
 1

 The Efficacy of a Low-Level Program Visualisation Tool for
Teaching Programming Concepts to Novice C Programmers

Authors

Philip A. Smith
School of Information Technology and Mathematical Sciences
Mt Helen Campus
University of Ballarat
Ballarat, 3353
Victoria
Australia

E-mail – p.smith@ballarat.edu.au

Geoffrey I. Webb
School of Computing and Mathematics
Geelong Campus
Deakin University
Geelong, 3217
Victoria
Australia

E-mail - webb@deakin.edu.au

Keywords – System Evaluation, IT Education, Program Visualisation,
Software Visualisation

michelle
Pre-publication draft of a paper which appeared in the journal of Educational Computing Research, Volume 22(2) pp 187-215

 2

The Efficacy of a Low-Level Program Visualisation Tool for
Teaching Programming Concepts to Novice C Programmers

Abstract

It is widely agreed that learning to program is difficult. Program

visualisation tools make visible aspects of program execution

which are often hidden from the user. While several program

visualisation tools aimed at novice programmers have been

developed over the past decade there is little empirical evidence

showing that novices actually benefit from their use [1]. In this

paper we describe a “Glass-box Interpreter” called Bradman. An

experiment is presented which tests the efficacy of Bradman in

assisting novice programmers learn programming concepts. We show

that students that used the glass-box interpreter achieved greater

understanding of some programming concepts than those without

access. We also give evidence that the student’s ability to

assimilate new concepts was enhanced by exposure to the glass-box

interpreter. This is experimental confirmation that such tools are

beneficial in helping novices learn programming.

Introduction

Program visualisation tools, which provide several views of a

program and its execution, appear to be promising aids for

teaching novice programmers. However, there is little empirical

evidence regarding their efficacy [1]. This paper presents an

experiment that provides such evidence. We show that students can

benefit from access to such a tool both in achieving greater

understanding of some programming concepts and also in their

ability to assimilate new concepts.

 3

Background

Many novice programmers experience difficulties and frustrations

in their attempts to learn programming. Researchers in the field

generally concede that programming is a difficult skill to master

[2] [3]. Students experience difficulties developing,

comprehending and debugging programs, often reaching impasses from

which they cannot proceed without assistance.

Mayer [4] said that “meaningful learning” occurs when new

knowledge is actively associated with appropriate pre-existing

knowledge structures. If meaningful learning occurs then the

learner will have “understood” the new knowledge. This process is

called “assimilation”. If appropriate knowledge structures do not

exist then the new knowledge needs to learned by “rote” which is

memorisation without understanding. If knowledge is learned by

rote then the learner is less likely to be able to apply the

knowledge in new situations.

However, Dijkstra [5] described computers as a “radical novelty”.

By this he meant that the computer represented such a “sharp

discontinuity” in learning that analogies should not be drawn

between it and more familiar concepts. He said that computing

should be approached with a “blank mind” and gave several examples

which he claimed gave evidence of the inappropriateness of

conceptualising computing in familiar terms.

The above scenario is further complicated by the learners

themselves. Each student brings into the learning experience a

unique blend of knowledge, beliefs, fears and prejudices which

will colour the way they learn the new material. Students will use

their own metaphors to try to make sense of what they are learning

[6]. They will also make inferences upon the instructor’s

 4

analogies which were unintended by the instructor. For example, an

instructor might use a box as an analogy to represent a memory

location, and a student might make the inference that a memory

location might store more than one value since a box can usually

hold more than one item [7]. Pre-existing knowledge can even

prevent students from seeing that a programming problem is a

problem at all [8].

However, the provision of appropriate metaphors is a useful way to

help students understand new material provided the students are

made aware of the limitations of the metaphor. In this case

metaphors are a form of conceptual model. Conceptual models are

invented by educators to provide an anchoring framework upon which

students can assimilate new knowledge [9]. The provision of

conceptual models is an attempt to associate new learning material

with more familiar concepts. Conceptual models are intended to

make the student’s mental model more useful when learning the

target system. A mental model is an internal representation of the

target system which provides predictive and explanatory power to

the operator [9].

The educator will have several means at their disposal with which

to teach the student by providing appropriate anchoring frameworks

onto which the student can assimilate the new information. Some of

these methods are:

• The instructor will give representations of various concepts on

the blackboard. However, the blackboard is a static medium.

This can cause difficulties when seeking to explain dynamic

programming concepts. The blackboard “walkthrough” forces

students to take messy notes from which it is difficult to

repeat the walkthrough at a later stage [10].

 5

• Students can use debugging tools in laboratory situations. Such

tools are often commercial debuggers which are designed for

experts and which, consequently, are often too complicated for

novices. Certainly it is our experience that students use the

UNIX symbolic debugger gdb with great reluctance.

• Students will also have access to written material such as text

books and study guides. Again these are static media which are

also unresponsive - if a student does not understand something

the book cannot explain it in a different way.

• Human tutors, teaching on a one to one basis, are probably the

best way to teach novices. Anderson and Reiser [2] reported

that students with access to private tutors learned as much

Lisp in eleven hours as other students did in forty three

hours. However, access to human tutors in educational

institutions is often very limited.

Another way to assist novice programmers is to provide

computerised assistants which are created specifically for them.

One class of such assistants are software visualisation tools.

Software visualisation is the use of interactive computer

graphics, typography, graphic design, animation, and

cinematography to enhance the interface between computer

programmers and their programs [11]. While a great deal of

research has gone into the creation of these systems there has

been little empirical data gathered regarding their efficacy [1].

One of the reasons for this is the difficulty in assembling the

proper ingredients for such an evaluation [12]. Mulholland [1]

attributes the fact that software visualisation systems are not

widely used to lack of empirical evidence as to their value in

actually teaching novice programmers.

 6

Software visualisation tools can be sorted into two main groups:

• Algorithm animation [11] gives a graphical representation of

the algorithm used to implement a program. Algorithm animations

are to a large extent programming language independent. They

are used to give students a visual representation of how an

algorithm works. Each animation must be individually created.

• Program visualisation tools, on the other hand, are programming

language dependent. They are used to animate low-level features

of a program such as the source code and the changes of

variable states. They should be able to automatically handle

all possible programs that can be written in the target

language.

The past few years have seen the emergence of several low-level

program visualisation tools designed explicitly for novice

programmers [2] [10] [13]. The systems were enthusiastically

embraced by students but none of them have as yet have been tested

under controlled conditions.

Bradman is a low-level program visualisation tool designed to

provide a conceptual model of C program execution for novice

programmers. It is an interpreter which makes visible aspects of

the programming process which are normally hidden from the user.

For this reason, we call it a “Glass-box Interpreter”. It is

similar to “program animators” [14] except that Bradman is

designed to enable students to develop their own programs as well

as run those created by educators for pedagogical purposes.

Bradman also incorporates novel features designed specifically to

assist novice programmers. We now describe Bradman and then

describe an experiment in which we explore Bradman’s effect on

novice programmers. This experiment gives the first concrete

 7

evidence that even a low-level program visualisation tool can

assist a student’s meaningful learning of C concepts.

Bradman

Bradman was developed as a tool to provide assistance for novice

programmers in their endeavours to learn C. The School of

Computing and Mathematics at Deakin University had recently

switched from using Pascal as an introductory programming language

to using C. It was felt that the problems that students were

having with Pascal would be exacerbated when using C and that the

tools available were not adequate for enhancing the student’s

mental representation of program execution. The motivation for

developing Bradman was to produce an assistant that provides a

useful conceptual model onto which students could assimilate new

knowledge about programming.

Bradman provides a model which reinforces the view of the program

achieving its results by the sequential change of program state

caused by the execution of programming statements. This model is

intended to assist students visualise the execution of programs

more clearly thus enhancing their mental models of program

execution.

Implementation

Bradman takes the user’s syntactically correct source code as

input. This source code is compiled producing an efficient

internal representation in the form of a syntax tree. This

internal representation is never presented to the user, the

corresponding source code being referred to whenever appropriate.

As each statement is executed code embedded in the run-time

machine sends information to the various windows which provide

 8

different views of the program. Four of these windows are

displayed at all times while others appear when certain conditions

arise. These windows are now described.

Code Window

The code window provides many of the features found by any state-

of-the-art debugger. It displays the program code and shows the

current point of execution by using a marker on the side. Vertical

scrollbars enable the user to see different parts of longer

programs. The window itself can be resized with the mouse if

necessary.

One of the primary design goals that influenced the code window

was to provide as much as possible of the functionality of a

conventional visibility debugger with a minimum of complexity.

Simplicity is sought throughout the system as we believe that

novice programmers have tremendous cognitive loads imposed on them

by the need to master the new computing paradigm and that it is

important that the environments add the least possible amount to

this load.

Variables Window

The code window makes explicit to the novice programmer the manner

in which the execution of a statement affects the point of

execution. In contrast, the variables window makes explicit the

way in which the set of values of the variables is affected by a

statement execution. While previous program visualisation tools

have shown the values of the variables and how they change as

execution proceeds, Bradman has added features which are intended

to further reinforce the model of a program being an active entity

 9

which achieves its results through the execution of program

statements.

The set of variable/value bindings for the current program state

can be altered by the execution of a program statement to produce

a new set of values. This concept is conveyed by displaying the

values of the variables in two columns - a before and an after

column. The display shows the set of values before the execution

of the statement and the set of values after the execution of the

current statement. To reinforce the concept of this change of

state being an ongoing process, it is explicitly shown that the

after state of one statement is the before state of the next

statement executed. Animation which shows the after column from

one statement execution migrating across the display to become the

before column for the next statement, is used to reinforce this

concept. Finally, the values of the current set of before values

are often (but not always) used to help create a new set of after

values. This is shown by appropriate highlighting of the variables

involved.

The variables window also differs from the variable display of a

standard visibility debugger by including a formalism to better

represent pointers. In general, the values of pointers are

represented by large unsigned integers which denote memory

locations. Standard visibility debuggers display these values. The

program visualisation tool assists the novice’s understanding of

the way pointers refer to other variables by an explicit display

showing the connection between the two memory locations as is

commonly done in blackboard presentations. VIPS [15] displays

pointers in a similar manner.

 10

In C, the programmer must initialise a variable before referencing

its value. Failure to do so will usually result in an error. It is

common for a student to assume that a variable’s initial value is

zero. Hence in the variable display, the variables which have yet

to be assigned a value are explicitly marked as such. If a program

attempts to reference an uninitialised variable then an error

message is displayed.

Some students are confused by the use of functions in statements.

The variables display explicitly shows how the function returns a

value and how this value contributes to the value of the

expression from which the function was invoked. Another feature of

the variables window is that it explicitly shows the value of a

function after it has returned to its calling statement. The

function value appears in a box in a similar manner to a variable

value and is shown to contribute to the value of an expression by

the use of highlighting in a similar manner to that of variables.

Finally, the variables window explicitly represents the

precedences of expressions. C is a language in which the

precedences of operators is implicit, unless overridden by the use

of parentheses, and not necessarily consistent. Some operators

have left to right precedence, others right to left and others no

precedence at all. Furthermore, some operators have different

precedences to other operators. This can be confusing to novice

programmers. Bradman uses parentheses to explicitly show the

default precedences and hence the order in which sub-expressions

are calculated.

Explanations window

The code window and the variables window provide a conceptual

model for the programmer of which changes are effected in the

 11

program state by the execution of a statement. However, they do

not tell the user how the statement caused these changes. One can

envisage situations in which a novice might see the changes

wrought by a particular statement but still not understand why the

statement had that effect. For example, consider the statement

 x = 3 + 4 * 2 + 5;

The user might expect x to be assigned a value as follows:

 x -> (3 + 4) * (2 + 5) -> 49

and be mystified when, in fact, the final value is 16,

 x -> 3 + (4 * 2) + 5 -> 16

An explanation of how a statement achieves its results is used to

reinforce the model. These explanations are specific to the

context in which the actual statement is executed. Thus instead of

explaining in general terms what an assignment statement does, the

explanations provides information about what the current

assignment statement is actually doing. For example, the statement

 i = 10;

is explained not only as being an assignment statement but as an

assignment statement in which the value 10 is assigned to the

variable i. Birch et al. [14]in their description of the future

directions for Dynalab, mentioned annotation which would provide a

running commentary about the program being animated. Dynalab is a

system in which the student mainly runs programs pre-written by

the instructors. Hence, it is possible that they are designed at a

higher level than that of Bradman’s explanations window. They also

mentioned the possibility of using sound for this facility.

 12

The explanations window gives contextualised information

describing how each statement works. The information which is

provided by the explanations window is embedded in the run-time

machine which enables it to include context such as the values of

variables and the memory locations to which pointers point. The

information given by the explanations window is textual.

The explanations window uses a simple process by which information

is added to it as the program is executed. It provides a lower

level analysis than the other windows operating at the expression

level rather than the statement level. This is necessary because

its purpose is to explain the workings of individual statements.

The cumulative explanation for the entire execution remains in the

window, so that the user can scroll back to investigate the

history of how they reached the current state. Hence the

explanations window is also an execution trace. This trace is also

saved to a file enabling the student to study it after the session

with Bradman has terminated.

Input/Output Window

This window provides a mechanism by which the user can communicate

necessary input and output to the program. While this is mainly

straightforward, this window makes visible two aspects of input

that are usually hidden from the user.

First, when a statement requiring input from standard input is

executed and the input buffer is empty the program will wait until

input is entered. This can confuse novices if they have not coded

an appropriate prompt for input into their program, causing them

to think that there is something wrong with their program. While a

program is waiting for standard input to be entered a flashing

 13

message will appear at the bottom of the input/output window

telling the user to enter input. The message

Program requires input

flashes on and off prompting the user to enter input. This message

is designed to explicitly remind the user that input is required,

so that the user does not mistakenly assume that the program has

crashed or suspended. It will remain in effect until the user has

entered enough input to give values to all three input variables.

Second, when a user running the program normally enters more

standard input than the program is ready to utilise, the excess

input is stored in a buffer and used if more input statements

requiring standard input are executed.

This buffer is normally invisible and novice programmers can

become confused when input variables are assigned values that they

did not intend for them. To clarify this for the novice, buffered

input is displayed at the bottom of the input/output window.

Error Window

The error window appears only when a program independent error has

been detected in the execution. For example if there is an attempt

to reference a variable before it has been assigned a value then

the error window will appear describing the error and suggesting

ways it might be fixed.

The error window will only appear if Bradman attempts to execute

the faulty statement so an error might be missed if execution does

not happen to encounter it. Once an error is reported it is

necessary for the user to correct it and then restart the program.

Errors that are reported include:

 14

• An attempt to reference variables that have not been assigned a

value.

• An attempt to use an incompatible format in an input/output

statement.

• A discrepancy between the number of format characters in an

input/output statement and the number of arguments.

• An attempt to divide by zero.

• An attempt to assign an expression to a variable with a

different level of indirection.

Bradman will report an uninitialised variable on the first attempt

of the program to reference such a variable. In many debuggers

such an error will only be reported if the failure by the

programmer to explicitly assign a value to c causes an attempt to

divide by zero or similar error. In this case a more useful error

message is provided by Bradman.

Edit Window

The edit window, invoked from the code window, is a facility which

allows the user to modify the program within the Bradman

environment. It is simply a window which initiates a session in an

external editor with the user’s source code. The user can modify

the program and quit from the window. Once the user quits from the

window a new session is started with the modified source code now

appearing in the code window. In its current version, Bradman will

finish the session and exit if the user’s modified program

contains a syntax error.

 15

Experiment

This experiment attempts to evaluate whether access to a glass-box

interpreter assists the user to develop a better understanding of

program execution, in other words, whether it provides an adequate

knowledge framework of program execution onto which students can

assimilate the new information. Access to software visualisation

tools is often claimed to be of benefit to novice programmers but

little empirical evidence of their value is provided [1]. This is

true of both program visualisation tools and algorithm animators.

Methodology

Volunteers were sought from Deakin University’s introductory

programming course which teaches programming concepts using C. The

experiment ran over a three week period in first semester.

Subjects were required to attend three two-hour laboratory

sessions (one per week). They were told that they would be testing

ways to improve programming environments for novice programmers. A

payment of thirty Australian dollars was made to the participants

who completed all three sessions. Twenty-six people volunteered to

participate. However, two subjects from the control group withdrew

after week two, leaving unequal groups - one of thirteen and

another of eleven. All subjects completed an appropriate consent

form before commencing the experiment

The laboratory sessions were based on those already prepared by

the instructors for the introductory unit [16]. These sessions

required the students to perform desk-checking of pre-written

programs. This format was chosen for the experiment for the

following reasons:

 16

• Many researchers report that the ability to desk-check programs

is an important difference between novice and expert

programmers [9].

• Laboratory sessions involving desk-checking were already part

of the introductory programming unit at Deakin University. It

was straightforward to modify the format of these laboratory

sessions for the purposes of the current research. Volunteers

were put at minimum inconvenience because they were able to

substitute the experimental laboratory sessions for their

normal sessions.

• It allows simple extraction of quantifiable data.

• Students must have some understanding of certain programming

concepts before they can successfully desk-check programs

involving these concepts. Thus it is possible to test, albeit

indirectly, the student’s understanding of these concepts as

well as their ability to desk-check programs.

The first session was an introduction to the format that the

subsequent sessions would take. All experimental data were

collected in the second and third sessions. The authors of the

unit intended that the students do the following:

• Desk-check a program prepared for them that was designed to

illustrate and reinforce a concept which was introduced to them

in lectures.

• Attempt to calculate the outputs of this program

• When finished, compile and run the program and compare the

output to their calculations.

 17

• Attempt to discover the reason for any mistakes that they made.

They were allowed to use textbooks, ask questions of the tutors

and analyse the program using the symbolic debugger, gdb. The

students were given some time to analyse the program code. Then

the instructors gave a demonstration on the whiteboard of how

the program achieved its results.

This format was modified slightly for the experiment in the

following ways:

• While the students were desk-checking the program they were

required to answer multiple choice questions regarding the

outputs.

• When they finished working on their program and had watched a

demonstration on the whiteboard they were given a similar but

different program to desk-check and with regard to which to

answer multiple choice questions.

Thus the experimental period involved four tests - one at the

beginning and one at the end of both sessions 2 and 3. For

convenience sake these tests were numbered 1, 2, 3 and 4 in the

order in which they were performed. Hence Test1 was conducted at

the beginning of session 2 before the participants had received

either treatment. Test4 was conducted at the end of session 3

after all experimental interventions had been performed and serves

as a post-test. Test2, conducted immediately after the first

intervention and test3 conducted a week later immediately before

the second intervention allow us to map student progress through

the experiment.

The students’ proficiency was judged by the number of correct

responses to the multiple choice questions. The twenty six

 18

volunteers were split into two groups of thirteen. This was done

based on the order in which they volunteered to participate - the

first volunteer was put into the test group, the second into the

control group, the third into the test group and so on. However,

two subjects from the control group withdrew after week two,

leaving unequal groups - one of thirteen and another of eleven.

Experimental intervention related to the normal laboratory

activities which were conducted between the tests conducted at the

beginning and end of each session. The test group (consisting of

thirteen people) had access to Bradman during this phase in which

they attempted to gain an understanding of the program. The

control group (consisting of eleven people) did not have access to

Bradman during this phase.

The test group had access to a modified version of Bradman in

which the explanations window was not available. An experiment

which tested the efficacy of the explanations window was reported

previously [17]. The explanations window was not available in the

current experiment because we wished to focus on the value of the

glass-box interpreter without confound factors, relating to the

addition of textual elements.

Session 1

Session 1 was an introductory session in which the students were

introduced to the format that would be used in sessions 2 and 3.

The students (from both test and control groups) were required to

desk-check a very simple program and answer multiple choice

questions regarding its output. During the treatment period the

test group was instructed on the use of Bradman - how it was

invoked and how it could be used. During this time they also

learned the material for the session. The control group learned

 19

the material only during this period. At the end of the session

all students, from both groups, were required to desk-check

another program and answer multiple choice questions. The two test

periods were intended solely to familiarise the students with the

format of the following two sessions. The results were not

collated or analysed. The control group underwent the same process

as the test group except that they were not given exposure to

Bradman. Although this first session might be seen as having an

influence on the overall result, the effect is probably minimal

because the students were given simple exercises. The comparative

performance of the two groups through the experiment seems to

support this. Even if this is not accepted, and the exposure to

the low-level program visualisation tool in session 1 is viewed as

a significant experimental intervention, while this devalues test1

as a pre-test it in no way devalues the final result which should

then be viewed as the result of three rather than two experimental

evaluations.

Session 2 - The Scope of Variables

The scope of variables is a concept that students often have

trouble understanding. Students have to understand pieces of code

in which a name refers to a global object in one statement while

in another statement the same name refers to a different, local,

object. They need to understand that a local variable in a calling

function cannot be accessed (except through the use of pointers

with which they were not as yet familiar) during the life of the

called function. Hence desk-checking such a program is not a

trivial exercise and presents difficult challenges to the novice

programmer.

 20

The program used in session 2 was prepared by the authors of the

introductory programming unit as part of their course. It was

incorporated in the experiment, with their permission, and was

used as Test1. This program was designed to illustrate many of the

concepts of scoping including how different variables can have the

same name, how variables have a certain “life” or scope during

which they are valid and how they lose their validity outside of

this scope.

The program was developed by professional programming instructors

to teach novice programmers about scoping. It consisted of four

functions including the main function. The functions did not

perform a meaningful task. They simply assigned and reassigned

values to variables outputting them at various stages. None of the

functions or variables had meaningful names. While the students

were desk-checking this program they were required to answer five

multiple choice questions. The students were instructed to circle

the alternative that best answered the question. These questions

along with the code for this program can be found in the Appendix.

An additional program was developed specifically for the study and

used as Test2. It was intended to be similar but different to

Test1. Again the students were asked to desk-check the program and

again answer five multiple choice questions regarding its output.

Intervening Period Between Sessions 2 and 3

There was an interval of one week between the performance of Test2

and Test3. This break was significant because it gave an

opportunity to judge whether Bradman indeed provided the student

an adequate framework onto which to attach new information. During

this period the students attended lectures in which the concepts

used in session 3 were taught. If the glass-box interpreter was

 21

efficacious in enhancing a student’s mental model of program

execution then one would expect the test group to perform better

than the control group on Test2. One would also expect the test

group to show an improvement on the initial test program in

session 3.

Session 3 - Parameter Passing

In session 3 the subjects were called upon to analyse programs

which involved pass-by-reference parameter passing. The

instructors of the introductory programming unit, thought this

concept to be of such difficulty and importance that they gave the

students the following warning:

“The concept of ‘pass-by-reference’ (pointers) is probably the

biggest hurdle you’ll come across in C programming. When you

absorb and UNDERSTAND this topic, you will have overcome the

biggest learning curve in C. The rest of C programming will seem

somewhat easier.” [16]

These sentiments have been echoed by other researchers [18]. Pass-

by-reference parameter passing in C involves the use of pointers

which were a relatively new concept for the students being tested.

They needed to develop a model of how, through the use of the

pointers, the values of variables in the calling function would

change rather than those in the called function.

Test3 consisted of two programs prepared by the instructors of the

introductory unit, for use in the regular laboratory session. The

first program consisted of an incorrect version of a swap program

in which the parameters passed to the function swap were pass-by-

value parameters. The second is the correct version in which pass-

by-reference parameter passing is used. Test4 comprised three

 22

additional programs developed specifically for the study. They

differed from the Test3 programs only in the arguments that were

passed to the function swap. The students were asked to answer two

questions at the end of each program. The questions were the same

for all five programs. These questions revolved around the values

of the parameters after the swap had been completed but before the

function returned and the values of the arguments of the call to

swap after the function had returned. Unlike the programs in

session 2, the function and variable names were more meaningful,

reflecting their tasks.

Results and analysis

The multiple choice questions were collected and marked. The

number of correct and incorrect responses for both groups are

summarised in Tables 1 and 2. It must be remembered that the

students had a selection of four possible responses from which to

choose. All of the incorrect responses were grouped into one

tally. Hence, for every test the distributions represent better

than random performance by the participants.

The results seem to show an improvement on the part of the test

group. As expected the number of correct responses for both groups

increased after the intervention but the improvement of the test

group was greater. The test group performed less well on Test1

(equal correct but more incorrect) than the control group but

performed better on the Test2 (more correct and fewer incorrect).

However, it could be misleading to compare the groups in this

manner because each individual was required to answer five

questions. Thus a change in performance by just one subject could

affect as many as five question responses. In order to better

compare the two groups, the individuals were given a ranking

 23

according to the number of correct response they made. Rankings

were made for both Test1 and Test2.

Test1

Test Group Control Group

Correct Incorrect Correct Incorrect

Q1 4 9 5 6

Q2 7 6 4 7

Q3 6 7 8 3

Q4 4 9 4 7

Q5 5 8 5 6

Totals 26 39 26 29

Test 2

Test Group Control Group

Correct Incorrect Correct Incorrect

Q1 13 0 9 2

Q2 11 2 8 3

Q3 9 4 7 4

Q4 9 4 7 4

Q5 5 8 3 8

Totals 47 18 34 21

Table 1: Summary of Session 2 Results

Mann-Whitney U-tests comparing the two groups were performed on

both of these rankings. The results were as follows:

 Test1 z = 0.70 p = 0.25

Test2 z = 0.96 p = 0.17

 24

Hence, although the figures from Table 1 appear to show an

improvement in favour of the test group, statistical analysis of

the rankings did not show that a situation was reached in which

the test group performed significantly better than the control

group.

The results for session 3 were summarised in Table 2. Again the

individuals were given a ranking according to how many correct

responses they made.

Rankings were made for both Test3 and the Test4 results and Mann-

Whitney U-tests were performed on both of the rankings. The

results of these tests were as follows:

Test3 z = 1.42 p = 0.08

Test4 z = 2.03 p = 0.02

The figures show a definite bias towards the test group. In Test1

the test group performed slightly worse than the control group.

However, in Test3 the test group performed much better although

significance cannot be claimed. (It should be noted that the power

of these tests is low due to the small number of subjects and

hence, there is a sizeable chance that an underlying advantage

should fail to have been reflected in a significant value for p).

In Test4 the test group performed significantly better (at the

0.05 level) than the control group.

Despite the lack of statistically significant outcomes in tests 2

and 3, it is tempting to hypothesise about the causes for the

enhanced performance of the test group in Test3, (if one assumes

that it does reflect an underlying advantage to the test group).

In the period between session 2 and session 3 the students

attended a lecture explaining the relevant concepts, especially

 25

pass-by-reference parameters. Since the only difference in the

treatment of the two groups was the test group’s access to Bradman

it is reasonable to assume that the glass-box interpreter prepared

them in some way to better understand the information presented in

the lecture.

Test 3

 Test Group Control Group

 Correct Incorrect Correct Incorrect

Program 1 Q1 7 6 6 5

 Q2 7 6 4 7

Program 2 Q1 8 5 3 8

 Q2 10 3 6 5

 Totals 32 20 19 25

Test 4

 Test Group Control Group

 Correct Incorrect Correct Incorrect

Program 3 Q1 11 2 7 4

 Q2 8 5 3 8

Program 4 Q1 10 3 7 4

 Q2 10 3 4 7

Program 5 Q1 10 3 5 6

 Q2 9 4 7 4

 Totals 58 20 33 33

Table 2: Summary of Session 3 Results

Mayer [4] has said that learners require a pre-existing framework

onto which to attach the new knowledge. It is plausible to suggest

that the use of a program visualisation tool facilitated the

development of a cognitive framework that aided assimilation of

 26

the new knowledge. This suggests that the tool provides an

appropriate conceptual model of program execution. Irrespective of

whether one places any weight on the apparent advantage for the

test group in test3, test 4 reveals clearly that after the second

experimental intervention (laboratory 3) the test group did enjoy

a significant advantage. This is clear evidence that Bradman’s

form of low-level program visualisation actually influenced the

students’ mental model in a positive way.

As mentioned earlier, two students withdrew from the experiment

after session 2 was conducted. As a result, their results could

not be used and the groups became unequal with thirteen in the

test group and eleven in the control group. However, there is no

reason to believe that this would have confounded the results. The

results show that in Test1 the control group, without the two

subjects who withdrew, performed slightly better than the test

group although this difference was not significant. Subsequent

results show a clear improvement of the test group’s ability to

perform the given tasks as compared to that of the control group.

It is not clear how these results could be interpreted as

indicative of a confound introduced through the subjects’

withdrawal.

Results of survey

The students’ reaction to Bradman was very positive. This mirrors

similar student enthusiasm for other program animators such as

Dynalab [14]. The subjects who had access to Bradman were asked to

complete a survey form (after the second and third sessions) to

test their reactions and to enable them to provide comments. The

survey consisted of two parts.

 27

For the first part, subjects were required to give one of five

responses to the following statements.

1 - Bradman is easy to use.

2 - Use of Bradman increased my general understanding of

computer programming.

3 - I now find it easier to visualise how a program actually

works

4 - Bradman would be of assistance for students developing

programs (eg. for assignments)

5 - Use of Bradman in lectures would help students understand

programming.

For each of the above statements the subject was required to give

one of the following responses:

• Strongly agree

• Agree

• Neutral

• Disagree

Strongly disagree The responses are summarised in Table 3. As can

be seen there was no negative response on any of the five

questions. Only one student was neutral about whether his/her

general understanding of programming had increased through the use

of Bradman. The students all strongly agreed that they would find

the system useful in developing their programs for their

assignments. The results for session 3 were almost exactly the

same. The only difference was that three of them were slightly

 28

less positive that Bradman would help them with their assignments

although they all agreed that they thought it would.

Results for Session 2

Question Strongly
Disagree

Disagree Neutral Agree Strongly
Agree

1 0 0 0 6 7

2 0 0 1 5 7

3 0 0 0 3 10

4 0 0 0 0 13

5 0 0 0 4 9

Totals 0 0 1 18 46

Results for Session 3

Question Strongly
Disagree

Disagree Neutral Agree Strongly
Agree

1 0 0 0 6 7

2 0 0 1 5 6

3 0 0 0 3 10

4 0 0 0 3 10

5 0 0 0 4 9

Totals 0 0 1 21 43

Table 3: Results of Survey for Sessions 2 and 3

The second part of the survey enabled the students to make free

form comments regarding their experience with Bradman. This

section consisted of three questions

 29

• What features (if any) of Bradman did you find particularly

useful?

• What features (if any) would you add to Bradman to make it more

useful?

• What features (if any) of Bradman did you not like?

Most of the comments were in response to the first question. There

was almost unanimous approval for the visibility of the variable

states. Many of the students also explicitly mentioned that they

liked the format showing the before and after columns. There were

several comments giving approval for the “graphical

representation” of the program.

In response to the second question the response, given by several

people, was that they would like to be able to “go back to

previous statements”. Reverse execution is a feature that was

considered but rejected during the design of Bradman. However,

that the novice programmers themselves believe it would be of

benefit strengthens the case for future evaluation of such a

feature.

The main response to the third question was that they did not like

the fact that Bradman was not universally available. This

criticism was interpreted as a positive reflection on Bradman per

se.

Other comments were of a general nature and were invariably

positive. One of the students said “it helped me understand

programs that I could not normally understand”. Another said in

response to the third question, “None! It’s too good.”

 30

General Observation and Discussion

Bradman was enthusiastically accepted by the students, many of

whom asked for it to be made generally available. More than one

Bradman user told the experimenter that they had no idea about how

programs worked until they used Bradman. This response is

something that we expected, however, from people who were perhaps

unsure about how well they were doing in their course. We expected

them to appreciate the visibility and simplicity of Bradman after

struggling with tools like gdb which are designed for expert

programmers.

One interesting observation occurred during session 3, which was a

session in which an assignment was due. Several of the students

used Bradman, not to develop their assignments, but simply to

watch their own programs execute. There was no need for them to do

this because they were not looking for errors - they knew that

their programs gave correct results. This agrees with an

observation of Ross [10] who noted similar behaviour even in

expert programmers and engineers. People seem to enjoy watching

how their creations work.

The response was almost universal that they liked watching the way

that the variables changed value as the program executed. They did

not mention the other part of the program state change - the

change of execution point. One student said that the marker in the

code window should be changed to highlighting because it was too

difficult to see.

One interesting aspect of the results was the short amount of time

it took for the students to show signs of improvement. Other

studies (for example, [19]) cover periods of a term or more. Jones

[6] said that novice programmers had mental models that were

 31

highly unstable and that changed rapidly. It is plausible to

conclude that Bradman supplied the students with a more stable

framework onto which to base their understanding of C hence

speeding their development.

Future Directions

The experiment described in this paper provides evidence that

novice programmers can benefit from the use of a glass-box

interpreter. However, the experiment did not show which features

of Bradman made the greatest contributions toward this effect. A

major focus of our future work will be to test individual features

of low-level program visualisation tools. We have previously

provided subjective evidence [17] that students believe that they

benefit from access to the explanations window. We want to obtain

performance measures which demonstrate the utility of the

explanations window and the variables window in particular.

We are also interested in seeing with which program skills a

glass-box interpreter provides benefit. The experiment we

conducted provided evidence that students benefit from exposure to

Bradman when performing tasks which require desk-checking skills.

However, learning to program involves the development of many

skills including coding and debugging. We wish to conduct

experiments which explore the efficacy of a glass-box interpreter

in the development of these skills.

Conclusions

Programming is a difficult skill to master and novices need to

develop appropriate knowledge structures to enable them to cope

with it. Software visualisation tools are a class of computerised

tool which show promise in assisting novices develop appropriate

 32

models of programming. Program visualisation tools have been used

to teach students in classroom and laboratory situations. However,

there is little empirical evidence as to their efficacy and as a

result their use is not widespread.

The experiment that we conducted provides evidence that low-level

program visualisation tools, such as glass-box interpreters, can

be beneficial in teaching novice programmers. This experiment gave

concrete empirical evidence that such a tool can provide

assistance in learning new programming concepts. It also indicated

that the use of such a tool enables students to assimilate new

information more effectively. This suggests that our tool presents

a conceptual model which provides an appropriate framework onto

which learners can assimilate new information. Bradman provides

information in a dynamic manner while being very simple to use and

makes visible aspects of program execution that are normally

hidden. We believe that these features are important in enabling

students to better visualise how a program works as it executes.

We further believe that the benefits shown in comprehension will

be mirrored in benefits to program development and program

debugging and this will be the basis of further research.

 33

References

[1] MULHOLLAND, P. A. (1995). A framework for describing and

evaluating software visualisation systems: A case study in PROLOG.

Phd Thesis, Knowledge Media Institute, Open University.

[2] ANDERSON, J. R. AND REISER, B. J. (1985). The Lisp Tutor. Byte,

April, 159-175.

[3] BONAR, J. AND SOLOWAY, E. (1989). Uncovering Principles of Novice

Programming. Communications of the ACM, 10-13.

[4] MAYER, R. E. (1981). The Psychology of How Novices Learn

Computer Programming. Computing Surveys, 13(1), 121-141.

[5] DIJKSTRA, E. (1989). On The Cruelty Of Really Teaching Computing

Science. Communications of the ACM, 32(12), December, 1398-1414.

[6] JONES, A. (1982). Mental Models of a first programming

language. CAL Research Group Technical Report No. 29, The Open

University.

[7] PUTNAM, R. T., SLEEMAN, D., BAXTER, J. A. AND KUSPA, L. (1989). A

Summary of Misconceptions of High School Basic Programmers. In E.

Soloway and J. C. Spohrer, Eds. Studying the Novice Programmer,

Hillsdale, New Jersey: Erlbaum. 301-314.

[8] EISENSTADT, M AND BREUKER, J. (1992). Naive Iteration: An account

of the Conceptualisations Underlying Buggy Looping Programs. In M.

Eisenstadt, M. T. Keane and T. Rajan Eds. Novice Programming

Environments: Explorations in Human Computer Interaction and

Artificial Intelligence. Hove, UK: LEA.

 34

[9] NORMAN, D. A. (1983). Some Observations on Mental Models. In D.

Gentner and A. L. Stevens, Eds., Mental Models, Hillsdale, New

Jersey: Erlbaum., 7-14.

[10] ROSS, R. J. Experience with the DYNAMOD Program Animator.

(1991). Special Interest Group on Computer Science Education,

23(1), 35-42.

[11] PRICE, B. A., SMALL, I. S. AND BAECKER, R. M. (1983). A Principled

Taxonomy of Software Visualisation. Journal of Visual Languages

and Computing, 4(3), 211-266.

[12] STASKO, J., BADRE, A. AND LEWIS, C. (1993). Do Algorithm

Animations Assist Learning? An Empirical Study and Analysis. In

Proceedings of INTERCHI ‘93, 61-66.

[13] FREUND, S. N. AND ROBERTS, E. S. (1996). THETIS: An ANSI C

Programming Environment Designed for Introductory Use. Special

Interest Group on Computer Science Education, 28(1), 300-304.

[14] BIRCH, M. R., BORONI, C. M., GOOSEY, F. W., PATTON, S. D., POOLE, D.

K., PRATT, C. M. AND ROSS, R. J. (1995). DYNALAB, A Dynamic Computer

Science Laboratory Infrastructure Featuring Program Animation.

Special Interest Group on Computer Science Education, 27(1), 29-

33.

[15] ISODA, S., SHIMOMURA, T. AND ONO, Y. (1987). VIPS: A Visual

Debugger, IEEE Software, 8-18.

[16] DEW, R. A. AND NEWLANDS, D. A. (1996). Basic Programming

Concepts. Deakin University study guide.

[17] SMITH, P. A. AND WEBB, G. I. (1995). Transparency Debugging With

Explanations for Novice Programmers. Proceedings of the 2nd

Workshop on Automated and Algorithmic Debugging, St.Malo, France.

 35

[18] FLEURY, A. (1991). Parameter Passing: The Rules the Students

Construct. Communications of the ACM, 283-286.

[19] CANAS, J. J., BAJO, M. T. AND GONZALVO, P. (1994). Mental Models

and computer programming. International Journal of Human-Computer

studies, 40, 795-811.

 36

Appendix

Session 2

program 1

int function1 (int);
int function2 (int);
int function3 (int);

int a, b;

int function1 (int a) {
 int b;

 b = 3 * a;
 printf (“\nfunction1: a = %d\n”, a);
 printf (“function1: b = %d\n”, b);
 return (function2 (b));
}

int function2 (int d){
 int c;

 c = 4;
 a = c + d;
 {
 int a;

 a = b + d;
 printf (“\nfunction2a: a = %d\n”, a);
 printf (“function2a: b = %d\n”, b);
 printf (“function2a: c = %d\n”, c);
 printf (“function2a: d = %d\n”, d);
 }
 printf (“\nfunction2b: a = %d\n”, a);
 printf (“function2b: b = %d\n”, b);
 printf (“function2b: c = %d\n”, c);
 printf (“function2b: d = %d\n”, d);
 return (function3 (a));
}

int function3 (int a){
 int d;

 d = a - 2;
 printf (“\nfunction3: a = %d\n”, a);
 printf (“function3: b = %d\n”, b);
 printf (“function3: d = %d\n”, d);
 return (d);
}

void main (void){
 int d;

 a = 2;
 b = 7;

 37

 d = 10;

 printf (“main_a: a = %d\n”, a);
 printf (“main_a: b = %d\n”, b);
 printf (“main_a: d = %d\n”, d);

 d = function1 (d - b);

 printf (“\nmain_b: a = %d\n”, a);
 printf (“main_b: b = %d\n”, b);
 printf (“main_b: d = %d\n”, d);
}

1/ In the function function1 the output of the two printf
statements (lines 2 and 3) is

a/ 3 6
b/ 3 9
c/ 2 6
d/ 2 7

2/ In the function function2 the output of the four printf
statements (lines 10, 11, 12 and 13) is

a/ 16 9 4 10
b/ 16 7 4 9
c/ 13 7 4 9
d/ 13 9 4 9

3/ In the function function3 the output of the three printf
statements (lines 20, 21 and 22) is
a/ 16 7 11
b/ 16 9 11
c/ 13 7 9
d/ 13 7 11

4/ In the function function2 the output of the four printf
statements (lines 14, 15, 16 and 17) is
a/ 13 7 4 9
b/ 16 9 4 9
c/ 16 7 4 9
d/ None of the above

5/ In the main function the output of the three printf statements
(lines 31, 32 and 33) is
a/ 2 7 10
b/ 13 9 11
c/ 13 7 11
c/ 2 9 10

 38

program 2

#include <stdio.h>

int function1 (int);
int function2 (int);
int function3 (int);

int a, b;

int function1 (int a) {
 int b;

 a = 10;
 b = 3 * a;
 printf (“\nfunction1: a = %d\n”, a);
 printf (“function1: b = %d\n”, b);
 return (function2 (a));
}
int function2 (int d){
 int c;

 c = 4;
 a = c * d;
 {
 int a;

 printf (“\nfunction2a: a = %d\n”, a);
 printf (“function2a: b = %d\n”, b);
 printf (“function2a: c = %d\n”, c);
 printf (“function2a: d = %d\n”, d);
 }
 printf (“\nfunction2b: a = %d\n”, a);
 printf (“function2b: b = %d\n”, b);
 printf (“function2b: c = %d\n”, c);
 printf (“function2b: d = %d\n”, d);
 return (function3 (c));
}
int function3 (int a){
 int d;

 d = a * 2;
 printf (“\nfunction3: a = %d\n”, a);
 printf (“function3: b = %d\n”, b);
 printf (“function3: d = %d\n”, d);
 return (d + a);
}
void main (void) {
 int d;

 a = 11;
 b = 2;
 d = 11;

 printf (“main_a: a = %d\n”, a);
 printf (“main_a: b = %d\n”, b);
 printf (“main_a: d = %d\n”, d);

 d = function1 (a + d);

 39

 printf (“\nmain_b: a = %d\n”, a);
 printf (“main_b: b = %d\n”, b);
 printf (“main_b: d = %d\n”, d);

}

1/ In the function function1 the output of the two printf
statements (lines 3 and 4) is

a/ 3 9 b/ 11 33
c/ 10 30 d/ 22 66

2/ In the function function2 the output of the four printf
statements (lines 13, 14, 15 and 16) is

a/ 32 2 4 30
b/ 11 30 4 10
c/ 40 2 4 10
d/ 120 2 4 30

3/ In the function function3 the output of the three printf
statements (lines 19, 20 and 21) is

a/ 11 2 8
b/ 40 2 10
c/ 11 30 10
d/ 4 2 8

4/ In the function function2 the output of the four printf
statements (9, 10. 11 and 12) is

a/ 30 7 4 10
b/ 22 30 4 10
c/ 12 20 4 10
d/ none of the above

5/ In the function main the output of the three printf statements
(lines 30, 31 and 32) is

a/ 40 2 12
b/ 2 11 11
c/ 32 2 4
d/ 11 30 8

 40

Session 3

program 1

void main (void)
{
 void swap ();

 int a = 3, b = 6;

 printf (“main: a = %d, b = %d\n”, a, b);
 swap (a, b);
 printf (“main: a = %d, b = %d\n”, a, b);
}

void swap (int a, int b)
{
 int temp;

 temp = a;
 a = b;
 b = temp;

 printf (“swap: a = %d, b = %d\n”, a, b);
}
1/ The output of the printf statement at line 8 is
a/ swap: a = 3 b = 6
b/ swap a = 6 b = 3
c/ swap a = 6 b = 6
d/ swap a = 3 b = 3
2/ The output of the printf statement at line 4 is
a/ swap: a = 3 b = 6
b/ swap a = 6 b = 3
c/ swap a = 6 b = 6
d/ swap a = 3 b = 3

 41

program 2

void main (void)
{

 void swap ();

 int a = 3, b = 6;

 printf (“main: a = %d, b = %d\n”, a, b);
 swap (&a, &b);
 printf (“main: a = %d, b = %d\n”, a, b);
}
void swap (int *a, int *b)
{
 int temp;

 temp = *a;
 *a = *b;
 *b = temp;

 printf (“swap: a = %d, b = %d\n”, *a, *b);
}
1/ The output of the printf statement at line 8 is
a/ swap: a = 3 b = 6
b/ swap a = 6 b = 3
c/ swap a = 6 b = 6
d/ swap a = 3 b = 3
2/ The output of the printf statement at line 4 is
a/ swap: a = 3 b = 6
b/ swap a = 6 b = 3
c/ swap a = 6 b = 6
d/ swap a = 3 b = 3

 42

program 3

#include <stdio.h>
void main (void)
{
 void swap ();

 int a = 3, b = 6;

 printf (“main: a = %d, b = %d\n”, a, b);
 swap (a, &b);
 printf (“main: a = %d, b = %d\n”, a, b);
}
void swap (int a, int *b)
{
 int temp;

 temp = a;
 a = *b;
 *b = temp;

 printf (“swap: a = %d, *b = %d\n”, a, *b);
}
1/ The output of the printf statement at line 8 is
a/ swap: a = 3 b = 6
b/ swap a = 6 b = 3
c/ swap a = 6 b = 6
d/ swap a = 3 b = 3
2/ The output of the printf statement at line 4 is
a/ swap: a = 3 b = 6
b/ swap a = 6 b = 3
c/ swap a = 6 b = 6
d/ swap a = 3 b = 3

 43

program 4

#include <stdio.h>
void main (void)
{
 void swap ();

 int a = 3, b = 6;

 printf (“main: a = %d, b = %d\n”, a, b);
 swap (&a, b);
 printf (“main: a = %d, b = %d\n”, a, b);
}
void swap (int *a, int b)
{
 int temp;

 temp = *a;
 *a = b;
 b = temp;

 printf (“swap: a = %d, b = %d\n”, *a, b);
}
1/ The output of the printf statement at line 8 is
a/ swap: a = 3 b = 6
b/ swap a = 6 b = 3
c/ swap a = 6 b = 6
d/ swap a = 3 b = 3
2/ The output of the printf statement at line 4 is
a/ swap: a = 3 b = 6
b/ swap a = 6 b = 3
c/ swap a = 6 b = 6
d/ swap a = 3 b = 3

 44

program 5

#include <stdio.h>
void main (void)
{
 void swap ();

 int a = 3, b = 6;

 printf (“main: a = %d, b = %d\n”, a, b);
 swap (&b, b);
 printf (“main: a = %d, b = %d\n”, a, b);
}
void swap (int *a, int b)
{
 int temp;

 temp = *a;
 *a = b;
 b = temp;

 printf (“swap: a = %d, b = %d\n”, *a, b);
}
1/ The output of the printf statement at line 8 is
a/ swap: a = 3 b = 6
b/ swap a = 6 b = 3
c/ swap a = 6 b = 6
d/ swap a = 3 b = 3
2/ The output of the printf statement at line 4 is
a/ swap: a = 3 b = 6
b/ swap a = 6 b = 3
c/ swap a = 6 b = 6
d/ swap a = 3 b = 3

