other forms of interdependencies.



Appendix A

Error, Bias, Variance and RMSE

Results

This appendix presents the detailed results for Error (Table A.1), Bias (Table A.2),

Variance (Table A.3) and RMSE (Table A.4). The data sets are in the number

sequence of Table 3.4. Experimental methodology is described in Section 3.3.2. Since

we have not obtained the results of LibSVM on Adult and Connect-4 Opening, they

are not presented in each table.
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