
Smith, P. & G. I. Webb (1995). Transparency Debugging with Explanations for Novice Programmers .
 Page 1 of 9

Transparency Debugging with Explanations for Novice
Programmers

Philip A Smith and Geoffrey I Webb
School of Computing and Mathematics, Deakin University, Geelong, Australia

Abstract

Novice programmers often find programming to be a difficult and frustrating task. Because of
their lack of experience in programming novices have different needs to experts when it
comes to debugging assistants. One way a debugging assistant could be tailored to novices, as
proposed by Eisenstadt, is to provide them with an explic it model of how their program works
and, hence encourage them to find errors for themselves. We discuss such a transparency
debugger, Bradman, that we have been developing to assist novice programmers understand
and debug their C programs. We also present the results of an experiment, conducted on
volunteer novice programmers, in which approximately half of the students had access to an
explanation of each statement as it was executed and the other half did not. We show that
access to such explanations provided beneficial results for a significant number of students.

1 Introduction

The acquisition of expertise in programming, like the acquisition of expertise in other skills,
requires both theoretical knowledge and practical experience. One important skill novices
need to acquire is how to find and rectify errors in their programs. Both novices and experts
encounter bugs in their code. However, with their experience experts are often able to
hypothesise about the likely cause of an error and are equipped with skills in the isolation and
identification of errors. Frequently novices are unable to make such hypotheses and do not
have the necessary debugging skills. As a result, they are unable to proceed with the
development of their program. They often need to make up for this shortcoming by consulting
someone with the necessary proficiency in programming. Human advice is not always
available at times when it is required by the novice programmer and so automated
environments which provide such advice have been developed. Further, even when it is
available, the advisor will often be inclined to show the novice the solution to their problem
rather than to encourage novices to diagnose and repair the problem for themselves. There is
potential for automated advisors to overcome some of the deficiencies of human advisors.

An expert programmer generally finds the so-called visibility debugger (Moher, Wilson) to be
of great assistance. Such a debugger provides an environment in which various aspects of the
program are available for viewing and manipulation by the user. For example, the setting of
breakpoints, stepping through individual statements, displaying the value of critical variables
etc. These debuggers provide no active assistance to the user in hypothesising about the
possible cause of a bug and require the user to have a certain amount of expertise.

A different type of debugger is that which analyses the program code without executing the
program (Johnson 1990). This type of debugger normally performs a comparison between an
idealised model of the program and the actual program code. Errors are deduced from
significant differences between the two. Such debuggers have the capacity to automatically
finding bugs which can normally not be found by ordinary debuggers and hence are of more
use to novices and, indeed, are often aimed specifically at them.

However, some of the problems associated with static analysers are

• Limitations in the range of problems they are able to address. Before they can analyse
a program a program specification must be developed in a form that the analyser can

Pre-publication draft of a paper which appeared in the Proceedings of the Second International
Workshop on Automated and Algorithmic Debugging, 1995, Saint-Malo, France

Smith, P. & G. I. Webb (1995). Transparency Debugging with Explanations for Novice Programmers .
 Page 2 of 9

understand. As the complexity of a programming problem increases the problem of
representing it adequately increases.

• False alarms. A false alarm is a piece of correct code which is not recognised by the
system and is tagged as an error.

• Inflexibility. One recognised method of developing a program is to build it up piece
by piece. That is, one task is coded, tested and debugged before addressing another
task. Syntax analysers cannot provide assistance until the full program has been
developed.

Eisenstadt, Price & Domingue (1993) also pointed out that such debuggers were locked into a
“we know best” situation in which students were forced to follow the methodology indicated
by the system rather than explore their own intuitive ideas. They suggested that a system
which gives the novice an idea of inner workings of the computer by enhancing visibility
might be of more benefit. The Transparent Prolog Machine (Eisenstadt, Brayshaw 1987) was
designed to give an explicit graphical picture of a given Prolog program and provides
facilities for both novices and experts. It was designed to assist users to find their own bugs
rather than automatically finding the bug for them.

2 Bradman

We have been developing a debugging assistant, Bradman, which is designed to give
assistance to novice programmers in finding un-time errors in their programs. Like
Eisenstadt’s machine, Bradman assists the user by giving him/her a visible model of the
workings of the program. Bradman does not attempt to build a deep understanding of the
purpose of the program. Hence it is unable to automatically locate bugs which are a result
purely of a mismatch between the user’s intentions for the program and the implementation
thereof. However, it is intended to provide maximal support for inexperienced programmers
attempting to diagnose such bugs. Features of Bradman include :

• provision of an explicit model of the internal working of the computer. This model
extends previous visibility systems by providing an explicit, visible depiction of the
state changes wrought by statement execution.

• explicit, detailed explanation of the effect of each statement as it is executed.

• immediate reporting of errors as they are uncovered, relating them to the context in
which they occur with clear description of both the error and its causes,

• an environment in which errors can be remedied.

Bradman takes the user’s source code as input. This code is compiled and convened into an
internal representation which takes the form of a syntax tree. During execution, this syntax
tree is interpreted expression by expression. As each expression is interpreted Bradman
extracts several types of information and makes it available to the user in various windows
displayed on the screen. The types of information displayed include:

• The values of all active variables both before and after statement execution. This aids
the novice’s understanding of the operation of a computer program by providing an
explicit model of how a program changes program states. The user is shown
explicitly by name to which variable a pointer variable is directed. This feature is
particularly useful for showing novices how passing pointers to functions can cause
permanent changes to the value of a variable. If a variable has not been assigned a
value by the program then it is described as as yet unset rather than having the
indeterminate initial value displayed.

Smith, P. & G. I. Webb (1995). Transparency Debugging with Explanations for Novice Programmers .
 Page 3 of 9

• Bradman displays all input/output transactions in a separate window. This
information is similar to most visibility debuggers. One added feature is that any
buffered input is displayed explicitly.

• If an error is encountered when an expression is interpreted then a new window is
displayed which describes the error. When this occurs the user is not able to continue
execution. The program must be edited, the error rectified and the debugging process
restarted.

• As each expression is interpreted an explanation of what it is and how it affects the
program is displayed in a window dedicated to this purpose. The explanations
window is a feature that is aimed directly at the novice programmer and is designed
to be both a debugging and a teaching aid. It is non-intrusive. The user need not
attend to it at any time. Each new explanation is appended to a scrollable text. The
user can scroll back through this text obtaining a complete and detailed explanation of
all operations that led to the current program state. The user receives immediate
feedback about the effect of the executed statements.

2.1 Example:

The following is an example of how we might expect Bradman to work. The student is given
the following programming problem to solve:

Read an integer from the screen
Sum all integers between 1 and this integer
Write the results to the screen

The student writes the following program to solve this problem

#include <stdio.h>
maino(){

int sum, num, i;

scanf (“%d”, &num);
sum = 0;
while (i < num){

sum + = i;
i++;

}/* while*/
printf (“The total is %d\n”, sum);

}/* main*/

When this program is run with the input 5 the expected output is 15. However, instead of
giving this output the program hangs without terminating. Bradman is invoked to see if it can
shed any light on the error.

The rate of execution is controlled by the code window. The user clicks on the step button to
execute each statement. The statement about to be executed is indicated by the “spider” on the
left of the code window. As the user steps through the program information is updated and
displayed in the various windows. The user clicks the step button and types 5 in the
input/output window.

Smith, P. & G. I. Webb (1995). Transparency Debugging with Explanations for Novice Programmers .
 Page 4 of 9

The Code window looks as follows

The explanations and variables windows look as follows

Smith, P. & G. I. Webb (1995). Transparency Debugging with Explanations for Novice Programmers .
 Page 5 of 9

The user can continue to step through the program. However, when the statement

While (i<num)

 is reached a fifth window appears. This window gives a description of the error in the current
context of the program. The errors window looks as follows

While the user has not been told how to fix the error the search area of possible errors has
been narrowed. The user rectifies the error by putting the statement

i = 0;
after

sum = 0;

Smith, P. & G. I. Webb (1995). Transparency Debugging with Explanations for Novice Programmers .
 Page 6 of 9

The program is tested again. This time the program terminates and output is given. However,
the expected output is 15 while the actual output is 10. This time Bradman will find no
explicit error and will simply execute each statement until the program terminates. The onus
is on the user to observe the information displayed in the explanations window and the
variables window to see when a deviation from the expected has occurred.

Eventually, the program will reach a stage where the value of i is 5, the value of sum is 10,
the value of num is 5 and the while loop is about to be executed. The explanation window
will explain that since i = 5 and num = 5 the logical expression i <num is false and that the
while loop will not be entered. When the user steps, the while loop is skipped. It can be seen
that the final 5 is not added to the running total contained in sum. The programmer would
then need to decide how to alter the program to remedy this mistake.

2.2 Experiment:

The explanations in the explanations window are generated from the semantics of the
language as the program is executed. Since the explanations window was designed for
novices, we conducted an experiment with volunteer first year university students learning C.
This experiment was designed to test the effectiveness of the explanations window. To this
end we provided two versions of Bradman - one which had the explanation window and one
which did not. When students found that they had an error in their program they were
encouraged to use Bradman to look for it. When they had finished a session with Bradman
they were given a questionnaire with two questions regarding how much assistance Bradman
had been to them. Each student was allocated to one of the two experimental treatments when
they first invoked Bradman. These allocations were performed on an alternating basis i.e. if
one student got version 1 then the next student got version 2 and the following student got
version 1 etc. The results of these experiments were collected.

The students were given the problem described earlier and asked to write a program to solve
it. They were given assistance with syntax errors and also assistance in basic concepts of C.
For example, some needed to be told that a looping construct such as a while loop needed to
be used. If they had trouble conceptualising how to do all of the program they were
encouraged to build it up piece by piece. Hence they could write a program that simply read a
number and wrote it out again. When a program compiled but displayed unexpected behavior
when it ran, the student was encouraged to call upon Bradman.

Since we asked for volunteers, the people tested tended to be the weaker students who were
having trouble coping with the set C course and were seeking additional tuition. Most of
them, after an initial reluctance to learn the new system, warmed to it and used it without
prompting. With a couple of exceptions the response was overwhelmingly favourable
supporting Eisenstadt’s claim that novices appreciate an explicit model of how their program
is working.

The first question students were asked after a session with Bradman was designed to test
whether the provision of the explanation window was of benefit to novice programmers
searching for bugs.

Did Bradman help you find your bug?

64 responses to this question were received from people who had the version of Bradman
with the explanation window. These responses were split up as follows

Strongly Agree 19
Agree 20
Neutral 18
Disagree 7
Strongly Disagree 0

Smith, P. & G. I. Webb (1995). Transparency Debugging with Explanations for Novice Programmers .
 Page 7 of 9

60 responses to this question were received from people who had the version of Bradman
without the explanation window

Strongly Agree 10
Agree 22
Neutral 18
Disagree 13
Strongly Disagree 4

As can be seen, the students with the explanation window more frequently strongly agreed
and less frequently disagreed or strongly disagreed with the proposition. These results were
compared statistically using a Mann-Whitney test. The resulting p-value was

p = 0.0084

which is statistically significant at the 0.005 level. This indicates that the difference in results
is genuine and, hence, that the found the system more helpful when it included the
explanations window.

The second question was more general and designed to test whether the explanations window
assisted the user in increasing their general understanding of the language.

Did Bradman help your understanding of C?

62 responses were received from people who had the version of Bradman with the
explanation window. These were split up as follows

Strongly Agree 9
Agree 19
Neutral 18
Disagree 9
Strongly Disagree 5

60 responses were received from people who had the version of Bradman without the
explanations window. These were split up as follows

Strongly Agree 8
Agree 19
Neutral 23
Disagree 7
Strongly Disagree 3

While a slight bias still seems to exist in favour of the explanations window it is far less
pronounced than that of the first question. Indeed when these results were compared they
were found to be not statistically significant. Hence while the provision of an explanations
window increased the student’s belief in the degree to which Bradman helped them uncover
program bugs, it did not affect their evaluation of the system’s assistance in teaming the C
language.

The above results may have been biased by the fact that Bradman was only called by the
students when they had found a bug. Hence some students used the system more often than
others and a training effect was possible. That is, familiarity with the system might have
assisted in the finding of bugs. On average, students with access to the explanations window
used the system 6.6 times while those without access used it 4.6 times.

Examples of where Bradman could be useful were found even at the simplest levels. The
following is an example of a student using stepwise refinement. The program is designed to
simply read a value into the variable i and print it out again.

Smith, P. & G. I. Webb (1995). Transparency Debugging with Explanations for Novice Programmers .
 Page 8 of 9

Main () {
int i;

printf (“Please enter an integer.\n”);
scanf (“%d”,i);
printf (“%d\n”,i);

}

The student expected the following transaction

Please enter an integer
5
5

But got

Please enter an integer
5
-268438044

This was a problem encountered by several students. The error is that the user has passed the
variable i to scanf instead of a pointer to the variable i (that is &i). When Bradman
executed the program, execution was stopped when the scanf statement was reached and an
error message describing the problem. Thus the student was given an explanation of what the
problem was and how it might be rectified.

3 Extensions and Further Research:

As well as assisting the novice by itself another possibility which became apparent during
testing of Bradman is the potential of using the system as a teaching aid. In some cases
concepts are more easily explained by the human tutor when using Bradman. For instance, it
is often difficult to explain to students the concept of passing addresses to functions as
parameters in order for the program to produce the side-effect of permanently changing the
value of the variables involved. This effect was relatively simple to explain, however when
the students were able to see the value of the variables (in the variables window) changing in
the calling function. When the variables themselves were passed the student could see the
values of the variables change as indirect references were used for assignment. They then saw
the variables local to (he called function disappear when the function terminated. The efficacy
of Bradman as a teaching tool is something we wish to explore more deeply.

We believe one of the most important innovations incorporated into Bradman is the explicit
depiction of program state changes. Future research will evaluate the effectiveness of this
feature.

There are two extensions to Bradman that we would like to test on novices. Firstly, execution-
back-tracking (Agrawal, DeMillo, Spafford 1991) , which is a facility to allow a user to move
backwards through a program as well as forwards. This obviates the need for a program to re-
execute when a user wants to re-examine previously executed code. As proposed by the
authors a “what-if” facility, which allows the user to test the effect of changing the value of
critical variables, could be used in conjunction with execution-backtracking.

Secondly, dynamic program-slicing, (Agrawal, Horgan 1990) which enables the user to
extract parts of a program involved in determining the value of a variable at a given stage of
execution. We would envisage the user indicating to Bradman which output was faulty.
Bradman would then relate this output to the expression involved in the output statement.
Slices of the variables involved could be used to simplify the search space for the novice.

Smith, P. & G. I. Webb (1995). Transparency Debugging with Explanations for Novice Programmers .
 Page 9 of 9

We will be interested to see how much benefit novice programmers can get from such
facilities.

4 Conclusion

Bradman is a system which approaches the question of debugging assistance for novice
programmers by providing an environment which increases the user’s understanding of how
the program works making it easier for him/her to discover the bug by him/herself. Novices
lack the skills which enable experts to isolate and rectify errors in their programs. Bradman
attempts to compensate for this shortcoming by providing an explicit model of the program
and its operations which makes understanding of it easier for novice programmers and by
providing active support during the process of acquiring debugging skills. Bradman contains
two major innovations. The first is the provision of an explicit representation of state changes
during program execution. The second is the provision of explicit detailed explanations of the
programs operation. We have demonstrated novices appreciate having such information made
explicit and that a facility that explains individual statements supports them in their
debugging endeavours.

BIBLIOGRAPHY

[1] Anderson, Reiser “The Lisp Tutor”, Byte April 1985, pp 159-175.
[2] Johnson, W.L. “Understanding and Debugging Novice Programs”, Artificial

Intelligence 42, 1990, pp 51-97.
[3] Lukey, F.J. “Understanding and Debugging Programs”, The J Man-Machine Studies

12 1980, pp 189-202.
[4] Eisenstad,t M., Price, B.A., Domingue J. “Software Visualisation as a Pedagogical

Tool”, Instructional Science 21, 1993, pp 335-364, Kluwer Academic Publishers.
[5] Eisenstadt, M., Brayshaw, M., “The Transparent Prolog Machine (TPM): An

Execution Model and Graphical Debugger for Logic Programming”, HCRL Technical
Report No.21A, Oct 1987.

[6] Moher, T.G., Wilson, P.R., “Offsetting Human Limits With Debugging Technology”,
IEEE Software, May 1991, pp 11-13.

[7] Agrawal, H., Horgan, J.R., “Dynamic Program Slicing”, Proceedings of the ACM
SIGPLAN ‘90”, June 1990, pp 246-256.

[8] Agrawal, H., DeMillo , R.A., Spafford, E.H., “An Execution-Backtracking Approach
to Debugging”, IEEE Software, May 1991, pp 21-26.

