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The Efficacy of a Low-Level Program Visualisation Tool for 
Teaching Programming Concepts to Novice C Programmers 
 

Abstract 
 
It is widely agreed that learning to program is difficult. Program 

visualisation tools make visible aspects of program execution 

which are often hidden from the user. While several program 

visualisation tools aimed at novice programmers have been 

developed over the past decade there is little empirical evidence 

showing that novices actually benefit from their use [1]. In this 

paper we describe a “Glass-box Interpreter” called Bradman. An 

experiment is presented which tests the efficacy of Bradman in 

assisting novice programmers learn programming concepts. We show 

that students that used the glass-box interpreter achieved greater 

understanding of some programming concepts than those without 

access. We also give evidence that the student’s ability to 

assimilate new concepts was enhanced by exposure to the glass-box 

interpreter. This is experimental confirmation that such tools are 

beneficial in helping novices learn programming. 

Introduction 

Program visualisation tools, which provide several views of a 

program and its execution, appear to be promising aids for 

teaching novice programmers. However, there is little empirical 

evidence regarding their efficacy [1]. This paper presents an 

experiment that provides such evidence. We show that students can 

benefit from access to such a tool both in achieving greater 

understanding of some programming concepts and also in their 

ability to assimilate new concepts. 
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Background 

Many novice programmers experience difficulties and frustrations 

in their attempts to learn programming. Researchers in the field 

generally concede that programming is a difficult skill to master 

[2] [3]. Students experience difficulties developing, 

comprehending and debugging programs, often reaching impasses from 

which they cannot proceed without assistance.  

Mayer [4] said that “meaningful learning” occurs when new 

knowledge is actively associated with appropriate pre-existing 

knowledge structures. If meaningful learning occurs then the 

learner will have “understood” the new knowledge. This process is 

called “assimilation”. If appropriate knowledge structures do not 

exist then the new knowledge needs to learned by “rote” which is 

memorisation without understanding. If knowledge is learned by 

rote then the learner is less likely to be able to apply the 

knowledge in new situations.  

However, Dijkstra [5] described computers as a “radical novelty”. 

By this he meant that the computer represented such a “sharp 

discontinuity” in learning that analogies should not be drawn 

between it and more familiar concepts. He said that computing 

should be approached with a “blank mind” and gave several examples 

which he claimed gave evidence of the inappropriateness of 

conceptualising computing in familiar terms. 

The above scenario is further complicated by the learners 

themselves. Each student brings into the learning experience a 

unique blend of knowledge, beliefs, fears and prejudices which 

will colour the way they learn the new material. Students will use 

their own metaphors to try to make sense of what they are learning 

[6]. They will also make inferences upon the instructor’s 
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analogies which were unintended by the instructor. For example, an 

instructor might use a box as an analogy to represent a memory 

location, and a student might make the inference that a memory 

location might store more than one value since a box can usually 

hold more than one item [7]. Pre-existing knowledge can even 

prevent students from seeing that a programming problem is a 

problem at all [8]. 

However, the provision of appropriate metaphors is a useful way to 

help students understand new material provided the students are 

made aware of the limitations of the metaphor. In this case 

metaphors are a form of conceptual model. Conceptual models are 

invented by educators to provide an anchoring framework upon which 

students can assimilate new knowledge [9]. The provision of 

conceptual models is an attempt to associate new learning material 

with more familiar concepts. Conceptual models are intended to 

make the student’s mental model more useful when learning the 

target system. A mental model is an internal representation of the 

target system which provides predictive and explanatory power to 

the operator [9]. 

The educator will have several means at their disposal with which 

to teach the student by providing appropriate anchoring frameworks 

onto which the student can assimilate the new information. Some of 

these methods are: 

• The instructor will give representations of various concepts on 

the blackboard. However, the blackboard is a static medium. 

This can cause difficulties when seeking to explain dynamic 

programming concepts. The blackboard “walkthrough” forces 

students to take messy notes from which it is difficult to 

repeat the walkthrough at a later stage [10].  
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• Students can use debugging tools in laboratory situations. Such 

tools are often commercial debuggers which are designed for 

experts and which, consequently, are often too complicated for 

novices. Certainly it is our experience that students use the 

UNIX symbolic debugger gdb with great reluctance. 

• Students will also have access to written material such as text 

books and study guides. Again these are static media which are 

also unresponsive - if a student does not understand something 

the book cannot explain it in a different way. 

• Human tutors, teaching on a one to one basis, are probably the 

best way to teach novices. Anderson and Reiser [2] reported 

that students with access to private tutors learned as much 

Lisp in eleven hours as other students did in forty three 

hours. However, access to human tutors in educational 

institutions is often very limited.  

Another way to assist novice programmers is to provide 

computerised assistants which are created specifically for them. 

One class of such assistants are software visualisation tools. 

Software visualisation is the use of interactive computer 

graphics, typography, graphic design, animation, and 

cinematography to enhance the interface between computer 

programmers and their programs [11]. While a great deal of 

research has gone into the creation of these systems there has 

been little empirical data gathered regarding their efficacy [1]. 

One of the reasons for this is the difficulty in assembling the 

proper ingredients for such an evaluation [12]. Mulholland [1] 

attributes the fact that software visualisation systems are not 

widely used to lack of empirical evidence as to their value in 

actually teaching novice programmers. 
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Software visualisation tools can be sorted into two main groups: 

• Algorithm animation [11] gives a graphical representation of 

the algorithm used to implement a program. Algorithm animations 

are to a large extent programming language independent. They 

are used to give students a visual representation of how an 

algorithm works. Each animation must be individually created.  

• Program visualisation tools, on the other hand, are programming 

language dependent. They are used to animate low-level features 

of a program such as the source code and the changes of 

variable states. They should be able to automatically handle 

all possible programs that can be written in the target 

language. 

The past few years have seen the emergence of several low-level 

program visualisation tools designed explicitly for novice 

programmers [2] [10] [13]. The systems were enthusiastically 

embraced by students but none of them have as yet have been tested 

under controlled conditions.  

Bradman is a low-level program visualisation tool designed to 

provide a conceptual model of C program execution for novice 

programmers. It is an interpreter which makes visible aspects of 

the programming process which are normally hidden from the user. 

For this reason, we call it a “Glass-box Interpreter”. It is 

similar to “program animators” [14] except that Bradman is 

designed to enable students to develop their own programs as well 

as run those created by educators for pedagogical purposes. 

Bradman also incorporates novel features designed specifically to 

assist novice programmers. We now describe Bradman and then 

describe an experiment in which we explore Bradman’s effect on 

novice programmers. This experiment gives the first concrete 
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evidence that even a low-level program visualisation tool can 

assist a student’s meaningful learning of C concepts. 

Bradman 

Bradman was developed as a tool to provide assistance for novice 

programmers in their endeavours to learn C. The School of 

Computing and Mathematics at Deakin University had recently 

switched from using Pascal as an introductory programming language 

to using C. It was felt that the problems that students were 

having with Pascal would be exacerbated when using C and that the 

tools available were not adequate for enhancing the student’s 

mental representation of program execution. The motivation for 

developing Bradman was to produce an assistant that provides a 

useful conceptual model onto which students could assimilate new 

knowledge about programming. 

Bradman provides a model which reinforces the view of the program 

achieving its results by the sequential change of program state 

caused by the execution of programming statements. This model is 

intended to assist students visualise the execution of programs 

more clearly thus enhancing their mental models of program 

execution. 

Implementation 

Bradman takes the user’s syntactically correct source code as 

input. This source code is compiled producing an efficient 

internal representation in the form of a syntax tree. This 

internal representation is never presented to the user, the 

corresponding source code being referred to whenever appropriate. 

As each statement is executed code embedded in the run-time 

machine sends information to the various windows which provide 
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different views of the program. Four of these windows are 

displayed at all times while others appear when certain conditions 

arise. These windows are now described. 

Code Window 

The code window provides many of the features found by any state-

of-the-art debugger. It displays the program code and shows the 

current point of execution by using a marker on the side. Vertical 

scrollbars enable the user to see different parts of longer 

programs. The window itself can be resized with the mouse if 

necessary.  

One of the primary design goals that influenced the code window 

was to provide as much as possible of the functionality of a 

conventional visibility debugger with a minimum of complexity. 

Simplicity is sought throughout the system as we believe that 

novice programmers have tremendous cognitive loads imposed on them 

by the need to master the new computing paradigm and that it is 

important that the environments add the least possible amount to 

this load. 

Variables Window 

The code window makes explicit to the novice programmer the manner 

in which the execution of a statement affects the point of 

execution. In contrast, the variables window makes explicit the 

way in which the set of values of the variables is affected by a 

statement execution. While previous program visualisation tools 

have shown the values of the variables and how they change as 

execution proceeds, Bradman has added features which are intended 

to further reinforce the model of a program being an active entity 
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which achieves its results through the execution of program 

statements. 

The set of variable/value bindings for the current program state 

can be altered by the execution of a program statement to produce 

a new set of values. This concept is conveyed by displaying the 

values of the variables in two columns - a before and an after 

column. The display shows the set of values before the execution 

of the statement and the set of values after the execution of the 

current statement. To reinforce the concept of this change of 

state being an ongoing process, it is explicitly shown that the 

after state of one statement is the before state of the next 

statement executed. Animation which shows the after column from 

one statement execution migrating across the display to become the 

before column for the next statement, is used to reinforce this 

concept. Finally, the values of the current set of before values 

are often (but not always) used to help create a new set of after 

values. This is shown by appropriate highlighting of the variables 

involved. 

The variables window also differs from the variable display of a 

standard visibility debugger by including a formalism to better 

represent pointers. In general, the values of pointers are 

represented by large unsigned integers which denote memory 

locations. Standard visibility debuggers display these values. The 

program visualisation tool assists the novice’s understanding of 

the way pointers refer to other variables by an explicit display 

showing the connection between the two memory locations as is 

commonly done in blackboard presentations. VIPS [15] displays 

pointers in a similar manner. 
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In C, the programmer must initialise a variable before referencing 

its value. Failure to do so will usually result in an error. It is 

common for a student to assume that a variable’s initial value is 

zero. Hence in the variable display, the variables which have yet 

to be assigned a value are explicitly marked as such. If a program 

attempts to reference an uninitialised variable then an error 

message is displayed. 

Some students are confused by the use of functions in statements. 

The variables display explicitly shows how the function returns a 

value and how this value contributes to the value of the 

expression from which the function was invoked. Another feature of 

the variables window is that it explicitly shows the value of a 

function after it has returned to its calling statement. The 

function value appears in a box in a similar manner to a variable 

value and is shown to contribute to the value of an expression by 

the use of highlighting in a similar manner to that of variables.  

Finally, the variables window explicitly represents the 

precedences of expressions. C is a language in which the 

precedences of operators is implicit, unless overridden by the use 

of parentheses, and not necessarily consistent. Some operators 

have left to right precedence, others right to left and others no 

precedence at all. Furthermore, some operators have different 

precedences to other operators. This can be confusing to novice 

programmers. Bradman uses parentheses to explicitly show the 

default precedences and hence the order in which sub-expressions 

are calculated. 

Explanations window 

The code window and the variables window provide a conceptual 

model for the programmer of which changes are effected in the 
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program state by the execution of a statement. However, they do 

not tell the user how the statement caused these changes. One can 

envisage situations in which a novice might see the changes 

wrought by a particular statement but still not understand why the 

statement had that effect. For example, consider the statement 

 x = 3 + 4 * 2 + 5; 

The user might expect x to be assigned a value as follows: 

 x -> (3 + 4) * (2 + 5) -> 49 

and be mystified when, in fact, the final value is 16,  

 x -> 3 + (4 * 2) + 5 -> 16 

An explanation of how a statement achieves its results is used to 

reinforce the model. These explanations are specific to the 

context in which the actual statement is executed. Thus instead of 

explaining in general terms what an assignment statement does, the 

explanations provides information about what the current 

assignment statement is actually doing. For example, the statement 

 i = 10; 

is explained not only as being an assignment statement but as an 

assignment statement in which the value 10 is assigned to the 

variable i. Birch et al. [14]in their description of the future 

directions for Dynalab, mentioned annotation which would provide a 

running commentary about the program being animated. Dynalab is a 

system in which the student mainly runs programs pre-written by 

the instructors. Hence, it is possible that they are designed at a 

higher level than that of Bradman’s explanations window. They also 

mentioned the possibility of using sound for this facility.  
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The explanations window gives contextualised information 

describing how each statement works. The information which is 

provided by the explanations window is embedded in the run-time 

machine which enables it to include context such as the values of 

variables and the memory locations to which pointers point. The 

information given by the explanations window is textual.  

The explanations window uses a simple process by which information 

is added to it as the program is executed. It provides a lower 

level analysis than the other windows operating at the expression 

level rather than the statement level. This is necessary because 

its purpose is to explain the workings of individual statements. 

The cumulative explanation for the entire execution remains in the 

window, so that the user can scroll back to investigate the 

history of how they reached the current state. Hence the 

explanations window is also an execution trace. This trace is also 

saved to a file enabling the student to study it after the session 

with Bradman has terminated. 

Input/Output Window  

This window provides a mechanism by which the user can communicate 

necessary input and output to the program. While this is mainly 

straightforward, this window makes visible two aspects of input 

that are usually hidden from the user.  

First, when a statement requiring input from standard input is 

executed and the input buffer is empty the program will wait until 

input is entered. This can confuse novices if they have not coded 

an appropriate prompt for input into their program, causing them 

to think that there is something wrong with their program. While a 

program is waiting for standard input to be entered a flashing 
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message will appear at the bottom of the input/output window 

telling the user to enter input. The message  

Program requires input 

flashes on and off prompting the user to enter input. This message 

is designed to explicitly remind the user that input is required, 

so that the user does not mistakenly assume that the program has 

crashed or suspended. It will remain in effect until the user has 

entered enough input to give values to all three input variables. 

Second, when a user running the program normally enters more 

standard input than the program is ready to utilise, the excess 

input is stored in a buffer and used if more input statements 

requiring standard input are executed.  

This buffer is normally invisible and novice programmers can 

become confused when input variables are assigned values that they 

did not intend for them. To clarify this for the novice, buffered 

input is displayed at the bottom of the input/output window.  

Error Window 

The error window appears only when a program independent error has 

been detected in the execution. For example if there is an attempt 

to reference a variable before it has been assigned a value then 

the error window will appear describing the error and suggesting 

ways it might be fixed. 

The error window will only appear if Bradman attempts to execute 

the faulty statement so an error might be missed if execution does 

not happen to encounter it. Once an error is reported it is 

necessary for the user to correct it and then restart the program. 

Errors that are reported include: 
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• An attempt to reference variables that have not been assigned a 

value. 

• An attempt to use an incompatible format in an input/output 

statement.  

• A discrepancy between the number of format characters in an 

input/output statement and the number of arguments. 

• An attempt to divide by zero. 

• An attempt to assign an expression to a variable with a 

different level of indirection. 

Bradman will report an uninitialised variable on the first attempt 

of the program to reference such a variable. In many debuggers 

such an error will only be reported if the failure by the 

programmer to explicitly assign a value to c causes an attempt to 

divide by zero or similar error. In this case a more useful error 

message is provided by Bradman. 

Edit Window 

The edit window, invoked from the code window, is a facility which 

allows the user to modify the program within the Bradman 

environment. It is simply a window which initiates a session in an 

external editor with the user’s source code. The user can modify 

the program and quit from the window. Once the user quits from the 

window a new session is started with the modified source code now 

appearing in the code window. In its current version, Bradman will 

finish the session and exit if the user’s modified program 

contains a syntax error. 
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Experiment  

This experiment attempts to evaluate whether access to a glass-box 

interpreter assists the user to develop a better understanding of 

program execution, in other words, whether it provides an adequate 

knowledge framework of program execution onto which students can 

assimilate the new information. Access to software visualisation 

tools is often claimed to be of benefit to novice programmers but 

little empirical evidence of their value is provided [1]. This is 

true of both program visualisation tools and algorithm animators. 

Methodology 

Volunteers were sought from Deakin University’s introductory 

programming course which teaches programming concepts using C. The 

experiment ran over a three week period in first semester. 

Subjects were required to attend three two-hour laboratory 

sessions (one per week). They were told that they would be testing 

ways to improve programming environments for novice programmers. A 

payment of thirty Australian dollars was made to the participants 

who completed all three sessions. Twenty-six people volunteered to 

participate. However, two subjects from the control group withdrew 

after week two, leaving unequal groups - one of thirteen and 

another of eleven. All subjects completed an appropriate consent 

form before commencing the experiment  

The laboratory sessions were based on those already prepared by 

the instructors for the introductory unit [16]. These sessions 

required the students to perform desk-checking of pre-written 

programs. This format was chosen for the experiment for the 

following reasons: 
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• Many researchers report that the ability to desk-check programs 

is an important difference between novice and expert 

programmers [9]. 

• Laboratory sessions involving desk-checking were already part 

of the introductory programming unit at Deakin University. It 

was straightforward to modify the format of these laboratory 

sessions for the purposes of the current research. Volunteers 

were put at minimum inconvenience because they were able to 

substitute the experimental laboratory sessions for their 

normal sessions. 

• It allows simple extraction of quantifiable data. 

• Students must have some understanding of certain programming 

concepts before they can successfully desk-check programs 

involving these concepts. Thus it is possible to test, albeit 

indirectly, the student’s understanding of these concepts as 

well as their ability to desk-check programs. 

The first session was an introduction to the format that the 

subsequent sessions would take. All experimental data were 

collected in the second and third sessions. The authors of the 

unit intended that the students do the following: 

• Desk-check a program prepared for them that was designed to 

illustrate and reinforce a concept which was introduced to them 

in lectures. 

• Attempt to calculate the outputs of this program 

• When finished, compile and run the program and compare the 

output to their calculations. 
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• Attempt to discover the reason for any mistakes that they made. 

They were allowed to use textbooks, ask questions of the tutors 

and analyse the program using the symbolic debugger, gdb. The 

students were given some time to analyse the program code. Then 

the instructors gave a demonstration on the whiteboard of how 

the program achieved its results. 

This format was modified slightly for the experiment in the 

following ways: 

• While the students were desk-checking the program they were 

required to answer multiple choice questions regarding the 

outputs. 

• When they finished working on their program and had watched a 

demonstration on the whiteboard they were given a similar but 

different program to desk-check and with regard to which to 

answer multiple choice questions. 

Thus the experimental period involved four tests - one at the 

beginning and one at the end of both sessions 2 and 3. For 

convenience sake these tests were numbered 1, 2, 3 and 4 in the 

order in which they were performed. Hence Test1 was conducted at 

the beginning of session 2 before the participants had received 

either treatment. Test4 was conducted at the end of session 3 

after all experimental interventions had been performed and serves 

as a post-test. Test2, conducted immediately after the first 

intervention and test3 conducted a week later immediately before 

the second intervention allow us to map student progress through 

the experiment. 

The students’ proficiency was judged by the number of correct 

responses to the multiple choice questions. The twenty six 
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volunteers were split into two groups of thirteen. This was done 

based on the order in which they volunteered to participate - the 

first volunteer was put into the test group, the second into the 

control group, the third into the test group and so on. However, 

two subjects from the control group withdrew after week two, 

leaving unequal groups - one of thirteen and another of eleven. 

Experimental intervention related to the normal laboratory 

activities which were conducted between the tests conducted at the 

beginning and end of each session. The test group (consisting of 

thirteen people) had access to Bradman during this phase in which 

they attempted to gain an understanding of the program. The 

control group (consisting of eleven people) did not have access to 

Bradman during this phase.  

The test group had access to a modified version of Bradman in 

which the explanations window was not available. An experiment 

which tested the efficacy of the explanations window was reported 

previously [17]. The explanations window was not available in the 

current experiment because we wished to focus on the value of the 

glass-box interpreter without confound factors, relating to the 

addition of textual elements. 

Session 1 

Session 1 was an introductory session in which the students were 

introduced to the format that would be used in sessions 2 and 3. 

The students (from both test and control groups) were required to 

desk-check a very simple program and answer multiple choice 

questions regarding its output. During the treatment period the 

test group was instructed on the use of Bradman - how it was 

invoked and how it could be used. During this time they also 

learned the material for the session. The control group learned 
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the material only during this period. At the end of the session 

all students, from both groups, were required to desk-check 

another program and answer multiple choice questions. The two test 

periods were intended solely to familiarise the students with the 

format of the following two sessions. The results were not 

collated or analysed. The control group underwent the same process 

as the test group except that they were not given exposure to 

Bradman. Although this first session might be seen as having an 

influence on the overall result, the effect is probably minimal 

because the students were given simple exercises. The comparative 

performance of the two groups through the experiment seems to 

support this. Even if this is not accepted, and the exposure to 

the low-level program visualisation tool in session 1 is viewed as 

a significant experimental intervention, while this devalues test1 

as a pre-test it in no way devalues the final result which should 

then be viewed as the result of three rather than two experimental 

evaluations. 

Session 2 - The Scope of Variables 

The scope of variables is a concept that students often have 

trouble understanding. Students have to understand pieces of code 

in which a name refers to a global object in one statement while 

in another statement the same name refers to a different, local, 

object. They need to understand that a local variable in a calling 

function cannot be accessed (except through the use of pointers 

with which they were not as yet familiar) during the life of the 

called function. Hence desk-checking such a program is not a 

trivial exercise and presents difficult challenges to the novice 

programmer. 
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The program used in session 2 was prepared by the authors of the 

introductory programming unit as part of their course. It was 

incorporated in the experiment, with their permission, and was 

used as Test1. This program was designed to illustrate many of the 

concepts of scoping including how different variables can have the 

same name, how variables have a certain “life” or scope during 

which they are valid and how they lose their validity outside of 

this scope. 

The program was developed by professional programming instructors 

to teach novice programmers about scoping. It consisted of four 

functions including the main function. The functions did not 

perform a meaningful task. They simply assigned and reassigned 

values to variables outputting them at various stages. None of the 

functions or variables had meaningful names. While the students 

were desk-checking this program they were required to answer five 

multiple choice questions. The students were instructed to circle 

the alternative that best answered the question. These questions 

along with the code for this program can be found in the Appendix. 

An additional program was developed specifically for the study and 

used as Test2. It was intended to be similar but different to 

Test1. Again the students were asked to desk-check the program and 

again answer five multiple choice questions regarding its output.  

Intervening Period Between Sessions 2 and 3 

There was an interval of one week between the performance of Test2 

and Test3. This break was significant because it gave an 

opportunity to judge whether Bradman indeed provided the student 

an adequate framework onto which to attach new information. During 

this period the students attended lectures in which the concepts 

used in session 3 were taught. If the glass-box interpreter was 



 21 

efficacious in enhancing a student’s mental model of program 

execution then one would expect the test group to perform better 

than the control group on Test2. One would also expect the test 

group to show an improvement on the initial test program in 

session 3. 

Session 3 - Parameter Passing 

In session 3 the subjects were called upon to analyse programs 

which involved pass-by-reference parameter passing. The 

instructors of the introductory programming unit, thought this 

concept to be of such difficulty and importance that they gave the 

students the following warning: 

“The concept of ‘pass-by-reference’ (pointers) is probably the 

biggest hurdle you’ll come across in C programming. When you 

absorb and UNDERSTAND this topic, you will have overcome the 

biggest learning curve in C. The rest of C programming will seem 

somewhat easier.” [16] 

These sentiments have been echoed by other researchers [18]. Pass-

by-reference parameter passing in C involves the use of pointers 

which were a relatively new concept for the students being tested. 

They needed to develop a model of how, through the use of the 

pointers, the values of variables in the calling function would 

change rather than those in the called function. 

Test3 consisted of two programs prepared by the instructors of the 

introductory unit, for use in the regular laboratory session. The 

first program consisted of an incorrect version of a swap program 

in which the parameters passed to the function swap were pass-by-

value parameters. The second is the correct version in which pass-

by-reference parameter passing is used. Test4 comprised three 
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additional programs developed specifically for the study. They 

differed from the Test3 programs only in the arguments that were 

passed to the function swap. The students were asked to answer two 

questions at the end of each program. The questions were the same 

for all five programs. These questions revolved around the values 

of the parameters after the swap had been completed but before the 

function returned and the values of the arguments of the call to 

swap after the function had returned. Unlike the programs in 

session 2, the function and variable names were more meaningful, 

reflecting their tasks. 

Results and analysis 

The multiple choice questions were collected and marked. The 

number of correct and incorrect responses for both groups are 

summarised in Tables 1 and 2. It must be remembered that the 

students had a selection of four possible responses from which to 

choose. All of the incorrect responses were grouped into one 

tally. Hence, for every test the distributions represent better 

than random performance by the participants. 

The results seem to show an improvement on the part of the test 

group. As expected the number of correct responses for both groups 

increased after the intervention but the improvement of the test 

group was greater. The test group performed less well on Test1 

(equal correct but more incorrect) than the control group but 

performed better on the Test2 (more correct and fewer incorrect).  

However, it could be misleading to compare the groups in this 

manner because each individual was required to answer five 

questions. Thus a change in performance by just one subject could 

affect as many as five question responses. In order to better 

compare the two groups, the individuals were given a ranking 
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according to the number of correct response they made. Rankings 

were made for both Test1 and Test2. 

 

 

Test1 

Test Group Control Group  

Correct Incorrect Correct Incorrect 

Q1 4 9 5 6 

Q2 7 6 4 7 

Q3 6 7 8 3 

Q4 4 9 4 7 

Q5 5 8 5 6 

Totals 26 39 26 29 

Test 2 

Test Group Control Group  

Correct Incorrect Correct Incorrect 

Q1 13 0 9 2 

Q2 11 2 8 3 

Q3 9 4 7 4 

Q4 9 4 7 4 

Q5 5 8 3 8 

Totals 47 18 34 21 

 

Table 1: Summary of Session 2 Results 

Mann-Whitney U-tests comparing the two groups were performed on 

both of these rankings. The results were as follows: 

 Test1 z = 0.70 p = 0.25 

Test2 z = 0.96 p = 0.17 
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Hence, although the figures from Table 1 appear to show an 

improvement in favour of the test group, statistical analysis of 

the rankings did not show that a situation was reached in which 

the test group performed significantly better than the control 

group. 

The results for session 3 were summarised in Table 2. Again the 

individuals were given a ranking according to how many correct 

responses they made.  

Rankings were made for both Test3 and the Test4 results and Mann-

Whitney U-tests were performed on both of the rankings. The 

results of these tests were as follows: 

Test3 z = 1.42 p = 0.08 

Test4 z = 2.03 p = 0.02 

The figures show a definite bias towards the test group. In Test1 

the test group performed slightly worse than the control group. 

However, in Test3 the test group performed much better although 

significance cannot be claimed. (It should be noted that the power 

of these tests is low due to the small number of subjects and 

hence, there is a sizeable chance that an underlying advantage 

should fail to have been reflected in a significant value for p). 

In Test4 the test group performed significantly better (at the 

0.05 level) than the control group.  

Despite the lack of statistically significant outcomes in tests 2 

and 3, it is tempting to hypothesise about the causes for the 

enhanced performance of the test group in Test3, (if one assumes 

that it does reflect an underlying advantage to the test group). 

In the period between session 2 and session 3 the students 

attended a lecture explaining the relevant concepts, especially 
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pass-by-reference parameters. Since the only difference in the 

treatment of the two groups was the test group’s access to Bradman 

it is reasonable to assume that the glass-box interpreter prepared 

them in some way to better understand the information presented in 

the lecture. 

Test 3 

  Test Group Control Group 

  Correct Incorrect Correct Incorrect 

Program 1 Q1 7 6 6 5 

 Q2 7 6 4 7 

Program 2 Q1 8 5 3 8 

 Q2 10 3 6 5 

 Totals 32 20 19 25 

Test 4 

  Test Group Control Group 

  Correct Incorrect Correct Incorrect 

Program 3 Q1 11 2 7 4 

 Q2 8 5 3 8 

Program 4 Q1 10 3 7 4 

 Q2 10 3 4 7 

Program 5 Q1 10 3 5 6 

 Q2 9 4 7 4 

 Totals 58 20 33 33 

 

Table 2: Summary of Session 3 Results 

Mayer [4] has said that learners require a pre-existing framework 

onto which to attach the new knowledge. It is plausible to suggest 

that the use of a program visualisation tool facilitated the 

development of a cognitive framework that aided assimilation of 
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the new knowledge. This suggests that the tool provides an 

appropriate conceptual model of program execution. Irrespective of 

whether one places any weight on the apparent advantage for the 

test group in test3, test 4 reveals clearly that after the second 

experimental intervention (laboratory 3) the test group did enjoy 

a significant advantage. This is clear evidence that Bradman’s 

form of low-level program visualisation actually influenced the 

students’ mental model in a positive way. 

As mentioned earlier, two students withdrew from the experiment 

after session 2 was conducted. As a result, their results could 

not be used and the groups became unequal with thirteen in the 

test group and eleven in the control group. However, there is no 

reason to believe that this would have confounded the results. The 

results show that in Test1 the control group, without the two 

subjects who withdrew, performed slightly better than the test 

group although this difference was not significant. Subsequent 

results show a clear improvement of the test group’s ability to 

perform the given tasks as compared to that of the control group. 

It is not clear how these results could be interpreted as 

indicative of a confound introduced through the subjects’ 

withdrawal. 

Results of survey 

The students’ reaction to Bradman was very positive. This mirrors 

similar student enthusiasm for other program animators such as 

Dynalab [14]. The subjects who had access to Bradman were asked to 

complete a survey form (after the second and third sessions) to 

test their reactions and to enable them to provide comments. The 

survey consisted of two parts.  
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For the first part, subjects were required to give one of five 

responses to the following statements. 

1 -  Bradman is easy to use. 

2 -  Use of Bradman increased my general understanding of 

computer programming. 

3 - I now find it easier to visualise how a program actually 

works 

4 - Bradman would be of assistance for students developing 

programs (eg. for assignments) 

5 -  Use of Bradman in lectures would help students understand 

programming. 

For each of the above statements the subject was required to give 

one of the following responses: 

• Strongly agree 

• Agree 

• Neutral 

• Disagree 

Strongly disagree The responses are summarised in Table 3. As can 

be seen there was no negative response on any of the five 

questions. Only one student was neutral about whether his/her 

general understanding of programming had increased through the use 

of Bradman. The students all strongly agreed that they would find 

the system useful in developing their programs for their 

assignments. The results for session 3 were almost exactly the 

same. The only difference was that three of them were slightly 
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less positive that Bradman would help them with their assignments 

although they all agreed that they thought it would.  

Results for Session 2 

Question Strongly 
Disagree 

Disagree Neutral Agree Strongly 
Agree 

1 0 0 0 6 7 

2 0 0 1 5 7 

3 0 0 0 3 10 

4 0 0 0 0 13 

5 0 0 0 4 9 

Totals 0 0 1 18 46 

Results for Session 3 

Question Strongly 
Disagree 

Disagree Neutral Agree Strongly 
Agree 

1 0 0 0 6 7 

2 0 0 1 5 6 

3 0 0 0 3 10 

4 0 0 0 3 10 

5 0 0 0 4 9 

Totals 0 0 1 21 43 

 

Table 3: Results of Survey for Sessions 2 and 3 

The second part of the survey enabled the students to make free 

form comments regarding their experience with Bradman. This 

section consisted of three questions 
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• What features (if any) of Bradman did you find particularly 

useful? 

• What features (if any) would you add to Bradman to make it more 

useful? 

• What features (if any) of Bradman did you not like? 

Most of the comments were in response to the first question. There 

was almost unanimous approval for the visibility of the variable 

states. Many of the students also explicitly mentioned that they 

liked the format showing the before and after columns. There were 

several comments giving approval for the “graphical 

representation” of the program. 

In response to the second question the response, given by several 

people, was that they would like to be able to “go back to 

previous statements”. Reverse execution is a feature that was 

considered but rejected during the design of Bradman. However, 

that the novice programmers themselves believe it would be of 

benefit strengthens the case for future evaluation of such a 

feature. 

The main response to the third question was that they did not like 

the fact that Bradman was not universally available. This 

criticism was interpreted as a positive reflection on Bradman per 

se. 

Other comments were of a general nature and were invariably 

positive. One of the students said “it helped me understand 

programs that I could not normally understand”. Another said in 

response to the third question, “None! It’s too good.” 
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General Observation and Discussion 

Bradman was enthusiastically accepted by the students, many of 

whom asked for it to be made generally available. More than one 

Bradman user told the experimenter that they had no idea about how 

programs worked until they used Bradman. This response is 

something that we expected, however, from people who were perhaps 

unsure about how well they were doing in their course. We expected 

them to appreciate the visibility and simplicity of Bradman after 

struggling with tools like gdb which are designed for expert 

programmers. 

One interesting observation occurred during session 3, which was a 

session in which an assignment was due. Several of the students 

used Bradman, not to develop their assignments, but simply to 

watch their own programs execute. There was no need for them to do 

this because they were not looking for errors - they knew that 

their programs gave correct results. This agrees with an 

observation of Ross [10] who noted similar behaviour even in 

expert programmers and engineers. People seem to enjoy watching 

how their creations work. 

The response was almost universal that they liked watching the way 

that the variables changed value as the program executed. They did 

not mention the other part of the program state change - the 

change of execution point. One student said that the marker in the 

code window should be changed to highlighting because it was too 

difficult to see.  

One interesting aspect of the results was the short amount of time 

it took for the students to show signs of improvement. Other 

studies (for example, [19]) cover periods of a term or more. Jones 

[6] said that novice programmers had mental models that were 
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highly unstable and that changed rapidly. It is plausible to 

conclude that Bradman supplied the students with a more stable 

framework onto which to base their understanding of C hence 

speeding their development. 

Future Directions 

The experiment described in this paper provides evidence that 

novice programmers can benefit from the use of a glass-box 

interpreter. However, the experiment did not show which features 

of Bradman made the greatest contributions toward this effect. A 

major focus of our future work will be to test individual features 

of low-level program visualisation tools. We have previously 

provided subjective evidence [17] that students believe that they 

benefit from access to the explanations window. We want to obtain 

performance measures which demonstrate the utility of the 

explanations window and the variables window in particular. 

We are also interested in seeing with which program skills a 

glass-box interpreter provides benefit. The experiment we 

conducted provided evidence that students benefit from exposure to 

Bradman when performing tasks which require desk-checking skills. 

However, learning to program involves the development of many 

skills including coding and debugging. We wish to conduct 

experiments which explore the efficacy of a glass-box interpreter 

in the development of these skills. 

Conclusions 

Programming is a difficult skill to master and novices need to 

develop appropriate knowledge structures to enable them to cope 

with it. Software visualisation tools are a class of computerised 

tool which show promise in assisting novices develop appropriate 
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models of programming. Program visualisation tools have been used 

to teach students in classroom and laboratory situations. However, 

there is little empirical evidence as to their efficacy and as a 

result their use is not widespread. 

The experiment that we conducted provides evidence that low-level 

program visualisation tools, such as glass-box interpreters, can 

be beneficial in teaching novice programmers. This experiment gave 

concrete empirical evidence that such a tool can provide 

assistance in learning new programming concepts. It also indicated 

that the use of such a tool enables students to assimilate new 

information more effectively. This suggests that our tool presents 

a conceptual model which provides an appropriate framework onto 

which learners can assimilate new information. Bradman provides 

information in a dynamic manner while being very simple to use and 

makes visible aspects of program execution that are normally 

hidden. We believe that these features are important in enabling 

students to better visualise how a program works as it executes. 

We further believe that the benefits shown in comprehension will 

be mirrored in benefits to program development and program 

debugging and this will be the basis of further research. 
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Appendix  
 

Session 2 

program 1  

 
int function1 (int); 
int function2 (int); 
int function3 (int); 
 
int a, b; 
 
int function1 (int a) { 
  int b; 
 
  b = 3 * a; 
  printf (“\nfunction1: a = %d\n”, a); 
  printf (“function1: b = %d\n”, b); 
  return (function2 (b)); 
} 
 
int function2 (int d){ 
  int c; 
 
  c = 4; 
  a = c + d; 
  { 
  int a; 
 
  a = b + d; 
  printf (“\nfunction2a: a = %d\n”, a); 
  printf (“function2a: b = %d\n”, b); 
  printf (“function2a: c = %d\n”, c); 
  printf (“function2a: d = %d\n”, d); 
  } 
  printf (“\nfunction2b: a = %d\n”, a); 
  printf (“function2b: b = %d\n”, b); 
  printf (“function2b: c = %d\n”, c); 
  printf (“function2b: d = %d\n”, d); 
  return (function3 (a)); 
} 
 
int function3 (int a){ 
  int d; 
 
  d = a - 2; 
  printf (“\nfunction3: a = %d\n”, a); 
   printf (“function3: b = %d\n”, b); 
   printf (“function3: d = %d\n”, d); 
  return (d); 
} 
 
void main (void){ 
  int d; 
 
   a = 2; 
   b = 7; 
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  d = 10; 
 
  printf (“main_a: a = %d\n”, a); 
  printf (“main_a: b = %d\n”, b); 
  printf (“main_a: d = %d\n”, d); 
 
  d = function1 (d - b); 
 
  printf (“\nmain_b: a = %d\n”, a); 
  printf (“main_b: b = %d\n”, b); 
  printf (“main_b: d = %d\n”, d); 
} 
 

1/ In the function function1 the output of the two printf 
statements (lines 2 and 3) is 
 
a/ 3 6 
b/  3  9 
c/ 2 6 
d/ 2 7  
 
2/ In the function function2 the output of the four printf 
statements (lines 10, 11, 12 and 13) is 
 
a/ 16 9 4 10 
b/ 16 7 4 9 
c/ 13 7 4 9 
d/ 13 9 4 9 
 
3/ In the function function3 the output of the three printf 
statements (lines 20, 21 and 22) is 
a/ 16 7 11 
b/ 16 9 11 
c/ 13 7 9 
d/ 13 7 11 
 
4/ In the function function2 the output of the four printf 
statements (lines 14, 15, 16 and 17) is 
a/ 13 7 4 9 
b/ 16 9 4 9 
c/ 16 7 4 9 
d/  None of the above 
 
5/ In the main function the output of the three printf statements 
(lines 31, 32 and 33) is 
a/ 2 7 10 
b/  13 9 11 
c/ 13 7 11 
c/ 2 9 10  
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program 2  
 
#include <stdio.h> 
 
int function1 (int); 
int function2 (int); 
int function3 (int); 
 
int a, b; 
 
int function1 (int a) { 
   int b; 
 
  a = 10; 
  b = 3 * a; 
  printf (“\nfunction1: a = %d\n”, a); 
  printf (“function1: b = %d\n”, b); 
  return (function2 (a)); 
} 
int function2 (int d){ 
  int c; 
 
  c = 4; 
  a = c * d; 
 { 
  int a; 
 
  printf (“\nfunction2a: a = %d\n”, a); 
  printf (“function2a: b = %d\n”, b); 
  printf (“function2a: c = %d\n”, c); 
  printf (“function2a: d = %d\n”, d); 
  } 
  printf (“\nfunction2b: a = %d\n”, a); 
  printf (“function2b: b = %d\n”, b); 
  printf (“function2b: c = %d\n”, c); 
  printf (“function2b: d = %d\n”, d); 
  return (function3 (c)); 
} 
int function3 (int a){ 
 int d; 
 
  d = a * 2; 
  printf (“\nfunction3: a = %d\n”, a); 
 printf (“function3: b = %d\n”, b); 
 printf (“function3: d = %d\n”, d); 
 return (d + a); 
} 
void main (void) { 
  int d; 
 
  a = 11; 
  b = 2; 
  d = 11; 
 
  printf (“main_a: a = %d\n”, a); 
  printf (“main_a: b = %d\n”, b); 
  printf (“main_a: d = %d\n”, d); 
 
  d = function1 (a + d); 
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  printf (“\nmain_b: a = %d\n”, a); 
  printf (“main_b: b = %d\n”, b); 
  printf (“main_b: d = %d\n”, d); 
 
} 
 
1/ In the function function1 the output of the two printf 
statements (lines 3 and 4) is 
 
a/ 3 9  b/ 11 33 
c/ 10 30  d/ 22 66 
 
2/ In the function function2 the output of the four printf 
statements (lines 13, 14, 15 and 16) is 
 
a/ 32 2 4 30 
b/ 11 30 4 10 
c/ 40 2 4 10 
d/ 120 2 4 30 
 
3/ In the function function3 the output of the three printf 
statements (lines 19, 20 and 21) is 
 
a/ 11 2 8 
b/ 40 2 10 
c/ 11 30 10 
d/ 4 2 8 
 
4/ In the function function2 the output of the four printf 
statements (9, 10. 11 and 12) is 
 
a/ 30 7 4 10 
b/ 22 30 4 10 
c/ 12 20 4 10 
d/  none of the above 
 
5/ In the function main the output of the three printf statements 
(lines 30, 31 and 32) is 
 
a/ 40 2 12 
b/ 2 11 11 
c/ 32 2 4 
d/ 11 30 8 



 40 

Session 3  

program 1  
 
void main (void) 
{ 
 void swap (); 
 
 int a = 3, b = 6; 
 
  printf (“main: a = %d, b = %d\n”, a, b); 
  swap (a, b); 
  printf (“main: a = %d, b = %d\n”, a, b); 
} 
 
void swap (int a, int b) 
{ 
  int temp; 
  
  temp = a; 
  a = b; 
  b = temp; 
 
 printf (“swap: a = %d, b = %d\n”, a, b); 
} 
1/ The output of the printf statement at line 8 is 
a/ swap: a = 3  b = 6 
b/ swap a = 6  b = 3 
c/ swap a = 6  b = 6 
d/ swap a = 3  b = 3 
2/ The output of the printf statement at line 4 is 
a/ swap: a = 3  b = 6 
b/ swap a = 6  b = 3 
c/ swap a = 6  b = 6 
d/ swap a = 3  b = 3 
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program 2  
 
void main (void) 
{ 
 
 void swap (); 
 
 int a = 3, b = 6; 
 
 printf (“main: a = %d, b = %d\n”, a, b); 
 swap (&a, &b); 
 printf (“main: a = %d, b = %d\n”, a, b); 
} 
void swap (int *a, int *b) 
{ 
  int temp; 
 
 temp = *a;  
 *a = *b; 
 *b = temp; 
 
  printf (“swap: a = %d, b = %d\n”, *a, *b); 
} 
1/ The output of the printf statement at line 8 is 
a/ swap: a = 3  b = 6 
b/ swap a = 6  b = 3 
c/ swap a = 6  b = 6 
d/ swap a = 3  b = 3 
2/ The output of the printf statement at line 4 is 
a/ swap: a = 3  b = 6 
b/ swap a = 6  b = 3 
c/ swap a = 6  b = 6 
d/ swap a = 3  b = 3 
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program 3  
 
#include <stdio.h> 
void main (void) 
{ 
 void swap (); 
 
 int a = 3, b = 6; 
 
 printf (“main: a = %d, b = %d\n”, a, b); 
 swap (a, &b); 
 printf (“main: a = %d, b = %d\n”, a, b); 
} 
void swap (int a, int *b) 
{ 
 int temp; 
 
 temp = a; 
 a = *b; 
 *b = temp; 
 
 printf (“swap: a = %d, *b = %d\n”, a, *b); 
} 
1/ The output of the printf statement at line 8 is 
a/ swap: a = 3  b = 6 
b/ swap a = 6  b = 3 
c/ swap a = 6  b = 6 
d/ swap a = 3  b = 3 
2/ The output of the printf statement at line 4 is 
a/ swap: a = 3  b = 6 
b/ swap a = 6  b = 3 
c/ swap a = 6  b = 6 
d/ swap a = 3  b = 3 
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program 4  
 
#include <stdio.h> 
void main (void) 
{ 
 void swap (); 
 
 int a = 3, b = 6; 
 
 printf (“main: a = %d, b = %d\n”, a, b); 
 swap (&a, b); 
 printf (“main: a = %d, b = %d\n”, a, b); 
} 
void swap (int *a, int b) 
{ 
 int temp; 
 
 temp = *a; 
 *a = b; 
 b = temp; 
 
 printf (“swap: a = %d, b = %d\n”, *a, b); 
} 
1/ The output of the printf statement at line 8 is 
a/ swap: a = 3  b = 6 
b/ swap a = 6  b = 3 
c/ swap a = 6  b = 6 
d/ swap a = 3  b = 3 
2/ The output of the printf statement at line 4 is 
a/ swap: a = 3  b = 6 
b/ swap a = 6  b = 3 
c/ swap a = 6  b = 6 
d/ swap a = 3  b = 3 
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program 5  
 
 
#include <stdio.h> 
void main (void) 
{ 
 void swap (); 
 
  int a = 3, b = 6; 
 
  printf (“main: a = %d, b = %d\n”, a, b); 
  swap (&b, b); 
  printf (“main: a = %d, b = %d\n”, a, b); 
} 
void swap (int *a, int b) 
{ 
  int temp; 
 
  temp = *a;  
  *a = b; 
  b = temp; 
 
  printf (“swap: a = %d, b = %d\n”, *a, b); 
} 
1/ The output of the printf statement at line 8 is 
a/ swap: a = 3  b = 6 
b/ swap a = 6  b = 3 
c/ swap a = 6  b = 6 
d/ swap a = 3  b = 3 
2/ The output of the printf statement at line 4 is 
a/ swap: a = 3  b = 6 
b/ swap a = 6  b = 3 
c/ swap a = 6  b = 6 
d/ swap a = 3  b = 3 




