Pre-publication draft of a paper which appeared in the journal of Educational Computing Research,
22(2) pp 187-215

The Efficacy of a Low-Level Program Visualisation Tool for
Teaching Programming Concepts to Novice C Programmers

Authors

Philip A. Smith

School of Information Technology and Mathematical Sciences
Mt Helen Campus

University of Ballarat

Ballarat, 3353

Victoria

Australia

E-mail — p.smith@ballarat.edu.au

Geoffrey |. Webb

School of Computing and Mathematics
Geelong Campus

Deakin University

Geelong, 3217

Victoria

Australia

E-mail - webb@deakin.edu.au

Keywords — System Evaluation, |IT Education, Program Visualisation,
Sof tware Vi sualisation

michelle
Pre-publication draft of a paper which appeared in the journal of Educational Computing Research, Volume 22(2) pp 187-215

The Efficacy of a Low-Level Program Visualisation Tool for
Teaching Programming Concepts to Novice C Programmers

Abstract

It is widely agreed that learning to programis difficult. Program
visualisation tools make visible aspects of program execution
which are often hidden from the wuser. Wile several program
visualisation tools aimed at novice progranmers have been
devel oped over the past decade there is little enpirical evidence
showi ng that novices actually benefit fromtheir use [1]. In this
paper we describe a “dass-box Interpreter” called Bradnman. An
experinment is presented which tests the efficacy of Bradman in
assisting novice programmers |earn programm ng concepts. We show
that students that used the gl ass-box interpreter achieved greater
understanding of sonme programrng concepts than those wthout
access. We also give evidence that the student’s ability to
assimlate new concepts was enhanced by exposure to the gl ass-box
interpreter. This is experinental confirmation that such tools are

beneficial in helping novices | earn progranm ng.

Introduction

Program visualisation tools, which provide several views of a
program and its execution, appear to be pronmsing aids for
teaching novice programmers. However, there is little enpirical
evidence regarding their efficacy [1]. This paper presents an
experiment that provides such evidence. W show that students can
benefit from access to such a tool both in achieving greater
understanding of some progranmng concepts and also in their

ability to assim|ate new concepts.

Background

Many novice programers experience difficulties and frustrations
in their attenpts to learn programm ng. Researchers in the field
generally concede that programming is a difficult skill to naster
[2] [3]. St udent s experience difficulties devel opi ng,
conprehendi ng and debuggi ng programs, often reaching inpasses from

whi ch they cannot proceed w thout assistance.

Mayer [4] said that “neaningful | earning” occurs when new

know edge is actively associated with appropriate pre-existing

know edge structures. |If neaningful Ilearning occurs then the
| earner will have *“understood” the new know edge. This process is
called “assimlation”. I|f appropriate know edge structures do not

exi st then the new know edge needs to |earned by “rote” which is
menori sation w thout understanding. |f knowl edge is |earned by
rote then the learner is less likely to be able to apply the

knowl edge i n new situations.

However, Dijkstra [5] described conputers as a “radical novelty”.
By this he meant that the conmputer represented such a “sharp
discontinuity” in learning that analogies should not be drawn
between it and nore familiar concepts. He said that conputing
shoul d be approached with a “blank m nd” and gave several exanples
which he <clained gave evidence of the inappropriateness of

conceptual i sing conmputing in famliar terns.

The above scenario is further conmplicated by the |I|earners
thensel ves. Each student brings into the learning experience a
uni que blend of know edge, beliefs, fears and prejudices which
will colour the way they learn the new material. Students will use
their own nmetaphors to try to nake sense of what they are | earning

[6]. They will also make inferences wupon the instructor’'s

anal ogi es which were unintended by the instructor. For exanple, an
instructor mght use a box as an analogy to represent a menory
| ocation, and a student night nmeke the inference that a nenory
| ocation might store nmore than one value since a box can usually
hold more than one item [7]. Pre-existing know edge can even
prevent students from seeing that a programming problem is a

problemat all [8].

However, the provision of appropriate netaphors is a useful way to
hel p students understand new material provided the students are
made aware of the limtations of the nmetaphor. 1In this case
met aphors are a form of conceptual nodel. Conceptual npdels are
i nvented by educators to provide an anchoring framework upon which
students can assinmlate new know edge [9]. The provision of
conceptual nodels is an attenpt to associate new | earning materi al
with nore fanmiliar concepts. Conceptual nopdels are intended to
make the student’s nental nodel nore useful when learning the
target system A nental nodel is an internal representation of the
target system which provides predictive and explanatory power to

the operator [9].

The educator will have several neans at their disposal with which
to teach the student by providing appropriate anchoring franmeworks
onto which the student can assimlate the new i nformati on. Sone of

t hese nmet hods are:

The instructor will give representations of various concepts on
t he bl ackboard. However, the blackboard is a static nedium
This can cause difficulties when seeking to explain dynamc
programm ng concepts. The bl ackboard “wal kt hrough” forces
students to take messy notes from which it is difficult to

repeat the wal kt hrough at a | ater stage [10].

Students can use debugging tools in laboratory situations. Such
tools are often commercial debuggers which are designed for
experts and which, consequently, are often too conplicated for
novices. Certainly it is our experience that students use the

UNI X synbol i c debugger gdb with great reluctance.

Students will also have access to witten material such as text
books and study guides. Again these are static media which are
al so unresponsive - if a student does not understand sonething

the book cannot explain it in a different way.

Human tutors, teaching on a one to one basis, are probably the
best way to teach novices. Anderson and Reiser [2] reported
that students with access to private tutors |earned as nuch
Lisp in eleven hours as other students did in forty three
hours. However, access to human tutors in educational

institutions is often very limnted.

Anot her way to assist novice programmers is to provide
conmput eri sed assistants which are created specifically for them

One class of such assistants are software visualisation tools.

Software visualisation is the wuse of interactive conputer
gr aphi cs, t ypogr aphy, graphic desi gn, ani mation, and
cinematography to enhance the interface between conputer

progranmers and their programs [11]. Wile a great deal of
research has gone into the creation of these systens there has
been little enpirical data gathered regarding their efficacy [1].
One of the reasons for this is the difficulty in assembling the
proper ingredients for such an evaluation [12]. Ml holland [1]
attributes the fact that software visualisation systems are not
widely used to lack of enpirical evidence as to their value in

actual ly teaching novice programers.

Software visualisation tools can be sorted into two main groups:

Algorithm animation [11] gives a graphical representation of
the algorithm used to inplement a program Al gorithm animations
are to a large extent progranm ng |anguage independent. They
are used to give students a visual representation of how an

al gorithm works. Each ani mati on nmust be individually created.

Program vi sual i sation tools, on the other hand, are progranmm ng
| anguage dependent. They are used to animate |ow|evel features
of a program such as the source code and the changes of
variable states. They should be able to automatically handle
all possible prograns that can be witten in the target

| anguage.

The past few years have seen the energence of several |owleve

program visualisation tools designed explicitly for novi ce
progranmers [2] [10] [13]. The systems were enthusiastically
enbraced by students but none of them have as yet have been tested

under controlled conditions.

Bradnman is a |lowlevel program visualisation tool designed to
provide a conceptual nodel of C program execution for novice
programrers. It is an interpreter which nmakes visible aspects of
the programm ng process which are normally hidden from the user.
For this reason, we call it a “dass-box Interpreter”. It is
simlar to “program animators” [14] except that Bradman is
designed to enable students to develop their own prograns as well
as run those created by educators for pedagogical purposes.
Bradman al so i ncorporates novel features designed specifically to
assist novice programmers. We now describe Bradman and then
describe an experinment in which we explore Bradnman's effect on

novi ce progranmers. This experiment gives the first concrete

evidence that even a lowlevel program visualisation tool can

assi st a student’s meani ngful |earning of C concepts.

Bradman

Bradman was devel oped as a tool to provide assistance for novice
progranmers in their endeavours to learn C. The School of
Conputing and Mathematics at Deakin University had recently
switched from using Pascal as an introductory programr ng |anguage
to using C. It was felt that the problens that students were
having with Pascal would be exacerbated when using C and that the
tools available were not adequate for enhancing the student’s
mental representation of program execution. The notivation for
devel oping Bradman was to produce an assistant that provides a
useful conceptual npdel onto which students could assimlate new

know edge about programi ng.

Bradman provides a nodel which reinforces the view of the program
achieving its results by the sequential change of program state
caused by the execution of progranm ng statenents. This nodel is
intended to assist students visualise the execution of progranms
nmore clearly thus enhancing their nmental nodels of program

executi on.

Implementation

Bradman takes the wuser’s syntactically correct source code as
input. This source code is conpiled producing an efficient
internal representation in the form of a syntax tree. This
internal representation is never presented to the wuser, the
correspondi ng source code being referred to whenever appropriate.
As each statenment is executed code enbedded in the run-tine

machine sends information to the various w ndows which provide

different views of the program Four of these w ndows are
di spl ayed at all tines while others appear when certain conditions

ari se. These wi ndows are now descri bed.

Code Window

The code wi ndow provides many of the features found by any state-
of -the-art debugger. It displays the program code and shows the
current point of execution by using a marker on the side. Vertical
scrollbars enable the wuser to see different parts of |onger
programs. The window itself can be resized with the nouse if

necessary.

One of the primary design goals that influenced the code w ndow
was to provide as nuch as possible of the functionality of a
conventional visibility debugger with a mininmm of conplexity.
Sinmplicity is sought throughout the system as we believe that
novi ce programmers have trenendous cognitive |oads inposed on them
by the need to master the new conmputing paradigm and that it is
i mportant that the environnents add the |east possible anpbunt to

this | oad.

Variables Window

The code wi ndow nmakes explicit to the novice progranmmer the manner
in which the execution of a statement affects the point of
execution. In contrast, the variables w ndow nekes explicit the
way in which the set of values of the variables is affected by a
statenent execution. While previous program visualisation tools
have shown the values of the variables and how they change as
execution proceeds, Bradman has added features which are intended

to further reinforce the nodel of a program being an active entity

which achieves its results through the execution of program

stat enment s.

The set of variable/value bindings for the current program state
can be altered by the execution of a program statenent to produce
a new set of values. This concept is conveyed by displaying the
values of the variables in tw colums - a before and an d&ter
colum. The display shows the set of values before the execution
of the statenent and the set of values after the execution of the
current statenment. To reinforce the concept of this change of
state being an ongoing process, it is explicitly shown that the
after state of one statenent is the before state of the next
statenment executed. Animation which shows the after colum from
one statenment execution migrating across the display to becone the
before colum for the next statement, is used to reinforce this
concept. Finally, the values of the current set of before val ues
are often (but not always) used to help create a new set of after
values. This is shown by appropriate highlighting of the variables

i nvol ved.

The variables window also differs from the variable display of a
standard visibility debugger by including a formalism to better
represent pointers. In general, the values of pointers are
represented by large unsigned integers which denote nenory
| ocations. Standard visibility debuggers display these values. The
program vi sualisation tool assists the novice s understanding of
the way pointers refer to other variables by an explicit display
showi ng the connection between the two nenory |ocations as is
commonly done in blackboard presentations. VIPS [15] displays

pointers in a simlar manner.

In C, the programer must initialise a variable before referencing
its value. Failure to do so will usually result in an error. It is
common for a student to assune that a variable's initial value is
zero. Hence in the variable display, the variables which have yet
to be assigned a value are explicitly marked as such. |If a program
attenpts to reference an wuninitialised variable then an error

message i s displayed.

Sorme students are confused by the use of functions in statenents.
The variables display explicitly shows how the function returns a
value and how this wvalue contributes to the value of the
expression from which the function was invoked. Another feature of
the variables window is that it explicitly shows the value of a
function after it has returned to its calling statement. The
function value appears in a box in a simlar manner to a variable
value and is shown to contribute to the value of an expression by

the use of highlighting in a simlar nanner to that of variables.

Fi nal |y, t he vari abl es wi ndow explicitly represents t he
precedences of expressions. C is a language in which the
precedences of operators is inplicit, unless overridden by the use
of parentheses, and not necessarily consistent. Some operators
have left to right precedence, others right to left and others no
precedence at all. Furthernore, sone operators have different
precedences to other operators. This can be confusing to novice
programmers. Bradman uses parentheses to explicitly show the
default precedences and hence the order in which sub-expressions

are cal cul at ed

Explanations window

The code wi ndow and the variables w ndow provide a conceptua

nmodel for the programer of which changes are effected in the

10

program state by the execution of a statenent. However, they do
not tell the user how the statement caused these changes. One can
envisage situations in which a novice nmight see the changes
wrought by a particular statenment but still not understand why the

statenent had that effect. For exanple, consider the statenent

X =3+ 4* 2 + 5

The user m ght expect x to be assigned a value as follows:

X -> (3 +4) * (2 +5) ->49

and be nystified when, in fact, the final value is 16,

X ->3+ (4*2) +5->16

An expl anation of how a statenent achieves its results is used to
reinforce the nopdel. These explanations are specific to the
context in which the actual statenment is executed. Thus instead of
explaining in general ternms what an assignment statenment does, the
expl anations provides information about what the current

assignment statenent is actually doing. For exanple, the statenent

i = 10;

is explained not only as being an assignnment statenent but as an
assignnment statenent in which the value 10 is assigned to the
variable i. Birch et al. [14]in their description of the future
directions for Dynal ab, nentioned annotation which would provide a
runni ng conmentary about the program being aninmated. Dynalab is a
system in which the student mainly runs prograns pre-witten by
the instructors. Hence, it is possible that they are designed at a
hi gher | evel than that of Bradman's explanati ons w ndow. They al so

mentioned the possibility of using sound for this facility.

11

The expl anati ons wi ndow gives cont extual i sed i nformation
describing how each statenent works. The information which is
provided by the explanations w ndow is enbedded in the run-tine
machi ne which enables it to include context such as the val ues of
variables and the menory |ocations to which pointers point. The

i nformati on given by the expl anati ons wi ndow i s textual.

The expl anati ons w ndow uses a sinple process by which informtion
is added to it as the program is executed. It provides a |ower
| evel analysis than the other w ndows operating at the expression
|l evel rather than the statenent level. This is necessary because
its purpose is to explain the workings of individual statenents.
The cumul ative explanation for the entire execution renmains in the
wi ndow, so that the wuser can scroll back to investigate the
history of how they reached the ~current state. Hence the
expl anations window is also an execution trace. This trace is also
saved to a file enabling the student to study it after the session

wi th Bradman has term nated.

I nput/Output Window

This wi ndow provi des a nmechani sm by which the user can communicate
necessary input and output to the program Wiile this is mainly
straightforward, this w ndow makes visible two aspects of input

that are usually hidden fromthe user.

First, when a statenent requiring input from standard input is
executed and the input buffer is enpty the programwll wait until
input is entered. This can confuse novices if they have not coded
an appropriate pronpt for input into their program causing them
to think that there is sonething wong with their program Wile a

program is waiting for standard input to be entered a flashing

message will appear at the bottom of the input/output w ndow

telling the user to enter input. The nessage

Program requi res input

flashes on and off pronpting the user to enter input. This nessage
is designed to explicitly remind the user that input is required

so that the user does not nistakenly assume that the program has
crashed or suspended. It will remain in effect until the user has
entered enough input to give values to all three input variables.
Second, when a wuser running the program normally enters nore
standard input than the program is ready to utilise, the excess
input is stored in a buffer and used if nore input statenments

requiring standard i nput are executed.

This buffer is normally invisible and novice progranmers can
becone confused when input variables are assigned val ues that they
did not intend for them To clarify this for the novice, buffered

i nput is displayed at the bottom of the input/output w ndow.

Error Window

The error wi ndow appears only when a program i ndependent error has
been detected in the execution. For exanple if there is an attenpt
to reference a variable before it has been assigned a value then
the error window wll| appear describing the error and suggesting

ways it mght be fixed.

The error window will only appear if Bradnan attenpts to execute
the faulty statenent so an error might be mssed if execution does
not happen to encounter it. Once an error is reported it is
necessary for the user to correct it and then restart the program

Errors that are reported include:

13

An attenmpt to reference variables that have not been assigned a

val ue.

An attenpt to use an inconpatible format in an input/output

statement.

A discrepancy between the nunber d format characters in an

i nput/output statement and the number of argunents.

An attenpt to divide by zero.

An attenpt to assign an expression to a variable with a

different |evel of indirection.

Bradman will report an uninitialised variable on the first attenpt
of the program to reference such a variable. In many debuggers
such an error wll only be reported if the failure by the

programer to explicitly assign a value to c causes an attenpt to
divide by zero or simlar error. In this case a nore useful error

message i s provided by Bradman.

Edit Window

The edit w ndow, invoked fromthe code window, is a facility which
allows the wuser to nodify the program wthin the Bradnman
environment. It is sinply a window which initiates a session in an
external editor wth the user’s source code. The user can nodify
the program and quit fromthe wi ndow. Once the user quits fromthe
wi ndow a new session is started with the nodified source code now
appearing in the code window. In its current version, Bradman wll
finish the session and exit iif the wuser’s nodified program

contains a syntax error.

14

Experiment

This experinent attenpts to evaluate whether access to a gl ass-box
interpreter assists the user to develop a better understandi ng of
program execution, in other words, whether it provides an adequate
know edge franmework of program execution onto which students can
assinmlate the new information. Access to software visualisation
tools is often clained to be of benefit to novice programers but
little enpirical evidence of their value is provided [1]. This is

true of both programvisualisation tools and al gorithm ani nators.

M ethodology

Vol unteers were sought from Deakin University's introductory
progranm ng course which teaches progranm ng concepts using C. The
experiment ran over a three week period in first senmester

Subjects were required to attend three two-hour |aboratory
sessions (one per week). They were told that they would be testing
ways to inprove progranmn ng environnents for novice progranmers. A
payment of thirty Australian dollars was nmade to the participants
who conpleted all three sessions. Twenty-six people volunteered to
partici pate. However, two subjects fromthe control group w thdrew
after week two, |eaving unequal groups - one of thirteen and
anot her of eleven. All subjects conpleted an appropriate consent

form before conmenci ng the experi nent

The | aboratory sessions were based on those already prepared by
the instructors for the introductory unit [16]. These sessions
required the students to perform desk-checking of pre-witten
prograns. This format was chosen for the experinent for the

foll owi ng reasons:

15

Many researchers report that the ability to desk-check prograns
is an inportant difference between novice and expert

programers [9].

Laboratory sessions involving desk-checking were already part
of the introductory programmng unit at Deakin University. It
was straightforward to nodify the format of these |aboratory
sessions for the purposes of the current research. Volunteers
were put at mininum inconveni ence because they were able to
substitute the experinental |aboratory sessions for their

nor mal sessi ons.

It allows sinple extraction of quantifiable data.

Students nust have sone understanding of certain programm ng
concepts before they can successfully desk-check prograns
i nvol ving these concepts. Thus it is possible to test, albeit
indirectly, the student’s understanding of these concepts as

well as their ability to desk-check prograns.

The first session was an introduction to the format that the
subsequent sessions would take. Al experinmental data were
collected in the second and third sessions. The authors of the

unit intended that the students do the follow ng:

Desk-check a program prepared for them that was designed to

illustrate and reinforce a concept which was introduced to them

in | ectures.

Attenpt to calculate the outputs of this program

When finished, conpile and run the program and conpare the

output to their calcul ations.

16

Attenpt to discover the reason for any m stakes that they made.
They were allowed to use textbooks, ask questions of the tutors
and analyse the program using the synbolic debugger, gdb. The
students were given sonme tine to analyse the program code. Then
the instructors gave a denpnstration on the whiteboard of how

the program achieved its results.

This format was nodified slightly for the experinent in the

fol |l owi ng ways:

While the students were desk-checking the program they were
required to answer nultiple choice questions regarding the

out put s.

When they finished working on their program and had watched a
denmonstration on the whiteboard they were given a simlar but
different program to desk-check and with regard to which to

answer nultiple choice questions.

Thus the experinental period involved four tests - one at the
beginning and one at the end of both sessions 2 and 3. For
conveni ence sake these tests were nunbered 1, 2, 3 and 4 in the
order in which they were performed. Hence Testl was conducted at
the beginning of session 2 before the participants had received
either treatnment. Test4 was conducted at the end of session 3
after all experimental interventions had been perforned and serves
as a post-test. Test2, conducted inmediately after the first
intervention and test3 conducted a week later inmediately before
the second intervention allow us to map student progress through

t he experi nment.

The students’ proficiency was judged by the nunber of correct

responses to the nmultiple choice questions. The twenty six

17

vol unteers were split into two groups of thirteen. This was done
based on the order in which they volunteered to participate - the
first volunteer was put into the test group, the second into the
control group, the third into the test group and so on. However,
two subjects from the control group withdrew after week two,
| eavi ng unequal groups - one of thirteen and another of eleven.
Experi nment al intervention related to the nornmal | aboratory
activities which were conducted between the tests conducted at the
begi nning and end of each session. The test group (consisting of
thirteen people) had access to Bradman during this phase in which
they attenpted to gain an understanding of the program The
control group (consisting of eleven people) did not have access to

Bradman during this phase.

The test group had access to a mdified version of Bradman in
which the explanations w ndow was not available. An experinent
which tested the efficacy of the explanations w ndow was reported
previously [17]. The explanations wi ndow was not available in the
current experinent because we w shed to focus on the value of the
gl ass-box interpreter wi thout confound factors, relating to the

addi tion of textual elenents.

Session 1

Session 1 was an introductory session in which the students were
introduced to the format that would be used in sessions 2 and 3.
The students (from both test and control groups) were required to
desk-check a very sinple program and answer nultiple choice
guestions regarding its output. During the treatnent period the
test group was instructed on the use of Bradnman - how it was
i nvoked and how it could be used. During this time they also

| earned the material for the session. The control group |earned

18

the material only during this period. At the end of the session
all students, from both groups, were required to desk-check
anot her program and answer nultiple choice questions. The two test
periods were intended solely to famliarise the students with the
format of the following two sessions. The results were not
collated or analysed. The control group underwent the sane process
as the test group except that they were not given exposure to
Bradman. Although this first session might be seen as having an
i nfluence on the overall result, the effect is probably mninal
because the students were given sinple exercises. The conparative
performance of the two groups through the experiment seens to
support this. Even if this is not accepted, and the exposure to
the low1level program visualisation tool in session 1 is viewed as
a significant experinmental intervention, while this devalues testl
as a pre-test it in no way devalues the final result which should
then be viewed as the result of three rather than two experinental

eval uati ons.

Session 2- The Scope of Variables

The scope of variables is a concept that students often have
troubl e understandi ng. Students have to understand pieces of code
in which a nane refers to a global object in one statenent while
in another statement the same nane refers to a different, I|ocal,
obj ect. They need to understand that a local variable in a calling
function cannot be accessed (except through the use of pointers
with which they were not as yet faniliar) during the life of the
called function. Hence desk-checking such a program is not a
trivial exercise and presents difficult challenges to the novice

progr amrer .

19

The program used in session 2 was prepared by the authors of the
introductory programmng unit as part of their course. It was
incorporated in the experiment, wth their permission, and was
used as Testl. This program was designed to illustrate many of the
concepts of scoping including how different variables can have the
sane nane, how variables have a certain “life” or scope during
which they are valid and how they lose their validity outside of

this scope.

The program was devel oped by professional progranm ng instructors
to teach novice progranmers about scoping. It consisted of four
functions including the min function. The functions did not
perform a neaningful task. They sinply assigned and reassigned
values to variables outputting them at various stages. None of the
functions or variables had neaningful nanes. VWhile the students
wer e desk-checking this program they were required to answer five
mul tiple choice questions. The students were instructed to circle
the alternative that best answered the question. These questions

along with the code for this program can be found in the Appendi x.

An additional program was devel oped specifically for the study and
used as Test2. It was intended to be simlar but different to
Test1l. Again the students were asked to desk-check the program and

again answer five multiple choice questions regarding its output.

Intervening Period Between Sessions2 and 3

There was an interval of one week between the performance of Test2
and Test3. This break was significant because it gave an
opportunity to judge whether Bradman indeed provided the student
an adequate framework onto which to attach new information. During
this period the students attended |ectures in which the concepts

used in session 3 were taught. If the dass-box interpreter was

20

efficacious in enhancing a student’s nental nodel of program
execution then one would expect the test group to perform better
than the control group on Test2. One would also expect the test
group to show an inprovenent on the initial test program in

sessi on 3.

Session 3 - Parameter Passing

In session 3 the subjects were called upon to analyse programs
whi ch i nvol ved pass-by-reference par anet er passi ng. The
instructors of the introductory programring unit, thought this
concept to be of such difficulty and inportance that they gave the

students the foll ow ng warning:

“The concept of ‘pass-by-reference’ (pointers) is probably the

bi ggest hurdle you'll come across in C progranm ng. Wen you
absorb and UNDERSTAND this topic, you wll have overcome the
bi ggest learning curve in C. The rest of C progranming will seem

somewhat easier.” [16]

These sentinents have been echoed by other researchers [18]. Pass-
by-reference parameter passing in C involves the use of pointers
which were a relatively new concept for the students being tested.
They needed to develop a nodel of how, through the use of the
pointers, the values of variables in the calling function would

change rather than those in the called function.

Test3 consisted of two progranms prepared by the instructors of the
introductory unit, for use in the regular |aboratory session. The
first program consisted of an incorrect version of a swap program
in which the parameters passed to the function swap were pass-by-
val ue paraneters. The second is the correct version in which pass-

by-reference paraneter passing is used. Test4 conprised three

21

addi ti onal prograns devel oped specifically for the study. They
differed from the Test3 programs only in the argunments that were
passed to the function swap. The students were asked to answer two
guestions at the end of each program The questions were the sane
for all five prograns. These questions revolved around the val ues
of the paraneters after the swap had been conpleted but before the
function returned and the values of the arguments of the call to
swap after the function had returned. Unlike the progranms in
session 2, the function and variable nanes were nore nmeani ngful

reflecting their tasks.

Resultsand analysis

The nmultiple choice questions were collected and nmnarked. The
nunber of correct and incorrect responses for both groups are
sunmarised in Tables 1 and 2. It nust be renmenbered that the
students had a selection of four possible responses from which to
choose. All of the incorrect responses were grouped into one
tally. Hence, for every test the distributions represent better

t han random perfornmance by the participants.

The results seem to show an inprovenent on the part of the test
group. As expected the nunber of correct responses for both groups
i ncreased after the intervention but the inprovenent of the test
group was greater. The test group perfornmed less well on Testl
(equal <correct but nore incorrect) than the control group but

performed better on the Test2 (mpore correct and fewer incorrect).

However, it could be nisleading to conpare the groups in this
manner because each individual was required to answer five
gquestions. Thus a change in performance by just one subject could
affect as many as five question responses. In order to better

conpare the two groups, the individuals were given a ranking

according to the nunber of correct response they nade. Rankings
were made for both Testl and Test 2.
Test 1
Test Group Control G oup
Correct I ncorrect Correct I ncorrect
Q 4 9 5 6
Q 7 6 4 7
[e3] 6 7 8 3
o7} 4 9 4 7
(03] 5 8 5 6
Total s 26 39 26 29
Test 2
Test Group Control G oup
Correct I ncorrect Correct I ncorrect
Q 13 0 9 2
@ 11 2 8 3
Q3 9 4 7 4
o2, 9 4 7 4
(03] 5 8 3 8
Total s 47 18 34 21
Table 1: Summary of Session 2 Results
Mann-Whitney Utests conparing the two groups were perforned on

bot h of these

Testl z

Test?2 z

ranki ngs.

=0.70

= 0.96

p

p

The

results were as foll ows:

0.25

0.17

23

Hence, although the figures from Table 1 appear to show an
i nprovenent in favour of the test group, statistical analysis of
the rankings did not show that a situation was reached in which

the test group perfornmed significantly better than the control

group.

The results for session 3 were summarised in Table 2. Again the
i ndi viduals were given a ranking according to how many correct

responses they nade.

Ranki ngs were made for both Test3 and the Test4 results and Mann-
VWhitney U-tests were performed on both of the rankings. The

results of these tests were as foll ows:

Test3 z = 1.42 p 0.08

Test4 z = 2.03 p

0.02

The figures show a definite bias towards the test group. In Testl
the test group perforned slightly worse than the control group.
However, in Test3 the test group performed nuch better although
signi ficance cannot be clained. (It should be noted that the power
of these tests is low due to the smmll nunber of subjects and
hence, there is a sizeable chance that an underlying advantage
should fail to have been reflected in a significant value for p).
In Test4 the test group performed significantly better (at the

0.05 level) than the control group.

Despite the lack of statistically significant outconmes in tests 2
and 3, it is tenpting to hypothesise about the causes for the
enhanced performance of the test group in Test3, (if one assunes
that it does reflect an underlying advantage to the test group).
In the period between session 2 and session 3 the students

attended a lecture explaining the relevant concepts, especially

24

pass-by-reference paraneters.

treat ment

it is reasonable to assune that the glass-box interpreter

themin sone way to better

the |l ecture.

of the two groups was the test

Si nce

the only difference

in the

group’ s access to Bradman
prepar ed

understand the information presented in

Test 3
Test G oup Control Group
Correct I ncorrect Correct I ncorrect
Program 1 QA 7 6 6 5
(o7 7 6 4 7
Program 2 Q 8 5 3 8
Q 10 3 6 5
Total s 32 20 19 25
Test 4
Test Group Control Group
Correct I ncorrect Correct I ncorrect
Program 3 QA 11 2 7 4
@ 8 5 3 8
Program 4 QA 10 3 7 4
[67] 10 3 4 7
Program 5 QA 10 3 5 6
07 9 4 7 4
Total s 58 20 33 33
Tabl e 2: Summary of Session 3 Results
Mayer [4] has said that l|earners require a pre-existing framework

onto which to attach the new know edge. It is plausible to suggest

that the use of a program visualisation tool facilitated the

devel opnent of a cognitive framework that aided assinilation of

25

the new know edge. This suggests that the tool provides an
appropriate conceptual nodel of program execution. Irrespective of
whet her one places any weight on the apparent advantage for the
test group in test3, test 4 reveals clearly that after the second
experinmental intervention (laboratory 3) the test group did enjoy
a significant advantage. This is clear evidence that Bradman's
form of lowlevel program visualisation actually influenced the

students’ nmental nodel in a positive way.

As nentioned earlier, two students withdrew from the experiment
after session 2 was conducted. As a result, their results could
not be used and the groups becane unequal with thirteen in the
test group and eleven in the control group. However, there is no
reason to believe that this would have confounded the results. The
results show that in Testl the control group, wthout the two
subjects who withdrew, perfornmed slightly better than the test
group although this difference was not significant. Subsequent
results show a clear inmprovement of the test group’s ability to
perform the given tasks as conpared to that of the control group.
It is not clear how these results could be interpreted as
indicative of a confound introduced through the subjects’

wi t hdr awal .

Results of survey

The students’ reaction to Bradman was very positive. This mrrors
simlar student enthusiasm for other program animtors such as
Dynal ab [14]. The subjects who had access to Bradman were asked to
conplete a survey form (after the second and third sessions) to
test their reactions and to enable them to provide comrents. The

survey consisted of two parts.

26

For the first part, subjects were required to give one of five

responses to the follow ng statements.

1 - Bradnan is easy to use

2 - Use of Bradman increased ny general under standi ng of

conput er progranmm ng.

3 - I now find it easier to visualise how a program actually
wor ks
4 - Bradman would be of assistance for students devel oping

programs (eg. for assignments)

5 - Use of Bradman in |ectures would help students understand

progranmm ng.

For each of the above statenents the subject was required to give

one of the follow ng responses:

Strongly agree

Agr ee

Neut r al

Di sagree

Strongly disagree The responses are summarised in Table 3. As can
be seen there was no negative response on any of the five
guestions. Only one student was neutral about whether his/her
general understandi ng of programm ng had increased through the use
of Bradman. The students all strongly agreed that they would find
the system useful in developing their prograns for their
assignments. The results for session 3 were alnpst exactly the

same. The only difference was that three of them were slightly

27

| ess positive that

Bradnman would help them with their

assi gnnment s

al t hough they all agreed that they thought it would.
Results for Session 2
Question Strongly Di sagree Neut r al Agr ee Strongly
Di sagree Agr ee
1 0 0 0 6 7
2 0 0 1 5 7
3 0 0 0 3 10
4 0 0 0 0 13
5 0 0 0 4 9
Total s 0 0 1 18 46
Results for Session 3
Question Strongly Di sagree Neut r al Agr ee Strongly
Di sagree Agr ee
1 0 0 0 6 7
2 0 0 1 5 6
3 0 0 0 3 10
4 0 0 0 3 10
5 0 0 0 4 9
Total s 0 0 1 21 43

Table 3: Results of Survey for

Sessions 2 and 3

The second part of the survey enabled the students to nmeke free

form coments

section consisted of three questions

regardi ng

their

experience

Br adman.

Thi s

28

What features (if any) of Bradman did you find particularly

useful ?

What features (if any) would you add to Bradman to make it nore

useful ?

What features (if any) of Bradman did you not |ike?

Most of the comments were in response to the first question. There
was al nost unani nous approval for the visibility of the variable
states. Many of the students also explicitly nmentioned that they
liked the format showing the before and after colums. There were
sever al coment s gi ving approval for t he “graphi ca

representation” of the program

In response to the second question the response, given by severa
people, was that they would like to be able to “go back to
previous statenents”. Reverse execution is a feature that was
considered but rejected during the design of Bradman. However
that the novice programrers thenmselves believe it would be of
benefit strengthens the case for future evaluation of such a

feature.

The main response to the third question was that they did not |ike
the fact that Bradman was not wuniversally available. This
criticismwas interpreted as a positive reflection on Bradman per

se.

Ot her comments were of a general nature and were invariably
positive. One of the students said “it helped nme understand
programs that | could not normally understand”. Another said in

response to the third question, “None! It's too good.”

29

General Observation and Discussion

Bradman was enthusiastically accepted by the students, many of
whom asked for it to be made generally available. Mre than one
Bradman user told the experinenter that they had no idea about how
prograns worked until they used Bradman. This response is
sonething that we expected, however, from people who were perhaps
unsure about how well they were doing in their course. W expected
them to appreciate the visibility and sinplicity of Bradman after
struggling with tools like gdb which are designed for expert

programrers.

One interesting observation occurred during session 3, which was a
session in which an assignnment was due. Several of the students
used Bradman, not to develop their assignments, but sinply to
wat ch their own prograns execute. There was no need for themto do
this because they were not looking for errors - they knew that
their programs gave correct results. This agrees wth an
observation of Ross [10] who noted sinilar behaviour even in
expert programmers and engineers. People seem to enjoy watching

how their creations work.

The response was al nost universal that they |iked watching the way
that the variables changed val ue as the program executed. They did
not nmention the other part of the program state change - the
change of execution point. One student said that the marker in the
code wi ndow should be changed to highlighting because it was too

difficult to see

One interesting aspect of the results was the short anount of tinme
it took for the students to show signs of inprovenent. O her
studies (for exanple, [19]) cover periods of a termor nore. Jones

[6] said that novice programers had nental nodels that were

highly wunstable and that changed rapidly. It is plausible to
conclude that Bradman supplied the students with a mre stable
framework onto which to base their understanding of C hence

speedi ng their devel opnent.

Future Directions

The experinment described in this paper provides evidence that
novice programmers can benefit from the use of a glass-box
interpreter. However, the experinent did not show which features
of Bradnan nmade the greatest contributions toward this effect. A
maj or focus of our future work will be to test individual features
of lowlevel program visualisation tools. W have previously
provi ded subjective evidence [17] that students believe that they
benefit from access to the explanations wi ndow W want to obtain
performance nmeasures which denonstrate the utility of the

expl anati ons wi ndow and the variables wi ndow in particular.

W are also interested in seeing with which program skills a
gl ass-box interpreter provi des benefit. The experinment we
conducted provided evidence that students benefit from exposure to
Bradman when perfornmng tasks which require desk-checking skills.
However, learning to program involves the devel opment of many
skills including coding and debugging. W wsh to conduct
experinments which explore the efficacy of a glass-box interpreter

in the devel opnment of these skills.

Conclusions

Programming is a difficult skill to master and rovices need to
devel op appropriate know edge structures to enable them to cope
with it. Software visualisation tools are a class of conputerised

tool which show promise in assisting novices develop appropriate

31

nmodel s of programmi ng. Program visualisation tools have been used
to teach students in classroom and | aboratory situations. However,
there is little enpirical evidence as to their efficacy and as a

result their use is not w despread.

The experinment that we conducted provides evidence that |owlevel
program visualisation tools, such as glass-box interpreters, can
be beneficial in teaching novice programers. This experinent gave
concrete enpirical evidence that such a tool can provide
assistance in |earning new progranmm ng concepts. It also indicated
that the use of such a tool enables students to assimlate new
information nore effectively. This suggests that our tool presents
a conceptual nodel which provides an appropriate framework onto
which learners can assinmilate new information. Bradman provides
information in a dynam c manner while being very sinple to use and
makes visible aspects of program execution that are nornally
hi dden. We believe that these features are inportant in enabling
students to better visualise how a program works as it executes.
We further believe that the benefits shown in conprehension wll
be mrrored in benefits to program developnent and program

debugging and this will be the basis of further research.

32

References

[1] MuiHOLLAND, P. A (1995). A framework for describing and
eval uating software visualisation systens: A case study in PROLOG

Phd Thesis, Knowl edge Media Institute, Open University.

[2] ANDERSON, J. R AND REISER, B. J. (1985). The Lisp Tutor. Byte,

April, 159-175.

[3] BoNar, J. AND SOLomAay, E. (1989). Uncovering Principles of Novice

Progranm ng. Comruni cations of the ACM 10-13.

[4] MAYErR, R E. (1981). The Psychology of How Novices Learn

Conput er Progranm ng. Conputing Surveys, 13(1), 121-141.

[5] DIJKSTRA, E. (1989). On The Cruelty OF Really Teachi ng Conputing

Sci ence. Comuni cations of the ACM 32(12), Decenber, 1398-1414.

[6] Joes, A (1982). Mental Models of a first programm ng
| anguage. CAL Research Group Technical Report No. 29, The Open

Uni versity.

[7] PutneM R T., SLEEMAN, D., BAXTER, J. A. AND KusPA, L. (1989). A
Summary of M sconceptions of Hi gh School Basic Programmers. In E.
Soloway and J. C. Spohrer, Eds. Studying the Novice Progranmer,

Hi ||l sdal e, New Jersey: Erlbaum 301-314.

[8] EISENSTADT, M AND BREWKER, J. (1992). Naive Iteration: An account
of the Conceptualisations Underlying Buggy Looping Programs. In M
Ei senstadt, M T. Keane and T. Rajan Eds. Novice Programi ng
Environments: Explorations in Human Conputer Interaction and

Artificial Intelligence. Hove, UK. LEA.

[9] Norvan, D. A (1983). Some Observations on Mental Mdels. In D
Gentner and A L. Stevens, Eds., Mental Mdels, Hillsdale, New

Jersey: Erlbaum, 7-14.

[10] Ross, R J. Experience with the DYNAMOD Program Aninmator.
(1991). Special Interest Goup on Conputer Science Education,

23(1), 35-42.

[11] PRCE, B. A, SMALL, |I. S. AND BAECKER, R M (1983). A Principled
Taxonony of Software Visualisation. Journal of Visual Languages

and Computing, 4(3), 211-266.

[12] STAsko, J., BabRE, A. AND LEWS, C. (1993). Do Algorithm
Ani mations Assist Learning? An Enpirical Study and Analysis. In

Proceedi ngs of | NTERCHI ‘93, 61-66.

[13] FrReuND, S. N. AND RoBERTS, E. S. (1996). THETIS: An ANSI C
Programm ng Environment Designed for |Introductory Use. Special

I nterest Group on Conmputer Science Education, 28(1), 300-304.

[14] BIRCHL M R, Boron,, C. M, CGoosey, F. W, PATTON, S. D., PoaE, D.
K., PRaTT, C. M AND Ross, R J. (1995). DYNALAB, A Dynam c Conputer
Sci ence Laboratory Infrastructure Featuring Program Aninmation.
Special Interest Group on Conputer Science Education, 27(1), 29-

33.

[15] IsooA, S., SHMMRA, T. AND OO, Y. (1987). VIPS: A Visual

Debugger, | EEE Software, 8-18.

[16] Dew R A. AND NewANDs, D. A (1996). Basic Progranm ng

Concepts. Deakin University study guide.

[17] SMTH, P. A AND WBB, G |. (1995). Transparency Debugging Wth
Expl anations for Novice Programers. Proceedings of the 2nd

Wor kshop on Aut onat ed and Al gorithm c Debuggi ng, St. Ml o, France.

[18] FLEWRY, A. (1991). Paraneter Passing: The Rules the Students

Construct. Comruni cations of the ACM 283-286.

[19] Canas, J. J., BaJo, M T. AND GowzALvo, P. (1994). Mental Models
and conputer programming. International Journal of Human-Conputer

studi es, 40, 795-811.

Appendix

Session 2
program 1
i nt

i nt
i nt

functionl (int);
function2 (int);
function3 (int);
i nt

a, b;

int functionl (int

int b;

a) {

b 3 * q
printf (“\'nfunctionl:
printf (“functionl: b

return (function2 (b));

a

function2 (int
int c;

d) {

c
a
{

c + d;

int a;

a b + d;

printf (“\'nfunction2a:
a:
a:
a:

printf (“function2

printf (“function2

printf (“function2
}
printf (“\'nfunction2b:
printf (“function2b: b
printf (“function2b: c
printf (“function2b: d
return (function3 (a));

}

int function3 (int a){
int d;

d =a- 2

printf (“\nfunction3:

printf (“function3: b

printf (“function3: d

return (d);

Inn o

}

void main (void){
int d;
a = 2;
b =7,

Inmn i o

%\ n",
%\ n”,

a);
b);

%\ n”, a);
%\ n”, b);
%\ n”, c);
%\ n”, d);

a
b =
cC =
d =
= %@\ n",
%\ n”,
%\ n”,
%\ n”,

a);
b) ;
c);
d);

%\ n", a);
%\ n”, b);
%\ n”, d);

d = 10;

printf (“main_a: a = %\n", a);
printf (“main_a: b = %l\n", b);
printf (“main_a: d = %\n", d);
d = functionl (d - b);
printf (“\nmain_b: a = %\n”, a);
printf (“main_b: b = 9%l\n", b);
printf (“main_b: d = %l\n", d);

}

1/ In the function functionl the output

statenents (lines 2 and 3) is

al 3 6

b/ 3 9

c/ 2 6

d/ 2 7

2/ In the function function2 the output

statenents (lines 10, 11, 12 and 13) is

al 16 9 4 10

b/ 16 7 4 9

c/ 13 7 4 9

d/ 13 9 4 9

3/ In the function function3 the output

statenents (lines 20, 21 and 22) is

al 16 7 11

b/ 16 9 11

c/ 13 7 9

d/ 13 7 11

4/ In the function function2 the output

statenents (lines 14, 15, 16 and 17) is

al 13 7 4 9

b/ 16 9 4 9

c/ 16 7 4 9

d/ None of the above

5/ In the main function the output of

(lines 31, 32 and 33) is

al 2 7 10
b/ 13 9 11
c/ 13 7 11
c/ 2 9 10

of

of

of

of

t he

t he

t he

t he

the three printf

t wo

f our

t hr ee

f our

printf

printf

printf

printf

statenments

37

program 2

#i ncl ude <stdio. h>

int functionl (int);
int function2 (int);
int function3 (int);

int a, b;

int functionl (int a) {

int b;
a = 10;
b =3 * a;

printf (“\'nfunctionl: a = %\n”, a);
printf (“functionl: b = %l\n”, b);
return (function2 (a));

int function2 (int d){
int c;

C
a

{

no
x

printf (“\'nfunction2a: a = %\n”, a);
printf (“function2a: b = %\n”, b);
printf (“function2a: ¢ = %\n”, c);
printf (“function2a: d = %\n”, d);

}

printf (“\'nfunction2b:
printf (“function2b: b
printf (“function2b: c
printf (“function2b: d
return (function3 (c));

= %\n", a);
%\ n", b);
%\ n", c);
%\ n”, d);

Inmn i o

}

int function3 (int a){
int d;

d =a* 2

printf (“\'nfunction3: a = %\n", a);
printf (“function3: b %\ n”, b);
printf (“function3: d %\ n”, d);
return (d + a);

}
void main (void) {
int d;
a 11;
2;
11;

b
d
printf (“main_a:

a
printf (“main_a: b
printf (“min_a: d

%\ n”, a);
%\ n”, b);
%\ n”, d);

o

d = functionl (a +

)

printf (“\'nmain_b: a = %\n", a);
printf (“main_b: b = %l\n", b);
printf (“main_b: d = %l\n", d);
}
1/ In the function functionl the output of the two
statenents (lines 3 and 4) is
al 3 9 b/ 11 33
c/ 10 30 d/ 22 66
2/ In the function function2 the output of the four
statenents (lines 13, 14, 15 and 16) is
al 32 2 4 30
b/ 11 30 4 10
c/ 40 2 4 10
d/ 120 2 4 30
3/ In the function function3 the output of the three
statenents (lines 19, 20 and 21) is
al 11 2 8
b/ 40 2 10
c/ 11 30 10
d/ 4 2 8
4/ In the function function2 the output of the four
statenments (9, 10. 11 and 12) is
al 30 7 4 10
b/ 22 30 4 10
c/ 12 20 4 10
d/ none of the above

5/ In the function main the output
(lines 30, 31 and 32) is

al 40 2 12
b/ 2 11 11
c/ 32 2 4
d/ 11 30 8

printf

printf

printf

printf

of the three printf statenments

39

Session 3
program 1
void main (void)

{

void swap ();

int a=3, b =6
printf (“min: a =%, b =29%\n", a, b);
swap (a, b);
printf (“main: a =%, b = %l\n", a, b);
}
void swap (int a, int b)
{
int tenp;
temp = a;
a = b;
b = tenp;
printf (“swap: a = %, b = %\n", a, b);
}
1/ The output of the printf statement at line 8 is
al swap: a = 3 b =6
b/ swap a = 6 b =3
c/ swap a = 6 b =6
d/ swap a = 3 b =3
2/ The output of the printf statement at line 4 is
al swap: a = 3 b =6
b/ swap a = 6 b =3
c/ swap a = 6 b =26
d/ swap a = 3 b =3

program 2

void main (void)

%,

%,

*b)

b

%\ n", a, b);

b

%\ n”, a, b);

%l, b = %l\n", *a, *Db);

{
void swap ();
int a =3, b= 6;
printf (“main:
swap (&a, &b);
printf (“main:
}
void swap (int *a, int
{
Int tenp
temp = *a;
*gq = *b;
*bh = tenp;
printf (“swap: a
}
1/ The output of the printf
al swap: a = 3
b/ swap a = 6
c/ swap a = 6
d/ swap a = 3
2/ The output of the pr
al swap: a = 3
b/ swap a = 6
c/ swap a = 6
d/ swap a = 3

COCOCTUTOSOTUTUTOT

—
o =u1nmnnu

w o wo

statenent at line 8 is
6
3
6
3
statenment at line 4 is

41

program 3

#i ncl ude <stdi o. h>
void main (void)

{

}

void swap ();
int a
printf (“main:

swap (a,
printf (“main:

3, b

&b) ;

void swap (int a,

{

}

int tenp;

temp = a;
a = *b;

*bh = tenp;

printf (“swap:

1/ The out put

al/
b/
c/
d/
2/
al/
b/
c/
d/

swap:
swap
swap
swap

a
a
a
a

The out put

swap:
swap
swap
swap

a

a
a
a

*b)

%,

%,

a = %,

of the printf

o
=h
Woow
—
=0
(0]
o
=

wo o w

COTCOTCUTOSOTUTOTUTOT

—
o= u1nimnnu

wo w

b

%\ n", a, b);

b

%\ n", a, b);

*b = %\ n", a, *b);

statenent at line 8 is
6
3
6
3
statenment at line 4 is
6

42

program 4

#i ncl ude <stdio. h>
void main (void)

%,

%,

b

%\ n", a, b);

b

%\ n”, a, b);

a=9%9%, b=29\n", *a, b);

{

void swap ();

int a=3, b 6;

printf (“main: a =

swap (&, b);

printf (“main: a =
}
void swap (int *a, int b)
{

int tenp;

temp = *a;

*a = b;

b = tenp;

printf (“swap:
}
1/ The output of the printf
al swap: a = 3 b
b/ swap a = 6 b
c/ swap a = 6 b
d/ swap a = 3 b
2/ The output of the prin
al swap: a = 3 b
b/ swap a = 6 b
c/ swap a = 6 b
d/ swap a = 3 b

—
o =u1nmnnu

w o wo

statenent at line 8 is
6
3
6
3
statenment at line 4 is

program 5

#i ncl ude <stdio. h>
void main (void)

{
void swap ();
int a =3, b= 6;
printf (“main: a =%, b=29%\n", a, b);
swap (&b, b);
printf (“min: a =%, b=29%\n", a, b);
}
void swap (int *a, int Db)
{
int tenp;
tenp = *a;
*a = b;
b = tenp;
printf (“swap: a = %, b = %\n", *a, b);
}
1/ The output of the printf statement at line 8 is
al swap: a = 3 b =26
b/ swap a = 6 b =3
c/ swap a = 6 b =26
d/ swap a = 3 b =3
2/ The output of the printf statement at line 4 is
al swap: a = 3 b =6
b/ swap a = 6 b =3
c/ swap a = 6 b =26
d/ swap a = 3 b =3

