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Abstract

Exploratory rule discovery is widely employed in real-world data mining, because

of the flexibility in selecting applicable models. Nevertheless, two problems coexist

with the merits of exploratory rule discovery. One of these drawbacks is how to

limit within reasonable bounds the number of resulting models. The other problem

is how to improve the efficiency of rule discovery by eliminating unnecessary compu-

tation and I/O. Techniques for tackling these issues have been studied extensively

in the context of exploratory rule discovery with qualitative attributes. However,

databases processed often involve quantitative attributes. Some researchers strive

to introduce quantitative attributes into exploratory rule discovery by discretiza-

tion, with which information loss is unavoidable. Such techniques are not optimal

for mining inter-relationships between quantitative attributes and qualitative at-

tributes. A special class of exploratory rule discovery has been proposed for mining

rules with consequents being one or more undiscretized target quantitative vari-

ables. Characteristics of the selected quantitative variables are described using

distributional statistics. However, previous techniques for mining exploratory rules

with undiscretized quantitative targets cannot efficiently search for rules in very

large, dense databases. Rule pruning techniques in this context are also limited.
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The only investigation was the pruning of insignificant quantitative association

rules proposed by Aumann and Lindell (1999). Efficiency is one of the critical

issues for such techniques.

Accordingly, we propose techniques for pruning rules with undiscretized quan-

titative attributes. We call these techniques the derivative extended rule filter and

the derivative partial rule filter. The derivative extended rule filter is an efficient

variant of the existing insignificant quantitative association rule pruning proposed

by Aumann and Lindell (1999). The derivative partial rule filter is able to remove

potentially uninteresting rules that remain after the derivative extended rule filter

is applied. We also discovered severe efficiency problems in existing rule prun-

ing techniques with undiscretized quantitative attributes. The triviality filter is

then suggested as a complement for the derivative extended rule filter, whose an-

timonotonicity can be utilized for more powerful search space pruning. We also

propose the difference set statistics derivation and the circular intersection ap-

proaches for lessening the redundancies of data accesses and computation in our

original implementation of derivative rule filters. Detailed experimental evaluations

are committed to back up our arguments for desirable performance expectations

with the above techniques.
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Chapter 1

Introduction

This thesis focuses on two critical issues that affect exploratory discovery of rules

with undiscretized quantitative consequents. The first is how to identify and dis-

card important classes of potentially uninteresting rules. The second is how to

support efficient search for interesting rules. Exploratory rule discovery searches

for implicit patterns and regularities within given data, and presents the discovered

information with models which are generally referred to as rules. The best known

example is association rule discovery (Agrawal, Imielinski and Swami; 1993). Oth-

ers include implication rule discovery (Brin, Motwani, Ullman and Tsur; 1997),

correlation set discovery (Brin, Motwani and Silverstein; 1997), sequential pattern

discovery (Agrawal and Srikant; 1995), contrast set discovery (Bay and Pazzani;

2001) and causal structure discovery (Silverstein, Brin, Motwani and Ullman; 2000).

Exploratory rule discovery is powerful in the context of data mining where multiple

models that perform equally well exist. It can present the retrieved information in

a form that is understandable to the users. However, the features of exploratory

rule discovery bring other problems to be addressed. First, since exploratory rule

discovery generates multiple models, it is inevitable that the number of resulting

rules can become too large for manual analysis. It has also been recognized that

some rules discovered are potentially “uninteresting” and can be removed without

1



2 CHAPTER 1. INTRODUCTION

jeopardizing the performance of the outcome. Second, searching for multiple mod-

els also requires expensive computation and data accesses. To make things worse,

a great amount of computation can be wasted on searching for un-useful models.

Abundant research has been devoted to circumvent these dilemmas (Bayardo,

Jr., Agrawal and Gunopulos; 1999; Lakshmanan, Ng, Han and Pang; 1999; Grahne,

Lakshmanan and Wang; 2000; Bonchi and Geothals; 2004; Lawler and Wood; 1966;

Pei et al.; 2001; Dong and Li; 1998; Agrawal and Srikant; 1994; Shenoy, Haritsa,

Sundarshan, Bhalotia, Bawa and Shah; 2000; Zaki, Parthasarathy and Li; 1997;

Agrawal and Shafer; 1996; Zaki, Parthasarathy, Ogihara and Li; 1997b; Park,

Chen and Yu; 1995b; Toivonen; 1996; Savasere, Omiecinski and Navathe; 1995;

Lin and Dunham; 1998; Yip, Loo, Kao, Cheung and Cheng; 1999; Park, Chen and

Yu; 1995a; Webb and Zhang; 2005; Burdick, Calimlim and Gehrke; 2001; Agar-

wal, Aggarwal and Prasad; 2000). Most of such techniques were developed with

qualitative attributes or discretized quantitative attributes. However, simply dis-

cretizing the quantitative attributes results in information loss, because qualitative

attributes have lower levels of measurement scale than their quantitative counter-

parts. Research on how to efficiently remove potentially uninteresting rules with

undiscretized quantitative attributes in large, dense databases is limited. Due to

the fact that rules with undiscretized quantitative attributes which are described

using distributions can provide richer information than can those with discretized

quantitative attributes, the need for developing pruning techniques for rules with

undiscretized quantitative attributes are immediate and strong.

In this chapter, a brief introduction to the background of our research is out-

lined. Examples are presented to argue that there is a wide scope of application

for exploratory rule discovery. Next, we explain the motivations of our research.

Contributions are then described, followed by the thesis organization.
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1.1 Background

Many machine learning systems like classification learners, discover a single model

from the available data that is expected to maximize the accuracy or some other

specific measures of performance on unknown future data. Predictions or classifica-

tions are done on the basis of this single resulting model (Webb; 2005). Examples

include instance-based classifiers, decision trees (Quinlan; 1993), artificial neural

networks, genetic algorithms and the Naive-Bayes classifier. However, it is not

always optimal to choose only one of the “best” models over others in data mining

contexts. Alternative models exist that perform equally well as those which are

selected. The criteria for deciding whether a model is best or not also varies with

the context of application.

Rule discovery techniques are proposed to overcome this problem by searching

for multiple models which satisfy a user-specified set of criteria. Thus, the users

are provided with alternative choices. Better flexibility is achieved in this way.

Resulting models are chosen against measures that can be readily translated for

decision making. Association rule discovery is a typical example of such approaches.

Ever since the introduction of association rule discovery (Agrawal et al.; 1993),

exploratory rule discovery has been widely employed to search for underlying inter-

relationships among attributes in databases. The information discovered is then

modelled as rules for business or management oriented guidance.

Two classes of techniques witnessed the development of exploratory rule dis-

covery for addressing its inherent drawbacks as has been identified, including the

problem of huge numbers of resulting rules and the efficiency problem. The first

class aims at effectively pruning resulting rules to control the size of discovered

resulting set and provide the users with optimal outcomes, as well as at improving

the rule discovery efficiency. Some of the outstanding examples are Bayardo, Jr.
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et al. (1999); Lakshmanan et al. (1999); Grahne et al. (2000); Bonchi and Geothals

(2004); Lawler and Wood (1966); Pei et al. (2001); Dong and Li (1998); Liu, Hsu

and Ma (1999a); Brin, Motwani and Silverstein (1997); Piatetsky-Shapiro (1991);

Carter, Hamilton and Cercone (1997); Aggarwal and Yu (1998); Zhong, Yao and

Ohsuga (1999); Gray and Orlowska (1998); Srikant, Vu and Agrawal (1997); Han

and Fu (1995); Klemettinen, Mannila, Ronkainen, Toivonen and Verkamo (1994);

Baralis and Psaila (1997); Klemettinen et al. (1994); Meo, Psaila and Ceri (1996);

Bayardo (1998); Lin and Kedem (1998); Gunopulos, Mannila and Saluja (1997);

Pasquier, Bastide, Taouil and Lakhal (1999b); Pei, Han and Mao (2000); Zaki and

Hsiao (1999); Webb and Zhang (2002); Liu, Hsu and Ma (1999b); Bay and Pazzani

(2001); Aumann and Lindell (1999). The second class of techniques is developed for

improving exploratory rule discovery efficiency. Examples are Agrawal and Srikant

(1994); Shenoy et al. (2000); Zaki, Parthasarathy and Li (1997); Agrawal and Shafer

(1996); Zaki, Parthasarathy, Ogihara and Li (1997b); Park et al. (1995b); Toivo-

nen (1996); Savasere et al. (1995); Lin and Dunham (1998); Yip et al. (1999); Park

et al. (1995a); Webb and Zhang (2005); Burdick et al. (2001); Agarwal et al. (2000);

Agarwal, Aggarwal and Prasad (2001).

1.2 Applications of Exploratory Rule Discovery

Considering the outstanding characteristics of exploratory rule discovery, including

easy interpretability of resulting models for decision making, excellent scalability,

relatively simple algorithms, it has been extensively applied in a wide range of

real world applications since its introduction. Association rule discovery (Agrawal

et al.; 1993), which is a typical member of exploratory rule discovery, was originally

developed in the context of market basket data. The resulting rules can express
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how important products or services are related to each other, and can be easily

interpreted so as to suggest particular actions.

Existing applications for exploratory rule discovery include:

1. Legal domain and security issues (Cuppens and Mige; 2002; Bench-Capon,

Coenen and Leng; 2000; Johnston and Governatori; 2003; Governatori and

Stranieri; 2001; Lee and Stolfo; 1998; Lee, Stolfo and Mok; 1999)

2. Knowledge discovery with the web (web mining and E-commerce ) (Loh,

Wives and de Oliveira; 2000; Wu and Jajodia; 2004; Fonseca, Golgher, de Moura

and Ziviani; 2003; Ma, Liu and Wong; 2000; Cooley; 2000; Dua, Cho and Iyen-

gar; 2000; Lo and Ng; 1999; Abbattista, Degemmis, Licchelli, Lops, Semeraro

and Zambetta; 2002)

3. Geographic analysis (Ale and Rossi; 2000; Koperski and Han; 1995; Han,

Koperski and Stefanovic; 1997; Koperski, Han and Adhikary; 1998).

4. Business analysis and decision management (Brijs, Swinnen, Vanhoof and

Wets; 1999) Commercial (Hipp, Güntzer and Grimmer; 2001; Chou, Gross-

man, Gunopulos and Kamesam; 2000)

5. Medical science and bio-informatics analysis, (Doddi S; 2001; Oyama, Ki-

tano, Satou and Ito; 2000; Satou; 1997; Wetjen; 2002; Toivonen, Onkamo,

Hintsanen, Terzi and Sevon; 2004).

6. Text mining and document analysis (Ahonen, Heinonen, Klemettinen and

Verkamo; 1998; Kawano and Hasegawa; 1998; Wong, Whitney and Thomas;

1999).

7. Applications in machine learning to improve classification performance (Liu,

Ma, Wong and Yu; 2003; Alhammady and Ramamohanarao; 2004)
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8. Remotely sensed data (Dong, Perrizo, Ding and Zhou; 2000).

9. Library application (Michail; 1999, 2000).

10. Student management (Ma, Liu, Wong, Yu and Lee; 2000).

11. Census data (Brin, Motwani, Ullman and Tsur; 1997).

1.3 Motivations

Although intensive research has been contributed to exploratory rule discovery with

qualitative attributes and discretized quantitative attributes, little has been done

regarding exploratory rule discovery with undiscretized quantitative attributes to

efficiently identify potentially uninteresting rules in which context status of quanti-

tative attributes are described using distributional statistics instead of frequencies

as for rules with discretized quantitative attributes. Most of existing rule prun-

ing techniques are initially developed in exploratory rule discovery with qualitative

or discretized quantitative attributes. We identified the need for designing rule

techniques specifically for rules with undiscretized quantitative attributes.

Moreover, although discovering rules with undiscretized attributes offers the

users with more information of a quantitative attributes, this is achieved at the cost

of considerable amount of additional computation and data accesses for collecting

the necessary statistics and parameters. Thus, the inherent efficiency problem of

exploratory rule discovery is exacerbated. With the volume of data to be processed

increasing at a rapid pace nowadays, the demand for more efficient and effective rule

discovery with undiscretized quantitative attributes in very large, dense databases

is staring us in the face. However using the frequent item set framework, as Aumann

and Lindell (1999) have done, requires excessive memory as well as formidable

computation for maintaining candidates during the rule discovery. We believe



1.4. THESIS CONTRIBUTIONS 7

that this problem can be tackled by reducing computational redundancies and

unnecessary data accesses.

Motivated by these observations, we devote ourselves to designing and devel-

oping rule pruning techniques for exploratory rule discovery with undiscretized

attributes. We also study methods for improving the efficiency of the rule discov-

ery algorithms. We follow Webb (2001) by adopting a new framework: the OPUS

algorithm, for rule discovery in order to speed up rule pruning with undiscretized

attributes. We design algorithms that can work with very large, dense databases for

which the current popular algorithms fail. We analyze the features of rule discovery

with undiscretized quantitative attributes and propose techniques for effective and

efficient rule pruning in this context.

1.4 Thesis Contributions

Herewith we summarize the contributions of this thesis as follows.

1. Existing exploratory rule discovery techniques are classified by us into two

classes: distributional-consequent rule discovery and propositional rule dis-

covery. We propose comprehensive descriptions of these two kinds of ex-

ploratory rule discovery. (Chapter 2)

2. We analysis the differences between distributional-consequent and proposi-

tional rule discovery and explain why the techniques for identifying rule in-

terestingness are different for these two types of exploratory rule discovery.

(Chapter 3)

3. We propose the definition of derivative extended rules (a further developed

definition for insignificant rules) suitable for impact rules discovery. (Chapter

4)
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4. We propose an algorithm that can automatically remove derivative extended

impact rules during rule discovery. The algorithm is constructed on the basis

of the OPUS search algorithm. (Chapter 4)

5. We present the definition of derivative partial rules, which is theoretically

argued to be a type of potentially uninteresting rule that have not been

identified by previous research. (Chapter 4)

6. A new hierarchy within different impact rules according to their interesting-

ness is proposed and the relationship is explained. (Chapter 4)

7. We introduce the triviality impact rule filter to enable more powerful search

space pruning. We argue that the triviality filter is a complement for the

derivative extended rule filter. (Chapter 4)

8. We propose the difference set statistics derivation technique during the rule

discovery to remove unnecessary data accesses and computation while search-

ing for impact rules. (Chapter 4)

9. The circular intersection approach is proposed for further improving the ef-

ficiency of derivative extended rule filter of impact rule discovery. (Chapter

4)

10. We evaluate the effectiveness of all the techniques proposed in this thesis on

several well selected large, dense databases to test how the techniques can

effectively and efficiently discard numerous potentially uninteresting impact

rules. The experimental results validate our argument that our algorithms

perform much better than other existing techniques for removing insignificant

distributional-consequent rules in very large, dense databases. (Chapter 5)
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1.5 Thesis Organization

In the next chapter, we summarize the related terms and concepts that will be

quoted in this thesis. Terminologies employed by researchers to described ex-

ploratory rule discovery tasks vary from work to work. We hence systematically

clarify the connections and differences between some frequently used terms to avoid

possible confusions in the later part of this work. Since the techniques that we are

going to propose were mainly about how to efficiently prune rules using statisti-

cal methods, we also briefly explain some related statistical concepts. A review is

presented of approaches for exploratory rule discovery. Existing techniques are clas-

sified into two categories: propositional rule discovery and distributional-consequent

rule discovery. The reasons why we choose the OPUS based k-optimal rule discov-

ery as the basis of our research are demonstrated. A few key ideas which lay the

groundwork for the descriptions of our algorithm are explained. A formal descrip-

tion of k-optimal impact rule discovery which is utilized throughout this thesis is

presented in the end of chapter 2.

Chapter 3 is primarily devoted to reviewing previous research in the exploratory

rule discovery community. We discover that impressive amount of efforts have

been contributed to developing rule pruning and efficiency improving algorithms

for propositional rule discovery, while little has been done with distributional-

consequent rule discovery. Considering the differences between these two kinds of

exploratory rule discovery, it is meaningful to design techniques specially for rule

pruning and fast rule discovery with distributional-consequent rules. We group ex-

isting techniques for propositional rule pruning into two families. One for incorpo-

rating constraints and the other for removing rules that are spurious or potentially

uninteresting due to the presence of other rules. We also discuss the properties of

constraints with respect to whether they can be pushed deep into the rule discovery
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processes for search space pruning. Applicability of the reviewed propositional rule

pruning techniques with the distributional-consequent rule discovery is discussed.

Finally, some fast algorithms that have been proposed are summarized.

In chapter 4, motivated by the reviews and discussions in previous chapters,

we develop efficient algorithms for discovering interesting rules with undiscretized

quantitative variables as consequents (or targets) in k-optimal impact rule discov-

ery. Since the previous algorithms for discarding potentially uninteresting distributional-

consequent rules, which are commonly referred to as the insignificant rules, are

based on the frequent itemset generation, which leads to excessive memory and

maintenance overheads, they are not optimal with very large, dense databases. We

further develop such techniques into the derivative extended rule filter, and propose

a new implementation for the same task.

We also argue that existing techniques alone are not enough for removing some

class of potentially uninteresting rules that can be theoretically identified. We

clarify the relationship among rules regarding their potential interestingness and

propose and efficient techniques for filtering a new class of potentially uninteresting

impact rules, which is defined as the class of derivative partial rules.

Several techniques are also introduced to achieve dramatic efficiency gains.

The triviality filter is proposed as a complement and alternative to the deriva-

tive extended rule filter due to its anti-monotonicity. The difference set statistics

derivation and the circular intersection approaches are also designed to reduce the

computational and data access redundancies.

Chapter 5 deals with the empirical evaluations of all the techniques proposed in

chapter 4. Comparisons are also done with an efficient implementation of Apriori to

show the advantages of our techniques. The effectiveness of our proposed filters is

analyzed and the influences of the efficiency improving techniques are also exhibited
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experimentally. The results support the theoretical analyses of the performance of

our proposals.

Conclusions are drawn in chapter 6. We summarize the key issues presented

in this thesis by highlighting our contributions. Suggestions for potential future

research are made in the last stage to conclude this thesis.
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Chapter 2

Concepts and Problem Settings

In the first part of this chapter we are going to present an introduction to terms

and concepts that are frequently referred to in this thesis. The goal of our research

is to address the pruning of rules with undiscretized attributes, which are described

using distributional statistics. For such rules, statistical methods are often applied

to evaluate their interestingness. Therefore, we explain some statistical terms in the

first place. Then, the definitions and notations related to exploratory rule discovery

are introduced. Similar terms are listed together and differences are explained.

Next, we review existing techniques for exploratory rule discovery including as-

sociation rule discovery, contrast set discovery and causal structure discovery. We

also classified existing techniques into two categories. Propositional rule discovery

techniques deal with qualitative (categorical) attributes or discretized quantitative

(numeric) attributes only. The resulting propositional rules are described using

frequency statistics and measures. However, it is recognized that quantitative at-

tributes are indispensable components of many databases. Propositional rule dis-

covery is tailored for discovering inter-relationships between qualitative attributes

or discretized quantitative attributes only. Researchers have studied numerous

methods for optimal discretization (Srikant and Agrawal; 1996; Brin, Rastogi and

Shim; 1999). Nevertheless, discretization entails information loss. Propositional

13
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rules perform poorly in summarizing associations between quantitative variables

and qualitative attributes. Distributional-consequent rule discovery resolves this

problem by describing such inter-relationships using distributions.

In the end of this chapter, we illuminate the merits of k-optimal rule discovery,

and introduce the basis on which our k-optimal rule discovery algorithm is con-

structed: the OPUS algorithm. Reasons are explained for why we select k-optimal

impact rule discovery as the foundation of our research, followed by its formal

description.

2.1 Statistical Terms

Statistics and probabilities is one of the principles that is closely related to ex-

ploratory rule discovery. Statistical methods and terms are used throughout this

thesis. Since statistical terminologies differ from work to work in the literature, a

clear explanation of terms and concepts can simplify our discussions.

2.1.1 Qualitative vs. Quantitative Attributes

The data mining literature contains a huge variety of terms for describing different

types of data or attributes. This has the potential to cause confusion. In this

thesis we choose to classify attributes into two types: quantitative attributes and

qualitative attributes.

Qualitative attributes is also known as categorical attributes in some other

work. A distinct characteristic of such attributes is that they are only classified

in categories, but not numerical measures (Bhattacharyya; 2000). Qualitative at-

tributes come in two classes, namely, nominal and ordinal. Nominal attributes are

attributes that are exhaustively divided into mutually exclusive categories with no

rankings that can be applied to these categories. City names of a country is an
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example nominal attribute. Ordinal attributes are different from nominal ones in

that the categories into which they are classified can be ordered, like the grades of

student evaluations: fail, pass, credit, distinction, and high distinction.

Quantitative attributes, which are also referred to as numerical attributes, are

attributes that are measured on a numerical scale and to which arithmetic opera-

tions can be applied. Quantitative attributes are classified into two types in this

thesis: discrete and continuous. Discrete quantitative attributes have a measure-

ment of scale composed of distinct numbers with gap in between. The number of

students in a class is a typical example for discrete quantitative attributes. The

other type of quantitative attributes is the class of continuous attributes which

can ideally take any value. In other words, the measurement scale of continuous

attributes does not have gaps. For instance, the height of one-year-old seedlings is

a continuous quantitative attribute.

In most exploratory rule discovery, quantitative attributes are discretized. We

treat such discretized quantitative attributes as ordinal qualitative attributes in

this thesis.

2.1.2 Sample and Population

In order to retrieve useful information for further processing and analyzing in data

mining, relevant data must be collected. Data flucutations are unavoidable, even

if the data are collected under strictly controlled conditions of environment.

Considering that it is practically infeasible to access the exhaustive set of data,

research and tests can only be performed with reference to data collected in the

course of an experimental investigation. This is also the case with exploratory

rule discovery. The data acquired through this process is referred to as a sample,

while the vast amount of potential data which can be conceived in a given context is
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named the population. Sampling is the name for gathering data from the population

through observations to generate a sample for future research or testing.

In this thesis, every database to which we employ exploratory rule discovery is

a sample from the population, in whose characteristics we are actually interested,

and which cannot be exhaustively accessed. By retrieving information from the

sample, we are seeking models that can describe the features of the population

from which the sample is drawn.

2.1.3 Hypothesis Tests and Errors

Mining information using sample data to summarize the features of a population

is running the risk of discovering models (rules) which appear to be correct or

interesting with reference to the sample, yet turns out to be incorrect or uninter-

esting with regard to the population. Hypothesis tests, which are also referred to

as significance tests or statistical tests in this thesis, are usually adopted to assess

whether a claim or conjecture, derived from a sample should be accepted as likely

or not when generalized to the population, at a significance level.

However, errors are inevitable with the results. In the community of exploratory

rule discovery, there are two types of errors related to hypothesis tests: the type-1

error which lead to reject a model or a rule while it should be accepted, and the

type-2 error of accepting a model or a rule which is incorrect or uninteresting. The

risks of exploratory rule discovery suffering from such errors are high (Webb; 2005).

2.2 Exploratory Rule Discovery

Although traditional data mining techniques can efficiently learn a model for clas-

sification or prediction, they do not transverse the solutions space completely. No
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guarantee is made about the predictiveness of the resulting model. What is con-

tained in the resulting models is the discrimination ability over other potential

alternatives. Potential solutions are ranked in a fixed order, so that a rule is desir-

able only if those in front of it fail to be. However, the ranking of rules differs from

one application to another. Whether a rule is “best” or not depends and different

learning algorithms, even if run with the same parameter settings, will generate

different solutions. Another drawback for these techniques is the inconvenience for

incorporating some useful criteria during learning process, like minimum support.

There are risks for over-fitting, under-fitting and induction bias (Quinlan; 1993) in

the models found.

Exploratory rule discovery is proposed to overcome these disadvantages. All

models are generated, instead of one, that satisfy a specific set of criteria. The

set of criteria are commonly referred to as constraints (for the definition of con-

straints, please see chapter 4). It guarantees that, with the same parameter settings

applied, resulting solutions are complete and the same results can be yielded. Rules

provides concise statement for the implicit knowledge that can easily achieve user

understandability (Gunopulos et al.; 1997). Notably, some exploratory rule dis-

covery techniques can address the discovery of interesting rules in data where no

pre-specified classes exists.

Exploratory rule discovery aims at deriving the characteristics of a population,

by searching for implicit patterns or regularities within sample data drawn from

the population.

In this section, we give formal definitions of exploratory rule discovery and

related terms after studying existing techniques, as well as different types of ex-

ploratory rule discovery.

Definition 1 (Exploratory Rule Discovery) Exploratory rule discovery is a term

for data mining techniques that retrieve all models which satisfy some user-specified
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set of criteria, called constraints, in a real world population by accessing a sample

drawn from that population. The discovered rules can represent implicit knowledge

in the data in a concise and human-apprehensible manner.

2.2.1 Rules Discovered using Exploratory Rule Discovery

Easy interpretability of resulting models for decision making can enhance the power

of data mining techniques in certain occasions. One of the famous examples is the

famous market basket data, in which exploratory rule discovery is able to explicitly

clarify the relationship among various products and services to an extent that the

traditional data mining techniques cannot achieve. This results in the potential to

provide better guidance in decision making.

Exploratory rule discovery techniques that are concerned with qualitative at-

tributes or only are given the name propositional rule discovery. The rules gener-

ated by propositional rule discovery are composed of Boolean conditions only and

are described using frequencies and propositional measures. There is another class

of exploratory rule discovery to which we apply the name distributional-consequent

rule discovery. It is motivated by the need for providing better descriptions for

quantitative attributes, which are described using their distributions. Bodies of

rules discovered by distributional-consequent rule discovery are composed of two

sets, one set of Boolean conditions presenting the features of a subset of records

and one of more quantitative attributes, called targets, which are described using

distributional statistics.

The definition of rules that are discovered using exploratory rule discovery is

given below.

Definition 2 (Rules discovered using exploratory rule discovery) A rule dis-

covered using exploratory rule discovery is composed of two parts: the body and

the description. The body of a rule contains a set (subset) of Boolean conditions
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derived from the attributes in the databases, denoting the common features of a sub-

set of data, and, for some applications, a set of variables in whose performance the

users are interested. The description is a set of parameters or measures describing

the performance or status of the subset of data.

In some exploratory rule discovery techniques, the resulting rule bodies are

divided into two parts: the antecedent and the consequent. For a rule taking the

form A → C, A is the antecedent representing the premises of a dataset, while

C is called the consequent, which displays some common features of the dataset

represented by A. The relationship between these two parts of rules are of most

concern for the users. In some work, left hand side (LHS) is used for antecedent

and right hand side (RHS) for consequent.

2.2.2 Terms of Exploratory Rule Discovery

Here are some exploratory rule discovery related notions.

Attributes and Conditions

An attribute is a property or characteristic for an entity. A condition is a Boolean

predicate which characterizes a qualitative attribute taking a certain categorical

value, or a quantitative attribute taking a value in a given range. A condition in

this thesis corresponds to an item in many other works Agrawal et al. (1993).

Records

A record is a row in a database. For propositional rule discovery, a record is

an element to which we apply conditions, while for distributional-consequent rule

discovery, a record is a pair < c, v >, where c is the nonempty set of Boolean con-

ditions, and v is a set of values for the quantitative variables in whose distribution

the users are interested. In association rule discovery, records are often referred to

as a transaction.
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Database

A database is a finite set of records, which is also called a dataset.

Relations among Rules

A rule r1 is a parent of rule r2 if the antecedent of r1 is a subset of that of r2 and

the consequents of both rules are identical. By contraries, r2 is a child of r1, if

the antecedent of r2 is a superset of the antecedent of r1. If the cardinality of the

antecedent of r1 is smaller than the body of r2, r2 is defined as a direct parent of

the r1, otherwise, it is a non-direct ancestor of the first rule.

A parent rule of rule r is also referred to as a generalization or a simplification

of r. A child rule can also be called a specialization of its parent.

Coverset and Coverage

We use the notation coverset(A), where A is a conjunction of conditions, to repre-

sent the set of records that satisfy the condition (or set of conditions) A. If a record

x is contained in coverset(A), we say that x is covered by A. Coverset(∅) includes

all the records in the given database. Coverage(A) is the number of records cov-

ered by A: coverage(A) = |coverset(A)|. A set of conditions or items are often

referred to as an itemset, which represents a set of records covered by the itemset

as well.

2.2.3 Review of Propositional Rule Discovery

Most existing exploratory rule discovery techniques discover rules with qualitative

or discretized quantitative attributes only. Bodies of rules generated by these

techniques include only Boolean conditions. One typical example is association

rule discovery, firstly proposed by Agrawal et al. (1993) to discover underlying

associations in market basket data. Their approach was constructed in two separate
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steps. In the first step, Frequent itemsets, which are itemsets that contain at

least a given number of transactions (or records), are generated using the given

data sample. After the frequent itemset generation stage, association rules that

satisfy user-specified constraints are derived from the resulting frequent itemsets

and useful information of the resulting association rules are collected. The frequent

itemset approach is widely employed in exploratory rule discovery. The body of

an association rule is separated into two disjunct parts: the antecedent and the

consequent. Both the antecedent and the consequent of an association rule are

allowed to have arbitrary number of conditions.

Brin, Motwani and Silverstein (1997) proposed a technique which applies a chi-

square test to sets of items in a database to discover correlation rules. The body of

a correlation rule is a set of correlated items. Instead of dividing the rule body into

an antecedent and a consequent, correlation rule discovery treats all conditions in

the rule body symmetrically. The generated correlated sets consist of only items

that are positively correlated with each other. By contrast, with association rules,

the items in discovered rules are not assured to be correlated. It is argued by them

that correlation rule discovery is able to yield results that are more in accordance

with prior knowledge of the structure of data. Brin, Motwani, Ullman and Tsur

(1997) further developed the definition of correlated set discovery into implication

rule discovery, which is primarily composed of discovery processes in which rules

with implications between the antecedent and the consequent can be found, as

opposed to correlation sets which measures the co-occurrence only. Implication

rules, like the association rules are divided into rule antecedents and consequents.

An arbitrary number of Boolean conditions are allowed on both rule antecedents

and consequents.

Contrarily, emerging pattern discovery (Dong and Li; 1999) and contrast set

(Bay and Pazzani; 2001) endeavour to find rules with a single target variable, or
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target for short, as rule consequent. The measure for contrast sets and emerging

patterns interestingness is how greatly the frequency of the target values for the sets

of records which are covered by rule antecedents differ from each other. Emerging

pattern discovery looks for itemsets which cover two datasets whose support ratio

is greater than a given threshold, called minimum growth rate.

growthrate =
support(dataset1)

support(dataset2)
> min growthrate

Emerging patterns are presented using itemset borders composed of the minimum

set of records and the maximal set of records. Such emerging patterns enable the

description of contrasts between two groups. However, the techniques were re-

stricted to only two groups at a time. Contrast set discovery (Bay and Pazzani;

2001) was developed for automatically detecting all differences between contrast-

ing groups from observational multivariate data. It is different from the previous

techniques in that contrast set discovery is concerned with multiple target groups

for one attribute and the resulting models can highlight the dissimilarities between

all these groups. It was later argued by Webb, Butler and Newlands (2003) that

the features of contrast set discovery for deriving contrasts can also be achieved

using association rules.

Classical exploratory rule discovery can only discovery itemsets that imply sta-

tistical relationships instead of causal relations between rule antecedent and con-

sequent. It may also be the case that the rule A → C is a strong rule only by

virtue of other conditions. Causal structure discovery was suggested by Silverstein

et al. (2000) for mining causal relations. The authors identify the causality among

conditions assuming the Markov condition. The causal rules found can illuminate

both the existence and the lack of causality. Identifying the lack of causality can

effectively reduce erroneous decisions.
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Figure 2.1: Different episodes

Exploratory rule discovery has been extended to mine implicit regularities and

patterns in sequential or time-related databases. In such databases, sequential re-

lationships exist among records and time series have to be taken into account when

searching for useful regularities. Emerging patterns can be applied to this research

area, while there are plenty of other techniques. Sequential pattern discovery mines

user buying patterns in time-stamped market basket data. Three algorithms were

proposed by Agrawal and Srikant (1995) for mining sequential patterns. A set of

ordered itemsets were generated as discovered rules. Variants of support and confi-

dence are defined to describe status of the discovered patterns. Resulting rules are

represented as a sequence of events that happens in a fixed order, but not neces-

sarily consecutively. Episode discovery which was proposed by Mannila, Toivonen

and Verkamo (1997) is also a form of exploratory rule discovery for mining time

related inter-relationships in databases. Rules generated consist of items that do

not exist in the same time but have associated time of occurrence. Actually, the

discovered episodes are acyclic graphs of events whose edges specify the temporal

relationship without timing intervals restrictions as shown in figure 2.1.

For example, with the last episode in figure 2.1, A & B → C means if A and B

both happen (regardless of the order), C will occur soon.
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Traditional exploratory rule discovery results in rules that are ample (with at

least minimum support) in all the given data regardless of the time. However,

some interesting regularities only exist in restricted time intervals, such rules may

be discarded due to a very low value for support. For example, a rule meaning

that people are inclined to buy coffee and donuts during breakfast time may be

discarded based on the traditional structure. however, they may be of little interest

for decision maker, since this is a well-known fact. Cyclic association rule discovery

(Ozden, Ramaswamy and Silberschatz; 1998) and partial periodic pattern discovery

(Han, Dong and Yin; 1999) both seek rules that represent periodic behaviours in

a sequential database. Cyclic association rule discovery can successfully capture

periodicities, but discover only rules that are true in every cycle. Resulting cyclic

rules display cyclic variations in a database over time. Partial periodic pattern

discovery was proposed to discover models like “somebody is apt to do something

at sometime during the working days” which cyclic association rule discovery may

fail to find.

Inter-transaction rules Previous techniques mine rules which only describe the

characteristics within the same transaction or record. These are called intra-

transaction rules. Inter-transaction rules can result in rules like: “after company

A open a branch in a certain area, company B will also open a branch in a month

within a mile” (Lu, Han and Feng; 1998; Bettini, Wang and Jajodia; 1998). Inter-

transactional techniques discover rules whose antecedents and consequents are both

episodes that happen in accordance to the restrictions in rule descriptions.

2.2.4 Coping with Quantitative Attributes and Distributional-

consequent Rule Discovery

Previously mentioned methods for exploratory rule discovery are all about discover-

ing rules with qualitative attributes only. Considering the fact that a great number
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of quantitative attributes exist in real world databases, relatively little has been

done to effectively process quantitative attributes. Motivated by this, several tech-

niques for mining rules with quantitative attributes are proposed, most of which are

constructed on bucketing or discretization. Srikant and Agrawal (1996) proposed

an extended definition of association rules, named quantitative association rules,

by considering the intervals of quantitative values. Quantitative attributes are first

discretized using equi-depth partitioning with a partial completeness measure for

determining the intervals . Then, consecutive intervals are merged until the min-

imum support is satisfied. They identified several difficulties in determining the

number of intervals for quantitative attributes.

1. If the intervals are too small, a large portion of rules generated may turn out

with low supports. Setting the minimum support too high can lead to removal

of interesting rules, while a low support may probably result in computational

infeasibility.

2. If the intervals are too large, many rules generated may suffer from low con-

fidence, this, in turn can lead to discarding of interesting rules.

3. If the number of intervals are too large, the resulting number of rules together

with the execution time may increase unacceptably. As a by product, many

of the resulting rules may be uninteresting.

A greater-than-expected-value criterion was introduced to identify the inter-

estingness of the output rules by Srikant and Agrawal (1996). A rule is regarded

“interesting” if and only if its support or confidence is R times higher than the

expected value, where R is ratio specified by the user.

Fukuda, Morimoto, Morishita and Tokuyama (1996b) proposed approaches for

mining two kinds of optimized rules with only one quantitative attribute in rule
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antecedents and a qualitative attribute as consequents. They searched for confi-

dent rules (rules that satisfy the minimum confidence constraint) with optimized

support, and ample rules (rules that satisfy the minimum support constraint) with

optimized confidence. Randomized bucketing is used to discretized the quanti-

tative attribute before the merging of intervals takes place. Only one optimized

interval can be generated using their techniques. Rastogi and Shim (2001) extended

the above approach to mine rules with several disjunctions of optimized intervals.

Fukuda, Morimoto, Morishita and Tokuyama (1996a) considered occasions where

two quantitative attributes are allowed on rule antecedents. They find optimized

2-dimensional rectangular or admissible regions that optimized an interestingness

measure called gain as well as support and confidence.

Gain(r) = support(r)× (confidence(r)−minmum confidence)

In this formula, r is a rule. Brin et al. (1999) further developed this approach to

mine optimized gain rules in which multiple optimized regions can be identified

efficiently.

Wang, Tay and Liu (1998) also proposed a technique for merging adjacent

intervals in a bottom up manner to maximize the interestingness of a set of rules,

based on a modified B-tree. The J-measure is used for measuring the interestingness

of merged rules.

J(A → C)P (A)[P (C|A) log2

P (C|A)

P (C)
+ (1− P (C|A)) log2

1− P (C|A)

1− P (C)
]

The operation that minimizes information loss due to merging is chosen. Their

approach works well with skewed data.
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Even though these discretize-and-merge techniques can reduce the information

loss to a moderate degree, they cannot effectively describe the information regard-

ing the influence of qualitative attributes on quantitative variables. Due to the

fact that discretized qualitative attributes have lower levels of measurement scale

than their undiscretized counterparts, it follows that distributions are the best

descriptions for quantitative attributes.

Grounding on the preceding arguments, Aumann and Lindell (1999) propose a

different type of quantitative association rule discovery with an additional quanti-

tative variable, which is nominated by the users, added to the body of discovered

rules. This quantitative variable, which is referred to by us as the target, constitutes

the consequent of the quantitative association rules and the rule descriptions are

distributional statistics, mean as an example, for describing the status of the target.

Therefore, the technique they proposed belongs to the distributional consequent

rule discovery.

Notice that using quantitative association rule discovery, which is the same

as that adopted by Srikant and Agrawal (1996) for their technique, is confusing.

On this observation, Webb (2001) extended the technique of Aumann and Lindell

(1999), and applied the name impact rule discovery, which is the name adopted by

us in this thesis.

2.2.5 K-Optimal Rule Discovery and The OPUS Algorithm

Like most exploratory rule discovery techniques, the approach of quantitative as-

sociation rule discovery put forward by Aumann and Lindell (1999) is based on

the frequent itemset framework. It is well known that, when coping with very

dense databases, some of the frequent itemset related approaches are expensive in

terms of memory usage and data maintenance expenses during the course of rule

discovery. The situation deteriorates when the databases are very large and dense.
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Moreover, most exploratory rule discovery makes use of a minimum support

constraint. The minimum support constraint is usually enforced to prune the NP-

hard search space and make it computationally feasible. There are two reasons why

this framework is not always appropriate. First, it is elusive to subjectively choose

a threshold for support which is an objective measure. The case is often that there

is a narrow range of possible minimum support value below which the number of

resulting rules can become unwieldy. Second, a support is not always desirable as

a measure of interestingness. People are sometimes interested in a strong feature

manifested by a small part of the data, yet a rule with a high support only result

in rules which represent the behaviours of the majority. Rules with high support

sometimes turn out to represent well known knowledge. An example is the famous

bread and milk association in the market basket data. These items are commonly

consumed by almost every household, but they yield relatively much lower profit

than items like vodka and caviar (Cohen, Datar, Fujiwara, Gionis, Indyk, Motwani,

Ullman and Yang; 2001) which are also highly correlated with an extremely low

support. Given a specific minimum support higher than the support of vodka and

caviar, exploratory rule discovery removes such rules automatically. One will never

be able to tell what the minimum support should be in order to discover all rules

that interest the users.

One avenue of attack is to use the k-optimal rule discovery for which no mini-

mum support for the resulting rules is necessary. Instead, the users are requested

to specify the number of rules they prefer. The rule discovery system automati-

cally ranks the resulting models against a user-designated interestingness measure

and the top k rules with the highest value for that measure are presented to the

users. In this way, the number of resulting rules can be kept under control and

the post-rule-mining processing is eased. Resulting rules are guaranteed to be the

most “interesting” ones.
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Our k-optimal rule discovery is constructed based on the OPUS (Optimized

Pruning for Unordered Search) algorithm. OPUS is an admissible algorithm in

which all the desirable solutions are guaranteed to be discovered, as opposed to

heuristic algorithms in which no such guarantee is made. OPUS systematically

searches through a tree-style search space as is illustrated in figure 2.2. In this

figure each node is associated with a potential target. It is recognized that such

a search space is exponential in size. For many rule discovery tasks, the num-

ber of nodes to be explored is extremely large (Webb; 2001). Only pruning can

make the search space exploitable. A minimum support (or coverage) constraint is

usually utilized for the purpose of search space pruning in the context of support-

confidence-based rule discovery. Sometimes the minimum support has to be set

very high in order to make the computation feasible. However, the OPUS algo-

rithm enables efficient, dynamic space pruning during the course of rule discovery

with a very low support, or even without a specific minimum support. In this way,

the risks of discarding interesting rules are minimized. Branch and bound pruning

techniques are introduced to effectively prune the search space that contains no

solutions. It has been demonstrated that this approach can achieve dramatic re-

duction in computation expenses in comparison with previous algorithms applied

to such a search space (Webb; 1995).

By enforcing the k-optimal constraint, the bounds for search space pruning

change with time resulting in the gradual reduction of space to be explored. Con-

trarily, with the support and confidence framework only, the size of space to be

searched is fixed once the minimum support is specified.

2.2.6 K-Optimal Impact Rule Discovery

With regard to the previous arguments, we choose to carry out our research using

the k-optimal impact rule discovery proposed by Webb (2001) as a basis. In this
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Figure 2.2: Fixed structure search space for OPUS

section, we give a former definition of k-optimal impact rule discovery, which is an

extended version of that proposed by Webb (2001). We formalized our definition

and characterized the terminology of k-optimal impact rule discovery to be used in

this paper as follows:

1. An impact rule generated using our algorithm takes the form: A → target.

A is a conjunction of Boolean conditions, while target is described by the

following statistics and measures: coverage, mean, variance, maximum,

minimum, sum and impact.

2. Impact is an interestingness measure suggested by Webb (2001):

impact(A → target) = (tarmean(A → target)−tarmean(∅ → target))×coverage(A)

In this formula, tarmean(A → target) denotes the mean of the target variable

covered by A.

3. A k-optimal impact rule discovery task is a 6-tuple:

KMIIRD(C, T ,D,M, λ, k).

C: is a nonempty set of Boolean conditions derived from the database, C the set

of available conditions for resulting impact rule antecedents.

T : is a nonempty set of variables in whose distribution we are interested. In this

thesis, we confine the number of target variables to 1.

D: is the database on which the k-optimal impact rule discovery is performed.
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Algorithm: OPUS IR(Current, Available)

1. SoFar := ∅

2. FOR EACH P in Available

2.1 New := Current ∪ P

2.2 IF it cannot be determined that ∀x ⊆ Available : ¬solution(x ∪
New) THEN

2.2.1 generate the distribution statistics for the target

variable

2.2.2 record New → target

2.2.3 OPUS IR(New, SoFar)

2.2.4 SoFar := SoFar ∪ P

2.5 END IF

3. END FOR

Table 2.1: Basic OPUS IR algorithm

M: is a set of constraints1. For most constraints, useful bounds for search space

pruning can be derived, either tight or loose, and completeness of information

is still sustained. Classes of constraints include anti-monotone, succinct (Han

and Kamber; 2001), and monotone constraints (Pei et al.; 2001).

λ: {X → Y } × {D} → R is a function from rules and databases to values, and

defines a interestingness metric such that the greater the value of λ(X → Y,D)

the more interesting this rule is given the database.

k: is a user specified integer number denoting the number of rules in the ultimate

set of solutions for this task.

Pseudo code for a simple OPUS based algorithm for impact rule discovery

(OPUS IR) is displayed in table 2.1. In this table, current is the node in the search

space whose children nodes are currently being explored. Available is the set of

conditions that can be added to the conjunction of conditions in current to generate

the antecedent of a potential impact rules: New → target for examination. A

depth-first search is thus performed.

1Constraints will be discussed in more detailed in chapter 3.
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tid target cat1 num cat2
0 -1.5 A 13 C
1 0 B 4 D
2 2.3 B 10 C
3 11 A 4 C
4 0 A 15 D
5 -1 A 11 C
6 12.4 A 7 D
7 -2.7 A 11 C
8 6.8 B 7 D
9 12 A 3 C

10 -3 B 4 C
11 0 B 5 D
12 -1.2 A 11 D
13 1.6 A 14 C
14 0.5 B 8 C

Table 2.2: Database for algorithms illustration: mean=2.48, variance=28.7017

Database for Illustration

We contrived a fictitious database for better explanations of our algorithms in this

thesis. This database contains 4 attributes: target, cat1, num, cat2. Target is the

quantitative variable in whose distribution we are interested; num is a numeric

variable which is discretized into two ranges: greater than 10 and smaller than or

equal to 10.

The fixed search space for OPUS IR with this database is shown in figure 2.3.

Before the search algorithm operates, the data is loaded to the memory in a vertical

layout2 with each condition followed by a list of numbers for the records for which

this condition is true. Then the program is run with the initial current set to ∅ and

the initial available composed of all the available conditions. Every combination

of conditions is guaranteed to be explored once and only once, regardless of the

order in which conditions in the initial available are ranked.

2Please refer to the next chapter for explanation of database layouts.



2.2. EXPLORATORY RULE DISCOVERY 33

{}

{C
a
t
1

=
A
}

{C
a
t
1

=
B
}

{C
a
t
1

=
A
,
C
a
t
1

=
B
}

{N
u
m

<
=

1
0
}

{C
a
t
1

=
A
,
N
u
m

<
=

1
0
}

{C
a
t
2

=
B
,
N
u
m

<
=

1
0
}

{C
a
t
1

=
A
,
C
a
t
1

=
B
,
N
u
m

<
=

1
0
}

{N
u
m

>
1
0
}

{C
a
t
1

=
A
,
N
u
m

>
1
0
}

{C
a
t
1

=
B
,
N
u
m

>
1
0
}

{C
a
t
1

=
A
,
C
a
t
1

=
B
,
N
u
m

>
1
0
}

{N
u
m

<
=

1
0
,
N
u
m

>
1
0
}

{C
a
t
1

=
A
,
N
u
m

<
=

1
0
,
N
u
m

>
1
0
}

{C
a
t
1

=
B
,
N
u
m

<
=

1
0
,
N
u
m

>
1
0
}

{C
a
t
1

=
A
,
C
a
t
1

=
B
,
N
u
m

<
=

1
0
,
N
u
m

>
1
0
}

{C
a
t
2

=
C
}

{C
a
t
1

=
A
,
C
a
t
2

=
C
}

{C
a
t
1

=
B
,
C
a
t
2

=
C
}

{C
a
t
1

=
A
,
C
a
t
1

=
B
,
C
a
t
2

=
C
}

{N
u
m

<
=

1
0
,
C
a
t
2

=
C
}

{C
a
t
1

=
A
,
N
u
m

<
=

1
0
,
C
a
t
2

=
C
}

{C
a
t
1

=
B
,
N
u
m

<
=

1
0
,
C
a
t
2

=
C
}

{C
a
t
1

=
A
,
C
a
t
1

=
B
,
N
u
m

<
=

1
0
,
C
a
t
2

=
C
}

{N
u
m

>
1
0
,
C
a
t
2

=
C
}

{C
a
t
1

=
A
,
N
u
m
¿
1
0
,
C

a
t2

=
C
}

{C
a
t
1

=
B
,
N
u
m

>
1
0
,
C
a
t
2

=
C
}

{C
a
t
1

=
A
,
C
a
t
1

=
B
,
N
u
m

>
1
0
,
C
a
t
2

=
C
}

{N
u
m

<
=

1
0
,
N
u
m

>
1
0
,
C
a
t
2

=
C
}

{C
a
t
1

=
A
,
N
u
m

<
=

1
0
,
N
u
m

>
1
0
,
C
a
t
2

=
C
}

{C
a
t
1

=
B
,
N
u
m

<
=

1
0
,
N
u
m

>
1
0
,
C
a
t
2

=
C
}

{C
a
t
1

=
A
,
C
a
t
1

=
B
,
N
u
m

<
=

1
0
,
N
u
m

>
1
0
,
C
a
t
2

=
C
}

{C
a
t
2

=
D
}

{C
a
t
1

=
A
,
C
a
t
2

=
D
}

{C
a
t
1

=
B
,
C
a
t
2

=
D
}

{C
a
t
1

=
A
,
C
a
t
1

=
B
,
C
a
t
2

=
D
}

{N
u
m

<
=

1
0
,
C
a
t
2

=
D
}

{C
a
t
1

=
A
,
N
u
m

<
=

1
0
,
C
a
t
2

=
D
}

{C
a
t
1

=
B
,
N
u
m

<
=

1
0
,
C
a
t
2

=
D
}

{C
a
t
1

=
A
,
C
a
t
1

=
B
,
N
u
m

<
=

1
0
,
C
a
t
2

=
D
}

{N
u
m

>
1
0
,
C
a
t
2

=
D
}

{C
a
t
1

=
A
,
N
u
m

>
1
0
,
C
a
t
2

=
D
}

{C
a
t
1

=
B
,
N
u
m

>
1
0
,
C
a
t
2

=
D
}

{C
a
t
1

=
A
,
C
a
t
1

=
B
,
N
u
m

>
1
0
,
C
a
t
2

=
D
}

{N
u
m

<
=

1
0
,
N
u
m

>
1
0
,
C
a
t
2

=
D
}

{C
a
t
1

=
A
,
N
u
m

<
=

1
0
,
N
u
m

>
1
0
,
C
a
t
2

=
D
}

{C
a
t
1

=
B
,
N
u
m

<
=

1
0
,
N
u
m

>
1
0
,
C
a
t
2

=
D
}

{C
a
t
1

=
A
,
C
a
t
1

=
B
,
N
u
m

<
=

1
0
,
N
u
m

>
1
0
,
C
a
t
2

=
D
}

{C
a
t
2

=
C
,
C
a
t
2

=
D
}

{C
a
t
1

=
A
,
C
a
t
2

=
C
,
C
a
t
2

=
D
}

{C
a
t
1

=
B
,
C
a
t
2

=
C
,
C
a
t
2

=
D
}

{C
a
t
1

=
A
,
C
a
t
1

=
B
,
C
a
t
2

=
C
,
C
a
t
2

=
D
}

{N
u
m

<
=

1
0
,
C
a
t
2

=
C
,
C
a
t
2

=
D
}

{C
a
t
1

=
A
,
N
u
m

<
=

1
0
,
C
a
t
2

=
C
,
C
a
t
2

=
D
}

{C
a
t
1

=
B
,
N
u
m

<
=

1
0
,
C
a
t
2

=
C
,
C
a
t
2

=
D
}

{C
a
t
1

=
A
,
C
a
t
1

=
B
,
N
u
m

<
=

1
0
,
C
a
t
2

=
C
,
C
a
t
2

=
D
}

{N
u
m

>
1
0
,
C
a
t
2

=
C
,
C
a
t
2

=
D
}

{C
a
t
1

=
A
,
N
u
m

>
1
0
,
C
a
t
2

=
C
,
C
a
t
2

=
D
}

{C
a
t
1

=
B
,
N
u
m

>
1
0
,
C
a
t
2

=
C
,
C
a
t
2

=
D
}

{C
a
t
1

=
A
,
C
a
t
1

=
B
,
N
u
m

>
1
0
,
C
a
t
2

=
C
,
C
a
t
2

=
D
}

{N
u
m

<
=

1
0
,
N
u
m

>
1
0
,
C
a
t
2

=
C
,
C
a
t
2

=
D
}

{C
a
t
1

=
A
,
N
u
m

<
=

1
0
,
N
u
m

>
1
0
,
C
a
t
2

=
C
,
C
a
t
2

=
D
}

{C
a
t
1

=
B
,
N
u
m

<
=

1
0
,
N
u
m

>
1
0
,
C
a
t
2

=
C
,
C
a
t
2

=
D
}

{C
a
t
1

=
A
,
C
a
t
1

=
B
,
N
u
m

<
=

1
0
,
N
u
m

>
1
0
,
C
a
t
2

=
C
,
C
a
t
2

=
D
}

F
ig

u
re

2.
3:

F
ix

ed
st

ru
ct

u
re

se
ar

ch
sp

ac
e

fo
r

O
P

U
S

IR
w

it
h

th
e

fi
ct

it
io

u
s

d
at

ab
as

e



34 CHAPTER 2. CONCEPTS AND PROBLEM SETTINGS

2.3 Summary

So far, we have explained the concepts and terms related to exploratory rule discov-

ery that are to be frequently used in the thesis. We have also introduced useful ter-

minology of statistics with high relevancy to our research. Previous research on ex-

ploratory rule discovery was summarized and classified into two categories, namely,

propositional exploratory rule discovery, and distributional-consequent exploratory

rule discovery. The features and differences of these two types of exploratory rule

discovery are illuminated. Moreover, techniques of existing exploratory rule dis-

covery and those for dealing with quantitative attributes are reviewed.

We argued that although existing techniques for discovering inter-relationships

with quantitative attributes based on the discretize-and-merge paradigm can achieve

excellent approximation, information loss is unavoidable. Distributions are asserted

to be a better description for quantitative attributes. We introduced the distribu-

tional rule discovery which generates rules described using distributions. K-optimal

rule discovery is constructed on the basis of OPUS which is an efficient admissible

algorithm for unordered search. The merits of using the k-optimal rule discovery

were explained, which accounts for our decision on selecting the k-optimal impact

rule discovery as the basis of our research.

Finally, formal description of the k-optimal impact rule discovery and the rule

discovery algorithm OPUS IR was introduced.

In the next chapter, the previous research will be discussed and the techniques

are considered in two categories: the rule pruning techniques and the fast algo-

rithms for rule discovery. The applicability of techniques developed for proposi-

tional rule discovery in distributional-consequent rule discovery will also be dis-

cussed.



Chapter 3

Previous Research

As has been mentioned before, different from the traditional data mining tech-

niques, exploratory rule discovery techniques search for all models that satisfies

user needs for the purpose of providing alternative models which perform equally

or similarly well given a context. It is recognized that two fundamental problems lie

with the present-day models of rules (Ng, Lakshmanan, Han and Pang; 1998): (1)

Lack of user exploration and guidance. (2) Lack of focus in resulting models. These

problems lead to excessive numbers of resulting rules and expensive unnecessary

computation and data accesses. Accordingly, research has followed two trends. The

first trend addresses how to automatically remove uninteresting resulting models.

This means to automatically discard rules which are not interesting or useful in a

specific context of application, or are redundant with regard to the set of result-

ing rules. The second trend intends to reduce unnecessary computation and data

access as much as possible. Considerable research has been devoted to both topics.

In this chapter, we first examine the similarities and differences between tech-

niques for distributional-consequent rule and propositional rule pruning and op-

timizations. The necessities for developing rule pruning techniques specially for

distributional-consequent rule discovery are illuminated.

35
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Next, we review existing techniques for rule pruning and optimizations. We

consider existing techniques for rule pruning and optimization in two categories.

The first category includes techniques that strive towards reducing the number of

resulting rules via incorporating constraints specified by the user or derived from

the background knowledge. They are commonly known as constraint-based tech-

niques. The second category focuses on how to automatically generate a set of

“interesting” rules that are not derivative from other interesting rules in the re-

sulting set. This category is in turn classified into two types: the non-redundant

techniques and the productive and statistically productive rule generation. Models

removed using the non-redundant techniques can sustain information complete-

ness; while the second class of techniques can induce unavoidable information loss.

Nevertheless, such techniques are powerful in many applications. The applicability

of the previously mentioned technique in the context of distributional-consequent

rule discovery is also discussed.

After reviewing rule pruning techniques, we turn to techniques that address how

to improve rule discovery efficiency both before and after rule pruning techniques

are applied. A great number of fast exploratory rule discovery algorithms have

been developed based on the frequent itemset framework. However, many others

have attempted novel search structures for rule discovery other than the frequent

itemset lattice.

3.1 Differences in Exploratory Rule Discovery

Rule pruning techniques for propositional rule discovery are extensively studied by

researchers. Nevertheless, developing efficient pruning techniques more suitable for

distributional-consequent rules is an essential research topic. Since antecedents of
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both distributional-consequent and propositional rules are composed of conjunc-

tions of Boolean conditions, the techniques for pruning distributional-consequent

rules are in a way similar as those for propositional rules. However, the fundamen-

tal differences between the descriptive natures of consequents for distributional-

consequent rules and propositional rules mean that while some analytic techniques

for propositional rules can be modified for use with distributional consequent rues,

others cannot.

As a result of distributional-consequent rules being described using distribu-

tional statistics of an undiscretized target variable, computation of the required

information can induce very large numbers of data accesses which are computa-

tionally expensive! Let us compare association rule discovery and quantitative

association rule discovery as was proposed by Aumann and Lindell (1999) which

are both developed on the basis of the frequent itemset framework. These ap-

proaches undertake the same frequent itemsets generation in the first phase, which

is followed by different rule discovering processes. Association rules can be gen-

erated with few additional accesses to the records, while quantitative association

rule discovery has to go through the database numerous times, in order to derive

necessary statistics for rule descriptions. When the amount of data is huge, com-

putational and data access costs can grow to be unmanageable. Hence, the need

for developing efficient techniques is pressing.

3.2 Previous Techniques for Rule Pruning

Propositional rule pruning and optimization has been extensively studied. Two

basic trends can be found in the literature. The first one is to introduce a set of

user-specified criteria, which resulting rules must satisfy to be regarded as inter-

esting. The other trend concentrates on developing algorithms for automatically
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removing rules that are uninteresting with the presence of other rules. Both classes

of techniques are well studied. Applicability of existing propositional rule pruning

techniques in distributional-consequent rule discovery is also discussed.

3.2.1 Constraint-based rule discovery

Users are required to specify some constraints on the rules to be found before

searching for constraint-based techniques. The constraints we discuss at length in

this section are constraints on interestingness measures, on available conditions (or

combinations of conditions), or on the patterns to be considered. In this way, we

automatically regard rules that do not satisfy any of these constraints as uninter-

esting.

Constraints

A constraint is a predicate of the power set of the set of records covered by a

conjunction of conditions (itemset) that composes of the rule body. It is a criterion

on the characteristics of a rule or an itemset that must be satisfied to be considered

as interesting.

There are various constraints that can be introduced into data mining process

at different stages. Figure 3.1 concisely illustrates the relationship of the data

mining process and the introduction of different constraints.

In this thesis, only two types of constraint-based rule pruning techniques are to

be discussed. The first class of techniques introduces some user-specified constraints

on interestingness measures or statistics into rule discovery process. The resulting

rules must have a value for a specific interestingness measure greater than a thresh-

old, or in a fixed range. The second class incorporates rule constraints. Items that

may or may not appear in a resulting rule, or rule structures that are acceptable
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Figure 3.1: Constraints and data mining

or unacceptable are pre-defined before rule discovery. Commonly, item taxonomies

or hierarchies are utilized to achieve better understandability.

Many researchers have investigated how constraints can enhance search space

pruning during rule discovery. We classify constraints into two categories according

to their properties about whether or not they can be pushed deep into the rule

discovery process and still ensures the completeness of resulting solutions. For

most constraints, either bounds can be found for the search space be derived for

pruning (e.g. anti-monotone and monotone constraints), or all and only those sets

of items that are guaranteed to satisfy the constraints can be enumerated (succinct

constraints).

The most powerful and widely applied type of constraints for search space

pruning are the anti-monotone (or downward closed) ones. If the set of records

covered by set of conditions does not satisfy an anti-monotone constraint, neither

can the coverset of any of its supersets. For a tree-style search space as that for the

OPUS algorithm, if a node violates an anti-monotone constraint, the whole branch

can be pruned without jeopardizing the completeness of resulting rules. The bound

derived from an anti-monotone constraint is tight, because no more computation is

required to calculate it. For example, a minimum support for resulting rules of 0.1
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Figure 3.2: Frequent itemset lattice pruning using anti-monotone constraints

is an anti-monotone constraint. In the solution space, anti-monotone constraints

make up an upper bound. Using the frequent itemset lattice as an example, in figure

3.2, if node AB has a lower support than 0.1, all the itemsets that are derived from AB

should be pruned, because no solutions can be found among them. Anti-monotone

constraints were first introduced into association rule discovery by Agrawal and

Srikant (1994) and are formally summarized by Ng et al. (1998), who proposed an

architecture for supporting constraint-based, human-centered exploratory mining

of various kinds of rules.

Scientists have also been studying how to introduce monotone (or upward

closed) constraints into exploratory rule discovery for search space pruning. Mono-

tone constraints are those that if failed by an itemset will also be failed by all

its subsets. Monotone constraints create tight lower bounds in the solution space

for a rule discovery task. For example, that a rule must contain a certain item is

a monotone constraint. By incorporating monotone constraints into the frequent

itemset based algorithms, we are able to save a great deal of data accesses and

computation. For example, if A must be included in the antecedent of a desirable

rule, no data access or computation is required for assessing the validity of the

itemsets in dashed boxes in figure 3.3.
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Figure 3.3: Frequent itemset lattice pruning using monotone constraints

A typical technique for combining both anti-monotone constraints and mono-

tone constraints to achieve superior performance in search space pruning was sug-

gested by Grahne et al. (2000) for correlated set discovery. The authors made

use of the CT-support constraint, which is anti-monotone, and the correlated con-

straint, which is monotone, as well as other user-specified constraints to calculate

the bounds of solution space in correlated set discovery. How the synergy be-

tween anti-monotone and monotone can be exploited is also studied by Bonchi and

Geothals (2004) in a rule discovery algorithm using a B-tree.

Loose bounds can be built by using constraints other than the anti-monotone or

monotone ones. Further calculations are required before the bounds can be derived.

Such properties were studied by Lawler and Wood (1966) and summarized as the

branch and bound methods.

Another well studied class of constraints is the class of succinct constraints. For

constraints with succinctness, we can always name all and only those itemsets that

are validate. MinJ < minval1 is an example of succinct constraints, as we are

able to enumerate all the records that have a value smaller than minval. Only a

conjunction of conditions that covers at least one record among these enumerated

1MinJ stands for the minimum value for attribute J .
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Figure 3.4: Relationship of different constraints (Pei et al.; 2001)

ones can be a solution. Succinct constraints are pre-counting prunable, because

pruning can be done before accessing the database.

The relationships between the above mentioned types of constraints are de-

scribed in figure 3.4. This figure show that the class of succinct constraints overlaps

with both classes of anti-monotone and monotone constraints.

All the previous discussions were devoted to constraints with only 1-variable.

Only one measure is changing in these 1-variable constraints. However, constraints

with multiple variables are useful in some contexts of application. For instance, if

users are only interested in rules in which the average price of an item is greater

than the average of another. We need to evaluate the constraints with two vari-

ables. Lakshmanan et al. (1999) studied the properties of 2-variable constraints

and argued that the anti-monotonicity and quasi-succinctness of 2-variable con-

straints can be introduced into the rule discovery for better rule pruning. They

defined that, a 2-variable constraint is anti-monotone if and only if an itemset vio-

lates the constraint, then so does all its supersets. Whereas, a 2-variable constraint

C(S, T ), where S and T are sets of items, is quasi-succinct if it can be reduced to

two 1-variable succinct constraints of the form CS(S, qcS) and CT (T, qcT ), where

qcS, qcT are constants such that the set of all valid S-sets and the set of all valid

T-sets are preserved after the reduction.
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In this thesis, we restrict ourselves to 1-variable constraints only.

Interestingness Measure Constraints

Rule interestingness measures are metrics against which the interestingness of rules

is measured. Subjective interestingness measures involve user interpretations. Usu-

ally, if a rule is outside users’ expectation, it is subjectively “interesting”. By con-

trast, objective interestingness measures are statistics or metrics that are derived

from data.

One of the central problems in knowledge discovery is to develop good objective

measures of interestingness for discovered models (Dong and Li; 1998), which can

be used for rule pruning or ranking. The most intensively adopted measures are

support and confidence.

support(A → C) = P (A, C)

confidence(A → C) =
P (A, C)

P (C)

Setting a minimum support for resulting rules is to specify a minimum degree of

generality. Rules that are not general enough is not interesting enough to attract

user considerations. Contrarily, confidence is a measure of predictive ability which

present the probability of co-occurrence. Coverage is an alternative for support

which measures the frequency of records in the databases that satisfy the rule

antecedent.

coverage(A → C) = P (A)

However, support and confidence alone is not enough for capturing whether a

resulting model is interesting or not. A rule may have very high support and

confidence, but is still not surprising. Things go worse when the database is dense
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and great redundancies exist among the data. We have presented examples of

spurious rules with high support in last chapter.

Techniques were proposed to alleviate this problem by mining associations with

multiple minimum supports for different items (Liu et al.; 1999a), or by decreasing

the value for minimum support as the size of discovered frequent itemsets increases

(Seno and Karypis; 2001). An approach using weighted support was also proposed

by Tao, Murtagh and Farid (2003) in order to address the uncertainty of support

thresholds. Some developed techniques for rule mining without support, examples

including the correlation set and implication rule discovery (Brin, Motwani and

Silverstein; 1997; Brin, Motwani, Ullman and Tsur; 1997), and jumping emerging

patterns (Li, Zhang, Dong, Ramamohanarao and Sun; 1999).

Many other interestingness measures are proposed as complements for support

and confidence in exploratory rule discovery. Some of the frequently applied ones

are introduced below.

1. Lift (IBM; 1996): This measure was also referred to as interest by Brin,

Motwani and Silverstein (1997). The measure is defined in the following

formula:

lift(A → C) =
P (A, C)

P (A)P (C)

This is a measure for the degree of dependency between rule antecedent and

consequent as well as a ratio of confidence over a prior expectation. Lift

treats all the conditions in a rule symmetrically. With a lift of 1, the rule

antecedent and consequent are independent from each other. A lift greater

than 1 implies positive dependency between A and C, while a lift between 0

and 1 implies negative dependency. The further the value for lift deviates from

1, the greater the antecedent and consequent are correlated, either positively

or negatively.
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2. Conviction: Brin, Motwani, Ullman and Tsur (1997) proposed the interest-

ingness measure conviction for implication rule discovery. Conviction is also

a measure of predictive ability. However, it is the measure of actual implica-

tion as opposed to confidence which measures co-occurrence only. It is also

different from lift (interest), which is essentially a measure of departure from

independence. Conviction is defined as follows:

conviction(A → C) =
P (A)P (¬C)

P (A,¬C)
.

This interestingness measure is declared to be advantageous over confidence

and lift in measuring the predictive ability in many ways. If conviction is 1,

the rule antecedent and consequent are completely uncorrelated. A rule that

holds all the time (rule confidence is 100%), has an infinite conviction.

3. Leverage (Piatetsky-Shapiro; 1991):

leverage(A → C) = P (A, C)− P (A)P (C)

This interestingness measure denotes the distance between the observed fre-

quency of A and C and the frequency that is expected if A and C are indepen-

dent. Setting a minimum leverage means setting a lower bound for support.

High leverage implies high support. This property is useful in respect that a

rule with low lift but with unexpected high frequency may also be interesting.

4. Share (Carter et al.; 1997): This is a measure proposed as an alternative

to support. Share measures importance of an itemset in a specific way which

is designed in accordance with the features of market basket data. Since

transaction data not only contain information of the existence of a certain

item but also quantities, costs, profits etc. More insight into an item can be

exploited using such information. By introducing share, accurate financial
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calculations or comparisons can be done. Item share is defined to be the ratio

of actual sum of an attribute for a user-specified share measure (for example,

market share) in a certain itemset to the global sum of that attribute.

5. Collective Strength (Aggarwal and Yu; 1998): is defined to be the

product of actual ratio of good events to bad events and expected ratio of

bad events to good events.

collective strength(A → C) =
P (A, C)

1− P (A, C)
× expected(1− P (A, C))

expected(P (A, C))

The expected ratio is calculated by assuming independence among items.

Items within a rule that are completely positively correlated can generate an

infinite collective strength, while being perfectly negatively correlated pro-

duces a 0 collective strength. A collective strength of 1 implies independence.

This measure is monotone in that if a collective strength of an itemset is v,

any subset of this itemset will have a collective strength greater than v.

6. Improvement: Bayardo, Jr. et al. (1999) argued that a rule should be

regarded as interesting only if it exhibits a minimum improvement in confi-

dence, which is greater than a user-specified value, comparing to its parents.

Their approach took the relationship of different rules into account and will

be discussed in detail in section 3.2.2.

7. Other measures: Dong and Li (1998) proposed an interestingness measure

in terms of neighborhood-based unexpectedness. The neighbourhood of an

association rule consists of all association rules within a given distance. Two

types of unexpectedness are defined, namely, unexpected confidence and iso-

lated. Zhong et al. (1999) used peculiarity to determine the extend to which

one data object differs from other similar data objects. Gray and Orlowska
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Figure 3.5: A taxonomy for clothes

(1998) defined an interestingness measure to evaluate the strength of associ-

ation rules which contains a weighted discrimination and a weighted support

component. Laplace preference function was used to determine the goal of

rule searching, providing a conservative estimation of the predictive accuracy

of a class description. This approach trade-off accuracy to achieve better

generality (Webb; 1995). A summary of interesting measures developed in

the context of propositional exploratory rule discovery is provided in table

3.1.

Rule Constraints

Even after interestingness constraints are introduced, the resulting rules may still

turn out to be uninteresting in many ways. A rule may correspond to background

knowledge, or user expectations, or may contain uninteresting attributes. Rule

constraints are specified to address these problems. Taxonomies and hierarchies

are often incorporated in constraint-based rule discovery to achieve better under-

standability.

Taxonomy is a hierarchy in the form of a tree as shown in figure 3.5. In this

taxonomy, clothes is the root from which the following nodes can be derived. Brand

A trainers is a leaf. Rule constraints can be specified with any levels of concept.
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Users may only be interested in rules that contain certain items or contain

children of a specific node in a hierarchy. A typical method for combining item

constraints in rule discovery was suggested by Srikant et al. (1997). They argued

that such rule constraints enable effective pruning of search space, because of the

anti-monotonicity of item constraints.

However, mining rules with taxonomies brings several practical problems (Srikant

and Agrawal; 1997). To discover rules at higher concept levels generates rules with

generally high support which often happen to be within user expectations. Con-

trarily, rules at primitive concept levels often have a low support but are more

specific or concrete. Such rules are interesting for the users even though they are

“weak”. This makes it harder to specify a minimum support for all the resulting

rules in a task.

Han and Fu (1995) proposed a rule-constraint-based technique using multiple

support thresholds. They gradually reduce the minimum support as the concept

level becomes lower, until reaching the primitive level. Srikant and Agrawal (1997)

tried to mine rule with one taxonomy which is interesting only when its support

or confidence is more than R times the expected value. They define the expected

value for itemset A given its parent C in the taxonomy to be:

expectedC(Pc(A)) =
Pc(a1)

Pc(c1)
× Pc(a2)

Pc(c2)
× ...× Pc(an)

Pc(cn)
× Pc(C)

where a1...an and c1...cn are elements in A and C respectively. Graaf, Kosters

and Witteman (2000) proposed a similar scheme as that suggested by Srikant

and Agrawal (1997) for incorporating several taxonomies in a same task. Their

definition of expected value differs from the above definition.

Several papers have also been contributed to introduce rule templates during

the course of rule discovery. Rule templates enable easy descriptions of interesting
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rules structures (Klemettinen et al.; 1994). Acceptable or unacceptable patterns

should be nominated by the users beforehand, so as to “focus” the users’ analy-

sis and exploration efforts only on the set of rules that is of a specific interest to

them. One of the important issues to be addressed for these techniques is how to

present the discovered patterns in an understandable manner both for the users

and the machine. They proposed algorithms that use Boolean expressions to fil-

ter uninteresting rules during rule discovery. Such expressions are disjunctions of

conjunctions of predicates representing the acceptable status of items. Moreover,

Baralis and Psaila (1997) introduced predefined templates as a means to capture

the user specifications for rule mining processes. They proposed a general language

to design templates for the extraction of arbitrary association rule types as apposed

to Klemettinen et al. (1994)’s definition. Their rule templates go in two classes:

the inclusive templates for the rules that are of most interest and the restrictive

templates for those that are known uninteresting beforehand.

Meo et al. (1996) designed a SQL-like operator MINE RULE for mining rules,

combining the interestingness constraints, the taxonomies and the rule constraints.

Their approach enables a universal description of the exploratory rule discovery

problem.

A notable feature of the previously mentioned techniques is that they can effi-

ciently incorporate background knowledge for guidance and control of the mining

process. However, the resulting rules found using these techniques may turn out

to be incomplete, and is less surprising, which is often the case when incorporating

subjective information. Rules found are often those users expect to exist or to not

exist.
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Applicability in Impact Rule Discovery

Constraint-based techniques can effectively reduce the number of resulting rules,

circumventing the dilemma that data mining itself may generate too much informa-

tion to be analysed. Constraint-based techniques for propositional rule discovery

using interestingness measures are applicable in impact rule discovery. However, in-

terestingness measures that can be used for impact rule discovery are different from

propositional rule discovery. Since the consequent of an impact rule is described

using distributions instead of Boolean predicates, many of the interestingness mea-

sures devised for propositional rules, which are concerned only about the presence

of both the antecedent and the consequent of the rules are not applicable for impact

rule discovery. For instance, support of the propositional rules cannot be used as

a measure of generality for impact rules, because the consequent of an impact rule

do not have support. Hence, coverage, which is the support of rule the antecedent,

is adopted instead.

Considering mining impact rules from the fictitious database in table 2.2, if we

are interested only in rules for which the target means are greater than 3. The

following rule:

10<num & cat2=D → target (coverage:3 mean:2.6 variance: 5.88

min:0 max:4.8 sum:7.8 impact:-7.77)

should be removed as uninteresting.

Distributional statistics are preferred for describing distributional-consequent

rules. Webb (2001) also proposed a measure called impact for describing interest-

ingness of impact rules.

Constraints on items and rule templates can also be directly introduced into

impact rule discovery with minute adaptation. For instance, the users are aware
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Algorithm: OPUS IR(Current, Available, M)

1. SoFar := ∅

2. FOR EACH P in Available

2.1 New := Current ∪ P

2.2 IF current rule New → target does not satisfy any of the

prunable constraints in M
THEN go to step 2.

2.3 END IF

2.4 IF current rule New → target satisfies all the nonprunable

constraints in M

Record New → target in the rule list;

2.5 END IF

2.6 OPUS IR(New, SoFar, (M));

2.7 SoFar := SoFar ∪ P

3. END FOR

Table 3.2: The OPUS IR algorithm with constraints

that if the value of Num is determined by the value of Cat1, and Cat2, we can

specify that rules with combinations of these 3 attributes should not be considered

as interesting.

The OPUS IR algorithm that we designed to introduce different constraints

during rule discovery is described in table 3.2. This algorithm can efficiently search

through a tree-style search space for potential impact rules and is designed on the

basis the OPUS algorithm (Webb; 1995).

3.2.2 Compact Representations of Resulting Rules

An objective criterion has to be specified by users subjectively before the constraint-

based techniques can be applied. There is another class of rule pruning techniques
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for which little user guidance and analysis before or during rule discovery is re-

quired. In such approaches, resulting rules are compared with each other so as to

decide whether they are “redundant” or not. Thus, a more compact statement for

the discovered information is provided.

Association rule discovery, which is a typical type of exploratory rule discovery,

was initially developed for market basket data, which is generally sparse. However,

with more and more research devoted to exploratory rule discovery, attempts were

made to extend the application of exploratory rule discovery to dense and large

databases like the census databases in Blake and Merz (1998). Too many resulting

rules becomes a problem of concern. In the majority of cases, real-life database

may generate thousands of “strong” rules among which numerous are redundant

or uninteresting. A more compact manner for presenting and summarizing rules

are necessary for users to more efficiently analyzed and made use of the discovered

knowledge.

Existing rule pruning techniques that belong to this class are the discovery of

maximal frequent itemsets, the non-redundant techniques, and the productive and

statistical significant rule discovery.

Mining Maximal Frequent Itemsets

Mining maximal frequent itesmets, which are also referred to as the most specific

sentences (Gunopulos et al.; 1997), is one of the frequently adopted methods to

tackle the problem of too many resulting rules. In such techniques, implicit knowl-

edge in the database is expressed using only a set of maximal frequent itemsets,

whose size is orders of magnitude smaller than the size of all frequent itemsets. A

maximal frequent itemset is defined to be the most specific set of frequent itemset

being no subset of other frequent itemsets. It is asserted that in many situations,

to know only the set of maximal frequent itemsets is sufficient, from which all other
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frequent candidates are implied according to the anti-monotonicity of the support

constraint. The set of maximal frequent itemsets can implicitly and concisely rep-

resent the discovered knowledge.

Representative research in the literature includes the MaxMiner (Bayardo;

1998) which implemented a heuristic search for frequent candidates, as soon as

possible, right after all the subsets of a potential candidate are identified as fre-

quent. Thus linear scalability with the size of longest maximal frequent itemset

is achieved. By contrast, Apriori undertakes the generation of frequent itemset of

k + 1 items only after all candidates of size k are found.

Pincer-Search (Lin and Kedem; 1998) is also one of the famous algorithms for

mining maximal frequent itemsets, which is an NP-hard search space reduction al-

gorithm. The authors integrated both bottom-up and top-down searches for mining

maximal frequent itemsets. Gunopulos et al. (1997) also proposed a randomized

algorithm for computing sets of most specific sentences in relational database with

binary data.

Although maximal frequent itemset approaches can generate a set of candidates

whose size is even smaller than that yielded by the closed itemset techniques, which

are to be discussed next, rules cannot be generated without further data accesses

on the basis of discovered maximal frequent itemsets. Even if further browsing of

database is performed to derive necessary descriptions for resulting rules, no rule

redundancies can be eliminated in this way.

Non-Redundant Rule Discovery

It is a fact that different degree of redundancies exist in resulting set of rules

discovered using exploratory rule discovery. For example, a rule might convey

exactly the same information as another one which is more general. We called this

rule a redundant rule. By identifying and removing redundant rules that convey
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no further information with the presence of others, a more compact set of rules or

frequent itemsets can be generated. Closed sets, rule covers and the trivial rule

filtering are all techniques for discarding such redundant rules.

The closed set techniques have attracted a great deal of attention in proposi-

tional exploratory rue discovery. An itemset I is closed if and only if there exists

no itemset I ′ where I ⊂ I ′ and coverset(I) = coverset(I ′). Many algorithms are

developed targeting at implementing frequent closed set discovery and generation

of a compact set of resulting rules with discovered frequent closed sets. Typical

examples of closed set related algorithms are A-Closed by Pasquier et al. (1999b),

Apriori-Closed by Pasquier, Bastide, Taouil and Lakhal (1999a), Closet by Pei

et al. (2000), and CHARM by Zaki and Hsiao (1999).

Closed set related techniques generally undergo a two step process. First, Ga-

lois closure operators or Galois connections are adopted for the closed set genera-

tion, which successfully maintain the completeness of information. The number of

resulting closed sets is exponentially smaller than that of the traditional frequent

items sets. Efficiency is improved by some using the Galois connection lattice prun-

ing. Second, different schemes are used to generate non-redundant rules. Apriori-

Closure (Pasquier et al.; 1999b) discovers Duquenne-Guigues Basis for Exact Rules

(rules with confidence = 1) and the proper and structural bases for approximate

rules (rules whose confidence is less than 1). Bastide, Pasquier, Taouil, Stumme

and Lakhal (2000) suggested two new bases for association rules whose union is a

generating set for all valid models. The bases are composed of closed itemsets and

their generators. However, their approach mainly concentrates on the discovery

of frequent closed itemsets instead on rules discovery. CHARM (Zaki; 2000) used

Galois lattice of concepts and frequent closed tidsets (sets of transaction IDs) to

generate non-redundant association rules.



56 CHAPTER 3. PREVIOUS RESEARCH

Closed itemset related techniques prune rules in a similar manner as is described

in the following example:

Example 1 Consider the following exact rules

A ⇒ B

B ⇒ C

A ⇒ C

The third rule can be discarded without sacrificing completeness, for it can be

deduced from the first two.

For approximate rules, if rule

A → C

and

A′ → C ′

have the same support and confidence, and A ⊂ A′ or (and) C ′ ⊆ C then the

second rule is regarded as uninteresting.

Non-redundant rules generated using the closed set techniques are defined to

be the most general rules that are not implied by any of their parents.

Toivonen, Klemettinen, Ronkainen, Hgtijnen and Mannila (1995) proposed a

domain independent method for reducing the number of resulting rules without

information loss. They defined a rule cover as a subset of all rules that, for every

record, if there is an applicable rule in the original rule set there must be a rule in

the discovered rule cover that is applicable for this record.

∪r∈allrulecoverset(r) = ∪r∈rulecovercoverset(r)
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In their approach, after the rule cover is generated, a clustering technique is

applied to group the rules in the rule cover according to the distance between

rules. However, for some applications a minimal set of rules may not be sufficient.

Although it is theoretically possible to infer all interesting rules from the minimal

rule set, the user might not be able to identify the most interesting rules in a

straightforward manner because they are not explicitly presented.

Webb and Zhang (2002) defined trivial rules as redundant rules whose coverage

is the same as the coverage of any subset of their antecedents. They proposed a

novel technique for efficiently discarding trivial rules with fixed consequents dur-

ing k-optimal rule discovery based on the OPUS search algorithm. In this way,

redundant rules that can be eliminated using closed set techniques can be removed

without generating frequent closed itemsets.

Rule Improvements and Significance

Most exploratory rule discovery techniques seek rules A → C for which there is a

correlation between the antecedent A and the consequent C. However, whenever

one such rule is found, there is a risk that many derivative and potentially unin-

teresting rules A′ → C ′ will also be found. These rules are those for which there

is a correlation between the antecedent and the consequent only by virtue of there

being a correlation between A and C. For example, if A and C are correlated then

for any term B that is unrelated to either A or C, A & B will also turn out to

be correlated with C. The rules pruned using the non-redundant techniques are a

special form of derivative rules.

Rule pruning techniques (or filters) concerning the improvements and signif-

icance of resulting rules examine the relations between rules, and remove those
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within expectation (or without enough surprisingness). The results suffer from in-

formation loss. However, in some applications, it is worth trading off information

completeness against efficiency in post-discovery processing.

Confidence Improvement and Unproductive Rules: Bayardo, Jr. et al.

(1999) defined a minimum improvement in confidence that a rule must exhibit in

order to be consdered interesting. The minimum confidence improvement used by

them is defined as below:

imp(A → C) = argminA′⊂A(confidence(A → C)− confidence(A′ → C))

They argued that a minimum improvement greater than or equal to 0 is a

desirable constraint in most applications of association rule mining. Webb (2003)

referred to the rules with a minimum improvement greater than 0 as productive

rules. The non-redundant techniques are able to prune some of the rules that

have 0 improvement compared with any of its parents’, accepting those with

either negative or positive improvement as non-redundant.

Since a minimum improvement is an objective measure of interestingness, it is

hard for users to subjectively decide on a proper minimum improvement for all

the rules, which is also a potential problem with other objective measures. Setting

the minimum improvement too high leads to discarding of rules that are actually

interesting; while setting it too low retains potentially uninteresting rules. Truth

has that by performing exploratory rule discovery, users are trying to retrieve

implicit knowledge within a population with reference to a sample, which is only a

subset of that population. Sampling inevitably produces data fluctuations. Hence,

it happens that a rule with a desirable minimum improvement may actually be

uninteresting in terms of the population.
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Statistically Unproductive Rules: We start reviewing techniques regarding

statistically unproductive rules with the following example.

Example 2 Suppose the following propositional rules are generated by a rule dis-

covery systems:

A → C[support = 60%, confidence = 90%]

A&B → C[support = 45%, confidence = 91%]

A&D → C[support = 46%, confidence = 70%]

There is a strong possibility that the conditions A and B are independent and

the second rule conveys little interesting information given the first one. For many

rule discovery tasks, users are interested only in rules whose antecedents and con-

sequents are positively related. Therefore, the third rule is regarded as statistically

unproductive (or insignificant as is referred to by many other researchers (Bay and

Pazzani; 2001; Liu et al.; 1999b; Aumann and Lindell; 1999)) and should also be

discarded, because the condition D is negatively correlated to condition A concern-

ing the consequent C.

Statistical tests are applied to reduce the influence of sampling on resulting rules.

The Chi-square test is widely employed for testing independence with Boolean con-

ditions. Liu et al. (1999b) did research on association rules with fixed consequents.

They used a chi-square test to assess whether the antecedent of a rule is indepen-

dent from its consequent, accepting only rules whose antecedent and consequent are

positively correlated. Hence, rules that happen to appear “interesting” by chance

can be discarded in this way. The rules that are identified as productive but are

discarded by using a statistical test with a given significance level, are referred to

as statistically unproductive rules.

The chi-square test is also used in other contexts including contrast set discovery

(Bay and Pazzani; 2001) for identifying significance of discovered contrast sets.
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However, the chi-square test is not suitable for small samples and as the number

of rules increases so does the risk of type-1 error (discarding rules which are actually

significant). Webb (2005) proposed a statistically sound technique for filtering

derivative extended rules, using the Fisher exact test and a hold out set. Webb’s

technique successfully controls errors induced by multiple comparisons.

Applicability in Distributional-Consequent Rule Discovery

The maximal frequent itemset approaches can be introduced to the distributional-

consequent rule discovery directly, however, the resulting set of most specific

distributional-consequent rules can not successfully provide information that are

sought by the users who choose distributional-consequent rules over the proposi-

tional rules.

Galois connection is only applicable to qualitative attributes as far as we know.

It is not applicable with distributional-consequent rule discovery theoretically.

A naive adaption of the closed set and rule cover techniques for distributional-

consequent rule discovery would be impossible (Webb; 2005). However, the triv-

ial rule filter proposed by Webb and Zhang (2002) can be modified for pruning

distributional-consequent rules. We discuss details of how this can be implemented

chapter 4.

Setting a minimum improvement for distributional statistics for resulting impact

rules is not desirable. The interactions regarding undiscretized quantitative variable

are more subtle and even harder to capture using only thresholds of objective

interestingness measures. Statistical tests should be applied. Aumann and Lindell

(1999) proposed a technique for removing insignificant quantitative association

rules using a standard z test based on the frequent itemset framework. However,

their approach is not optimal for rule discovery in very large, dense databases, since



3.3. EFFICIENCY CONSIDERATION 61

their approach was based on frequent itemset generation, which requires excessive

computation for maintaining candidates in memory during rule discovery.

3.3 Efficiency Consideration

Originally developed in the context of market basket data, which is generally sparse

with relatively smaller data volume, the traditional frequent itemset techniques are

computationally infeasible to discover rules in very dense real world databases. Two

drawbacks are identified with the traditional frequent itemset approaches. First,

it is too expensive to handle huge numbers of candidate itemsets generated during

rule discovery, due to the prohibitive maintenance overhead. Second, it is tedious

to repeatedly access the database and check the candidates by pattern matching

which is especially true for mining long patterns (Han, Pei and Yin; 2000). Due

to the features of rules discovered using exploratory rule discovery, which we have

mentioned before, rapid progresses have found their ways in real world exploratory

rule applications. It is necessary to design algorithms for rule discovery in databases

with huge redundancies, such as census databases. How to improve the efficiency

of exploratory rule discovery becomes a critical issue of concern.

Some researchers tried to develop efficient algorithms on the basis of the fre-

quent itemset framework, while others strived towards novel implementations using

different rule discovery frameworks. In this section, we provide a brief review of

existing fast algorithms for exploratory rule discovery and highlight the efficiency

problem of distributional-rule discovery which is even worse comparing with that

of propositional rule discovery.
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3.3.1 Efficient Improvements with the Frequent Itemsets

Framework

The frequent itemset approaches, a typical example of which is the Apriori algo-

rithm, normally undertake two phases: 1. The candidate generation phase in which

frequent itemsets are generated by accessing the database numerous times, 2. In

the second phase, rules are derived from the discovered candidates, meanwhile,

support and confidence are counted by further passes through the database. With

respect to these two phases, different efficient techniques are studied. Since the

first candidate generation phase is much more computationally expensive than the

rule generation phase, more research is devoted to improve the frequent itemset

generation efficiency.

Examples of fast algorithms based on the frequent itemset generation are sum-

marized in the following list:

1. Efficiency improvement using search space and rule pruning: Most

of the pruning techniques reviewed in the previous section can help to achieve

better efficiency for the candidate generation process. Agrawal and Srikant

(1994) were the first to use the pruning trick with anti-monotone constraints.

Closed set related techniques only access a suborder of the original frequent

itemset lattice and thus the running time is reduced.

2. Vertical database layout: Traditionally, a horizontal database layout is uti-

lized for organizing data. In the horizontal layout, data is arranged as a set

of rows, representing records, which consist of identification numbers, called

TID (Transaction Identification), and sets of values for attributes. When such

a structure is used, extra computational overheads are required for search-

ing, maintaining, and computing of candidates. The entire database has to

be accessed even if only a small subset of the records are useful. The vertical
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database layout is designed to circumvent these problems. In the vertical

database layout, conditions (attributes taking a value or a range of values)

are followed by a list of TIDs. All necessary information for rule discovery is

contained in the vertical layout which can speed up the rule discovery pro-

cess (Zaki, Parthasarathy, Ogihara and Li; 1997a). Examples of algorithms

using a vertical database layout for enhancing rule discovery efficiency are

VIPER proposed by Shenoy et al. (2000), Eclat by Zaki, Parthasarathy and

Li (1997) and MaxEclat and MaxClique by Zaki, Parthasarathy, Ogihara and

Li (1997a).

3. Parallel algorithms: Parallel algorithms for exploratory rule discovery are

extensively studied. Agrawal and Shafer (1996) first proposed three par-

allel rule mining algorithms on shared-nothing multi-processors. These al-

gorithms explored different extents of tradeoff between communication and

memory costs to achieve an optimal balancing point. The count distribu-

tion algorithm turned out to be the best of all, and delivered far superior

performance to previous work. Zaki, Parthasarathy, Ogihara and Li (1997b)

proposed the CCPD algorithm for association rule mining in shared-memory

multi-processors. In CCPD, frequent itemsets are parallelly generated into

a hash structure shared among different processors. Many additional opti-

mizations are introduced to enhance the performance. Zaki, Parthasarathy

and Li (1997) proposed the algorithm, Eclat, for efficiently parallel mining

of association rules by clustering frequent itemsets into equivalences classes

and then distribute them to different processors, reducing the database scans

to at most three. Park et al. (1995b) suggested a parallel algorithm PDM as

an extended study for the hash-based rule discovery algorithm DHP (Park

et al.; 1995a).
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4. Sampling and partitioning : These techniques are for minimizing the I/O

expenses during rule discovery by reducing the size of data to be processed

at a time. For sampling techniques, only a small subset of the database is

drawn for rule mining. Since the volume of sample data is small enough to

be stored in the memory for processing, rules can be found using as few scans

as possible. Toivonen (1996) suggested a two-phase rule discovery algorithm

in which rules are discovered in one data pass using sample data. However,

sampling may lead to data skew and the resulting rules found may suffer from

inaccuracy. The authors verified the rules found from the sample data using

the rest of the database after rule discovery, so that rules missing from the

sample can be identified. This algorithm requires at least one pass through

database and two passes in the worst case. Savasere et al. (1995) used the

algorithm partition to minimize the number of necessary scans of database,

resulting in the same number of scans as that for the sampling algorithm by

Toivonen (1996). At most one scan is required for candidate generation and

another is for counting support. In this algorithm, the databases are divided

into small partitions, and local frequent itemsets are found which can then be

used to derive the global frequent itemsets and rules. Since no information

is shared among different partitions, this algorithm can be run on parallel

systems. Partition also suffers from data skew. SPINC, which is proposed by

Mueller (1995), can reduce the maximum number of scans to only 2n−1
n

. Lin

and Dunham (1998) also proposed an anti-skew algorithm which performs as

well as SPINC.

5. Other techniques: L-Gen, which was proposed by Yip et al. (1999) min-

imizes the I/O costs of frequent-itemset-based exploratory rule mining by
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generating candidates of multiple sizes (instead of one), based on lattice the-

ory, during each database scan. Such a structure provides scopes for the

algorithm to make use of prior knowledge collected during previous scans to

prune un-useful candidates in early stage. In the best case, only two scans

of database are necessary. Brin, Motwani, Ullman and Tsur (1997) proposed

DIC (Dynamic Itemset Counting) for fast generation of candidates. DIC

performs an eager search for frequent itemsets. Candidates are generated as

soon as all its subsets are known to cover more records than the minimum

requirement. Usually two scans are necessary for discovering candidates us-

ing homogenous data. A hash-based algorithm DHP (Direct Hashing and

Pruning) is studied by Park et al. (1995a). The authors showed that a hash

technique can be used to accelerate the candidate generation of 2-itemset.

However, later studies showed that a hash structure can add to the over-

heads and slow the discovery efficiency down in later iterations for bigger

itemsets.

Other Efficient Implementations

Frequent itemset based techniques, most of which employ a generate-and-test

paradigm, play a crucial part in the context of exploratory discovery. However,

since Apriori-based techniques utilize a level-wise breadth-first manner for lattice

transverse, a great amount of computation is required for memory and data main-

tenance. A minimum support constraint is usually adopted to prune the NP-hard

search space. The number of iterations required for itemset generation depends on

the size of longest frequent itemsets. computational expenses are even more chal-

lenging on occasions where the size of longest patterns to be found is very large or

the support threshold is very low.
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Set enumeration approaches (Agarwal et al.; 2001) employed the set enu-

meration structure to discovery association rules, To reduce the redundancies in

database access and candidate maintenance costs. A lexicographic tree of itemsets

is constructed successively to generate the candidates. Such a structure makes sure

that any itemset will only be assessed once during the rule discovery process. After

the frequent itemsets are generated, support and confidence are counted against

a metric structure in Agarwal et al. (2001)’s proposal. They proposed algorithms

for breadth-first, depth-first as well as a combined approach to iterate through the

search space.

One of the efficient depth-first set enumeration algorithms for rule discovery

is the OPUS based algorithm for k-optimal rule discovery (Webb; 1995). They

introduce branch and bound techniques for effective search spaces pruning and

thus improve the efficiency of rule discovery.

Depth-first algorithms are also introduced with other techniques for efficiency

improvement. Agarwal et al. (2000) and Burdick et al. (2001) both used a depth-

first structure to efficiently mine maximal frequent itemsets.

Bay and Pazzani (2001) used a breadth-first set-enumeration approach for con-

trast set discovery. Bayardo (1998)’s algorithm for mining maximal frequent item-

sets is also constructed on set enumeration.

Another algorithm based on tree formulation was designed by Han et al. (2000).

They proposed the FP-Growth (Frequent Pattern growth) algorithm which em-

ployed a novel, compact data structure called the FP-Tree. This is an extended

prefix tree structure bearing all necessary information for frequent pattern gen-

eration. A pattern fragment growth method is adopted to reduce the expenses

on candidate generation and maintenance, after which a partition-based method

is utilized to reduce the search space size. Then, a recursive divide-and-conquer

technique is applied for mining frequent itemsets. Their approach is efficient and
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scalable, leading to dramatic reduction in running time compared with the frequent

itemset based algorithms.

Bonchi and Geothals (2004) and Bonchi, Giannotti, Mazzanti and Pedreschi

(2003) proposed techniques for integrating anti-monotone and monotone con-

straints on the basis of extended FP-Growth algorithms.

3.4 Summary

In this chapter, we have extensively reviewed previous techniques for exploratory

rule pruning and optimizations, as well as techniques for fast rule discovery. We

first identified the drawbacks inherent in exploratory rule discovery and highlighted

the necessities for developing rule pruning algorithms. We then demonstrated the

fact that techniques for propositional and distributional-consequent rule discovery

are different in many ways. However, it is noticeable that although extensive

studies have been devoted to pruning propositional rules, comparatively little has

been done in the context of distributional-consequent rule discovery. Techniques

that are designed specifically for propositional rule discovery are not all directly

applicable in distributional-consequent rule discovery. We summarized the work

related to propositional rule discovery which comes in two categories.

The first category includes the constraint-based rule discovery techniques in

which the users are required to define a concrete set of criteria, called constraints,

either on interestingness measures or on rule structures. Although this helps to

accomplish superior performance in rule discovery, introducing user guidance in

this way brings some disadvantages. It is hard to subjectively specify a proper

threshold or range for an objective interestingness measure and ensure that all

the “interesting” rules remain. Setting constraints for rule structures can result
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in reduction of overall interestingness of resulting rules in some applications, since

many of the resulting rules happen to coincide with users’ background knowledge.

The second category of rule pruning technique focuses dominantly on how to re-

move rules that are potentially uninteresting because it can somehow be “derived”

from other rules. Three representational subclasses of techniques are reviewed, in-

cluding the maximal frequent itemsets discovery, the non-redundant rule discovery

and the productive and statistically significant (unproductive) rule discovery.

Applicability of the techniques with propositional rule discovery in the context

of distributional-consequent rule discovery was discussed and possible extensions

and adaptions were suggested.

Finally, we examined previous research regarding efficient discovery of rules.

Many fast algorithms are developed on the basis of frequent itemset generation:

generating all candidates and then test their interestingness after which rules are

discovered. Efforts were delivered primarily to how to reduce the I/O costs. While

others suggested novel approaches for rule discovery using frameworks other than

frequent itemset generation, examples are the set-enumeration and the FP-Growth

algorithms.

In the next chapter, we are going to propose several techniques for improving

interesting impact rule discovery efficiency. Another type of derivative rules that

has not been studied by previous research is also defined and a new algorithm is

designed for removing such rules.



Chapter 4

Effective Impact Rule Pruning

In previous chapters, we have reviewed existing research regarding exploratory

rule discovery, classifying them into two main classes: propositional rule discovery

and the distributional-consequent rule discovery. We have also given a survey for

different techniques for rule pruning and rule discovery. It has been discussed

that research in the area of distributional-consequent rule discovery is limited.

However, efficiency problems in distributional-consequent rule discovery are more

remarkable since extra computational and I/O costs are required for collecting

necessary distributional statistics for describing resulting rules. Furthermore, the

problem of too many resulting rules also exist with distributional-consequent rule

discovery. Since previous techniques are mainly designed for propositional rule

discovery, there is an urge for developing fast and effective rule pruning techniques

for distributional-consequent rule discovery.

As far as we know, the technique for removing quantitative association rules pro-

posed by Aumann and Lindell (1999) is one of the few approaches for distributional-

consequent rule pruning. However, their approach is not optimal for rule discovery

in very large, dense databases, since it was devised based on the Apriori algo-

rithm. When working on very dense databases, Apriori requires prohibitively ex-

pensive computational costs and memory storage for storing and maintaining the

69
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candidates, for the number of candidates generated during rule discovery can be

unwieldy.

In this chapter, we argue that existing rule pruning techniques are not sufficient

for removing all the potentially uninteresting rules that can be theoretically identi-

fied. We propose the definition of derivative partial impact rules, and analyze their

differences from the previously identified uninteresting distributional-consequent

rules. We also explain the relationship among different kinds of rules. We pro-

pose an efficient implementation for pruning derivative partial rules and derivative

extended rules, which is similar to the insignificant quantitative association rules

proposed by Aumann and Lindell (1999). After this, three techniques for improv-

ing the efficiency of impact rule pruning are proposed. These are the triviality

filter, which acts as an alternative to as well as a complement for the derivative

extended rule filters; the difference set statistic derivation approach, which aims

at reducing the data access redundancies during rule generation, and the circu-

lar intersection approach which improves the efficiency by eliminating redundant

intersection operations.

4.1 Derivative Impact Rules

It has been repeatedly mentioned in this thesis that the problem of too many result-

ing rules is among the typical problems of exploratory rule discovery. Identifying

and removing potentially uninteresting or spurious rules has always been a focus

of data mining research. In section 3.2.2, we have reviewed the techniques for re-

moving rules that are uninteresting because of the existence of some or one of their

generalizations. Examples are the closed set related techniques, the techniques for

removing trivial rules, and unproductive rules. We applied the term derivative ex-

tended rules to describe the uninteresting rules removed using such techniques. The
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set of derivative extended rules is only a subset of derivative rules. We have also

given the description of derivative rules, which, just as the name implies, derivative

rules are those which convey redundant information that can somehow be derived

from other rules. Rules that are not “derivative” from any other rules are referred

to as fundamental rules. In this section, we are going to propose two derivative rule

filters, and explain how these filters can effectively reduce the number of resulting

rules.

4.1.1 Derivative Extended Rules

We applied the constraint based OPUS IR in table 3.2 to the fictitious database in

table 2.2 with the minimum coverage set to 0.2, 19 rules are generated as outcome

as shown in figure 4.1. In this figure, the italic nodes are those identified as “strong”

with a coverage over 0.2, the × nodes correspond to the nodes or branches that are

pruned without additional data accesses, according to the anti-monotonicity of the

minimum coverage constraint; while others are nodes that are found “uninteresting”

after accessing the data. As the size and density of database on which OPUS IR

is run increase, the number of resulting rules increases exponentially.

Derivative Extended Rule Pruning

Aumann and Lindell (1999) introduced insignificant quantitative association rule

pruning. They defined a rule with a significantly different mean from all its parents’

as significant (desired). An uninteresting impact rule whose mean is not signifi-

cantly improved comparing with any of its parents’ may happen to be interesting

by chance due to sampling fluctuations. The seemingly interesting information con-

veyed by such rules is implied by their fundamental counterparts. In other words,

these rules are derivative comparing with its parents (ancestors). Using Aumann

and Lindell’s definition, many rules whose performance is not significantly improved
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{}

{Cat1=A}
{Cat1=B} {Cat1 = A, Cat1 = B}

{Num<=10}
{Cat1=A, Num<=10}
{Cat2=B, Num<=10} ×

{Num>10}

{Cat1=A, Num>10}
{Cat1 = B, Num > 10} ×
{Num <= 10, Num¿10} ×

{Cat2=C}

{Cat1=A, Cat2=C}
{Cat1=B, Cat2=C} ×

{Num<=10, Cat2=C}
{Cat1 = A, Num <= 10, Cat2 = C}
{Cat1=B, Num<=10, Cat2=C} ×

{Num>10, Cat2=C}
{Cat1=A, Num>10, Cat2=C}
×
×

{Cat2=D}

{Cat1=A, Cat2=D}
{Cat1=B, Cat2=D} ×

{Num<=10, Cat2=D}
{Cat1 = A, Num <= 10, Cat2 = D}
{Cat1=B, Num<=10, Cat2=D} ×

{Num > 10, Cat2 = D} ×
{Cat2 = C, Cat2 = D} ×

Figure 4.1: Search space for OPUS IR Filter, with minimum coverage 0.2

in comparison with their parents, are found. However, as far as we are concerned,

these should be discarded in many contexts of application. For example, if the

target mean of A & B → profit is worse than that of its parents’: A → profit, it

follows that the condition B is negatively related to profit given condition A, and

can only reduce the resulting profit. Thus, rule A & B → profit is of little interest

to the users. Such rules are what we call: derivative extended rules.

Herewith, we present our definition of derivative extended impact rule as follows:

Definition 3 An impact rule A → target is a derivative extended rule if the

distribution of its target is not significantly improved in comparison with any of the

target distribution of rule A′ → target, where A′ ⊂ A and |A′| = |A| − 1.

DeriExtended(A → target) =

∃x ∈ A, dist(A → target) 6� dist(A− x → target)
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A rule is significant if it is not derivative extended.

Unproductive rules and the statistically unproductive rules, which were intro-

duced in chapter 3, are all derivative extended rules.

As far as we are concerned, rules whose performances cannot be understood

through their parents, yet can be predicted using any of their grandparents’ are

still interesting. The following example exhibits our reasons.

Example 3 Let us look at the following rules,

District = A → profit(mean = 1000)

District = A & age > 50 → profit(mean = 500)

District = A & age > 50 & professor = Engineer → profit(mean = 1000)

The third rule is interesting, because with these resulting rules, it is obvious that

high profits are produced by people in district A who are engineers above the age

of 50, however, those are over 50 years of age but are not engineers do not yield

desirable profits. The third rules can make decision makers’ attention more focused

without losing opportunities for profit improving.

The most important issue of implementing the derivative extended rule filter is

how exactly the term significantly improved is defined. We assume a context where

the users seek impact rules that maximize a certain measure of interestingness, such

as mean. Equivalent techniques for minimization can be derived from our technique

in a straightforward manner. In this thesis, we restrict ourselves to regard that if

a distribution dista has a mean significantly more desirable than that of distb at a

given significance level, dista is said to be significantly improved in comparison to

distb.

In our proposal, two kinds of impact rules are treated differently to assess the

rule derivability. To decide whether a rule, the antecedent of which is composed

of only one condition, is derivative extended or not, we compare the target mean
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of this rule with the global target mean of the database. Only if the former is

significantly improved compared with the latter, should the rule be accepted. As

regards rules with more than one condition as antecedent, if the target mean of

such a rule is significantly higher than the target means all of its direct parents’,

it is a significant rule.

Statistical Test

Since by performing the exploratory rule discovery, we are aiming at discovering

rules that characterize the features of a population with reference to available

sample data, hypothesis tests must be applied to assess whether a rule is derivative

or not.

The chi-square (Bay and Pazzani; 2001; Liu et al.; 1999b) and the Fisher exact

tests (Webb; 2005), which are both adopted to judge whether propositional rules

are derivative or not, are not applicable with distributional-consequent rules. The

standard z test was adopted by Aumman and Lindell for identifying quantitative

association rule derivability. However, it is notoriously inappropriate for small

samples Webb (2005). The t-test is a better statistical test for comparing means of

independent samples of any size. As the degree of freedom for the t test increases

with the size of the data sample, the t-test approaches the standard z test. In this

way, better scalability is achieved.

The t-test is a well-known parametric test for detecting difference between sam-

ple means of two distributions. For parametric methods, we assume that the popu-

lations from which the samples are drawn must be at least approximately normally

distributed or we rely on the central limit theorem to give us a normal approxima-

tion (Johnson; 1996).

The t-test is only applicable for comparing means of two independent samples,

however, coverset(A) is a subset of coverset(A−x) in definition 3. Practically, the
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target means of coverset(A) and coverset(A− x)− coverset(A) are compared. In

practical implementation, the definition of derivative extended rules is:

Definition 4 DeriExtended(A → target) =

 tarmean(coverset(A)) 6� tarmean(coverset(¬A)) if |A| = 1;

∃x ∈ A, tarmean(coverset(A)) 6� tarmean(coverset((A− x) & ¬A)) if |A| > 1.

Note that using statistical tests to automatically identify derivative extended

rules is inherently statistically unsound (Webb; 2005). There are high risks of

type-1 errors of accepting spurious or uninteresting rules, as well as type-2 errors of

rejecting rules that are actually interesting. However, this is not an issue of concern

in our thesis, because it can be solved by introducing the technique proposed by

Webb (2005).

After applying the derivative extended filter using a t-test, only two impact rules

remained as significant. The number of resulting rules goes through a decrease of

nearly 90%. Here are the rules identified as significant after applying the derivative

extended rule filter:

Cat1 = A & Num <= 10 → Target(coverage : 3, mean : 11.8, variance : 0.52,

min : 11, max : 12.4, sum : 35.4, impact : 27.96)

Num <= 10 → Target(coverage : 9, mean : 4.66667, variance : 35.4425,

min : −3, max : 12.4, sum : 42, impact : 19.68)

4.1.2 Derivative Partial Rules

There exists, however, another type of derivative rules that are spurious or poten-

tially uninteresting, which remain in the resulting set even after applying all the
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existing rule pruning techniques. For any rule A & B → C which is not derivative

from another rule and for which there is a correlation between the antecedent and

the consequent, both A and B are seemingly correlated with C solely due to corre-

lation between A & B and C. In this case, A → C and B → C are both derivative

rules that are potentially uninteresting.

The following example illustrates an occasion where such a potentially uninter-

esting rule may be generated.

Example 4 Suppose a retailer is trying to identify the groups of customers who

are likely to buy some new products. After applying the impact rule discovery with

the derivative extended rule, the following rules are identified as solutions:

Age > 50 → profit(coverage = 200, mean = 100)

District = A → profit(coverage = 200, mean = 100)

District = A & age > 50 → profit(coverage = 100, mean = 200)

Although these three rules all survived the derivative extended impact rule filter,

the first two, which are ancestors of the third one are misleading. Actually, no

profit is produced by customers who belong to district A and are older than 50 or

those who are older than 50 but living outside district A! The first two rules happen

to be “interesting” by virtue of the profits induced by the records covered by the third

rule, which are only half of those covered by the first two. The retailer’s attention

should be more sensibly concentrated on the group of customers who are under age

50 in district A, instead of on all those in district A or those over 50 years of

age. Keeping the first two rules in the resulting solutions may confuse the decision

makers.

We refer to the first two rules in this example, which are potentially uninterest-

ing as derivative partial rules.

In this section, we investigate the identification of derivative partial rules, in the

context of impact rule discovery, which are different from the previously mentioned

derivative extended rules. We define derivative partial impact rules as follows:



4.1. DERIVATIVE IMPACT RULES 77

Definition 5 A significant impact rule, A → target is a derivative partial rule, if

and only if there exists a condition x 6∈ A, where the target mean for coverset(A)−
coverset(A & x) is not higher than the target mean for coverset(¬A) at a user

specified level of significance.

DeriPartial(A → target) = ∃x ∈ (C − {A}),

TarMean(coverset(A & ¬x)) 6� TarMean(coverset(¬A))

As is argued in the previous section, existing techniques cannot successfully

remove derivative partial rules. Even after both rules: A → target and A &B →

target, have been identified as non-derivative extended rules, there is still a risk

that either or both of them are potentially uninteresting. For example, if the target

mean of coverset(A & ¬B) is not significantly higher than the target mean of

coverset(¬A), it can be asserted that the notably high target mean of coverset(A)

is produced solely by virtue of that of coverset(A & B), which is only a subset of

coverset(A). Derivative partial rules are derivative from fundamental rules which

are their children as opposed to derivative extended rules which can be derived

from their fundamental ancestors.

After further rule pruning using the derivative partial rule filter using the t-test,

only one significant rules that survived the derivative extended rule filter remains.

Cat1 = A & Num <= 10 → Target(coverage : 3, mean : 11.8, variance : 0.52,

min : 11, max : 12.4, sum : 35.4, impact : 27.96)

4.1.3 Relationship among Rules

As has been defined, rules that can somehow be derived from their parent or child

rules are referred to as derivative rules. Contrarily, rules that are not derivative
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Figure 4.2: Relationship of different rules

with regard to either its generalizations or its specifications are all referred to as

fundamental rules.

The relationships among different rules are explained in figure 4.2. In this fig-

ure, fundamental rules can also be referred to as non-derivative rules. Derivative

extended rules are those defined as insignificant rules in previous research. Unpro-

ductive rules are those exhibit no improvement with respect to a specific measure

of interestingness compared with their parent rules. Trivial rules are rules whose

antecedents cover exactly the same set of records as that by one of their parent

rules. As will be argued in the later part of this thesis, trivial rules are special

derivative extended rules. Those that are productive, with respect to the sample,

but fail the significance test are all classified as statistically unproductive.

4.1.4 Algorithm with Derivative Rule Pruning

Aumann and Lindell (1999) used the frequent itemset framework for their imple-

mentation of quantitative association rule discovery. However, in cases where there
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are numerous large itemsets, the overheads of itemset maintenance and manipula-

tion can be unwieldy (Webb; 2000). Our k-optimal impact rule discovery which is

constructed on the OPUS algorithm can successfully overcome this problem by per-

forming efficient search space pruning. Moreover, Aumann and Lindell separated

the two processes of rule discovery and rule filtering, which sacrifices some oppor-

tunities for using filtering for rule discovery process efficiency gains. We manage

to improve rule pruning efficiency by combining these two processes and pruning

the search regions that only contain spurious rules.

The algorithm for derivative impact rule filtering, OPUS IR Filter, is set up on

the basis of OPUS. It systematically searches through the combinations of condi-

tions that may appear on the antecedent of an impact rule and prune the search

space according to the requirements of a particular search. Based on the OPUS

structure, there is no need to allocate huge memory space to store all the frequent

itemsets during the rule generation process. Hence, this is a better approach for

discovering rules in very large, dense databases. However, it is not restricted to

applications with large, dense databases only. Table 4.1 contains the pseudo code

of OPUS IR Filter, which is our impact rule discovery algorithm with filters. The

filtering of derivative extended impact rules is done at step 2.3.1 during impact rule

discovery, by comparing the target mean of current rule with all its direct parents’.

Derivative partial rules are removed from the rule list at step 2.3.5 according to

definition 5.

In this algorithm, rule list is an ordered list for the top k optimal rules that

have been encountered, where k is specified by the users before searching. Current,

available and M have the same meaning as in table 3.2. All the parent rules of

current rule are stored in parent rule list while checking whether current rule

is derivative extended or not. After current rule is identified as significant, the
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Algorithm: OPUS IR Filter(Current, Available, parent rule, M)

1 SoFar := ∅;

2 FOR EACH P in Available

2.1 New := Current ∪ P

2.2 current rule = New → target

2.3 IF New satisfies all the prunable constraints in M THEN

2.3.1 FOR EACH direct subset New′ of New

2.3.1.1 get statistics of coverset(New′)

2.3.1.2 IF tarmean(New → target) 6� tarmean(coverset(New′) −
coverset(New)) THEN

go to step 2.3.7;

2.3.1.3 add New′ → target to parent rule list;

2.3.1.4 END IF

2.3.2 END FOR

2.3.3 IF New → target satisfies all non-prunable constraints

in M
record New → target to rule list

2.3.4 END IF

2.3.5 FOR the antecedent New′ of EACH rule in parent rule list

2.3.5.1 IF tarmean(coverset(New′) − coverset(New)) 6�
tarmean(coverset(¬New′)) THEN

delete New′ → target from rule list

2.3.5.2 END IF

2.3.6 END FOR

2.3.7 OPUS IR Filter(New, SoFar, mathcalM)

2.3.8 SoFar := SoFar ∪ P

2.4 END IF;

3 END FOR

Table 4.1: OPUS IR Filter with efficiency improvement
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derivative partial rule filter is then applied to assess whether the parents are deriva-

tive partial with regard to current rule. Derivative partial rules are deleted from

the rule list. Since all the parent rules of current rule has already been explored

before current rule (please refer to the search space of OPUS IR), every derivative

rule is guaranteed to be removed following this procedure.

4.1.5 Efficiency Improving Techniques

Distributional-consequent rule discovery requires several passes through the

database in order to collect necessary statistics for describing resulting rules. To

implement the derivative filters also has a stringent demand for further computa-

tion and data accesses. This make exploratory rule discovery efficiency problems

more severe. Little research have been done regarding how to improve the efficiency

of distributional-consequent rule discovery. Herewith, we propose three techniques

for improving impact rule pruning efficiency. The triviality filter is proposed as

and alternative and complement for the derivative filters. Efficient search space

pruning can be performed by imposing a special property of triviality. To reduce

the redundancy of data accesses, we propose the difference set statistics derivation

approach. The circular intersection approach is designed in order to get rid of

redundancies in coverset generation.

Trivial Impact Rules

Although applying statistical tests during rule discovery enables successful re-

moval of derivative extended impact rules, this approach requires additional passes

through the database so as to obtain necessary statistics for performing the tests.

We exploited possible improving schemes for more efficient search space pruning,
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and present the definition of trivial impact rules, which is a special case of a deriva-

tive extended rule. The property of triviality can quicken up the identification and

removal of derivative extended rules.

Definition 6 An impact rule A → target is trivial iff there is a rule A′ → target

where A′ ⊂ A, and A′ and A cover the identical set of records.

trivial(A → target) = ∃A′ ⊂ A, coverage(A) = coverage(A′)

We have talked about the anti-monotone constraints that can facilitate effective

search space pruning and considerably improve the efficiency of rule discovery. We

identify the anti-monotonicty of triviality related constraints and give the proof in

the context of impact rule discovery.

Theorem 1 “An impact rule is not trivial” is an anti-monotone constraint: if a

rule A & B → target is trivial with regard to its parent rule: A → target, then all

the rules, whose antecedent is a superset of A & B, are also trivial1.

Proof 1 According to definition 6,

coverset(A) = coverset(A & B). (4.1)

For any record r′ ∈ D, if

r′ 6∈ coverset(A & B& C)

⇒ r′ 6∈ coverset(A & B) ∨ r′ 6∈ coverset(C) (4.2)

Consider equation 4.1

⇒ r′ 6∈ coverset(A) ∨ r′ 6∈ coversetC

⇒ r′ 6∈ coverset(A & C)

So

∀r 6∈ coverset(A & B & C) → r 6∈ coverset(A & C)

1This proof is essentially equivalent to a proof of Webb and Zhang (2002)
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coverset(A & C) ⊆ coverset(A & B & C) (4.3)

Since A & C is a subset of A & B & C,

coverset(A & B & C) ⊆ coverset(A & C) (4.4)

It can be concluded from 4.3 and 4.4 that

coverset(A & B & C) = coverset(A & C)

Hence, the rule A & B & C → target is a trivial rule with regard to its parent

A & C → target. The theorem is proved.

At step 2.3.1 of the algorithm in table 4.1, we assess whether a rule is derivative

or not by comparing the target mean of current rule with all its direct parents’.

To ease the implementation of the triviality filter, we assert that if a rule is not

trivial with respect to any of its direct parents, it is not trivial either with any of

its ancestors.

Lemma 1 If A → target is a trivial rule, there must exist a direct parent of

A → target, which covers exactly the same set of records as A → target.

∃x ∈ A, trivial(A → target) ∧ coverage(A) = coverage(A− x)

Proof 2 If there is no x ∈ A which satisfies coverage(A) = coverage(A− x) then

∀x ∈ A, coverset(A) ⊂ coverset(A− x)

∀S ⊂ (A− x), coverset(S) ⊆ coverset(A− x)

If S ⊂ (A− x) then S ⊂ A, so it is obvious that

∀S ⊂ A, coverset(S) ⊂ coverset(A)

which contradicts our assumption. The theorem is proved.
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{}

{Cat1 = A}
{Cat1 = B}

{Num <= 10}
{Cat1 = A, Num <= 10}
×

{Num > 10} ×

{Cat2 = C}

{Cat1 = A, Cat2 = C}
{Cat1 = B, Cat2 = C}
{Num <= 10, Cat2 = C} ×
{Num > 10, Cat2 = C} ×

{Cat2 = D}

{Cat1 = A, Cat2 = D}
{Cat1 = B, Cat2 = D}
{Num <= 10, Cat2 = D} ×

Figure 4.3: Pruned search space at step 2.2.1

According to lemma 1, if rule A → target is trivial, there must be a condition

x ∈ A where coverset(A) = coverset(A−x). It follows that the target distribution

of A → target and its direct parent A−x → target are the same. Considering also

the definition of derivative extended impact rules, we can safely conclude that a

trivial rule is a derivative extended rule. By applying a statistical test to compare

the target mean of current rule with all its direct parents only, we are able to

identify all trivial impact rules. Nonetheless, the triviality filter is more powerful

in its effect, for its anti-monotonicity accelerates the search space pruning process

and no computational expenses are required for doing statistically tests.

Lemma 1 ensures that we only have to check all direct subset of the rule an-

tecedent to assess the triviality of that rule. Theorem 1 justifies our pruning at

step 2.3 in table 4.3, which dramatically improves the efficiency of search.

Figure 4.3 shows the effect of pruning according to triviality in OPUS IR Filter

search space for the fictitious database. As an example, node {Num>10, Cat2=D} is

trivial, so any superset of {Num>10, Cat2=D} should be pruned without accessing

the records, according to theorem 1. After applying the triviality filter of impact
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Trivial rules Nontrivial counterparts

Cat1=B & Num<=10 & Cat2=D →
Target (coverage:3 mean:2.26667
variance:15.4133 min:0 max:6.8
sum:6.8 impact:-0.64)

Cat1=B & Cat2=D → Target
(coverage:3 mean:2.26667
variance:15.4133 min:0 max:6.8
sum:6.8 impact:-0.64)

Cat1=B & Num<=10 & Cat2=C →
Target (coverage:3 mean:-0.0666667
variance:7.26333 min:-3 max:2.3
sum:-0.2 impact:-7.64)

Cat1=B & Cat2=C → Target
(coverage:3 mean:-0.0666667
variance:7.26333 min:-3 max:2.3
sum:-0.2 impact:-7.64)

Cat1=B & Num<=10 → Target
(coverage:6 mean:1.1
variance:10.704 min:-3 max:6.8
sum:6.6 impact:-8.28)

Cat1=B → Target (coverage:6
mean:1.1 variance:10.704 min:-3
max:6.8 sum:6.6 impact:-8.28)

Cat1=A & 10<Num & Cat2=C →
Target (coverage:4 mean:-0.9
variance:3.28667 min:-2.7 max:1.6
sum:-3.6 impact:-13.52)

10<Num & Cat2=C → Target
(coverage:4 mean:-0.9
variance:3.28667 min:-2.7 max:1.6
sum:-3.6 impact:-13.52)

Cat1=A & 10<Num → Target
(coverage:6 mean:-0.8
variance:2.14 min:-2.7 max:1.6
sum:-4.8 impact:-19.68)

10<Num → Target (coverage:6
mean:-0.8 variance:2.14 min:-2.7
max:1.6 sum:-4.8 impact:-19.68)

Table 4.2: Trivial rules found in the fictitious database

rules, 5 out of the 19 rules found without using any filter are removed. The trivial

rules and their corresponding nontrivial counterparts are listed in table 4.2.

Difference Set Statistics Derivative Approach without Data Access

According to the algorithm in table 4.1 and definition of derivative extended rules,

we have to compare the target mean of current rule with those of all its direct

parents’ in order to assess whether a rule is derivative extended or not. The set

difference operations necessary for performing the statistical tests require excessive

data accesses and computation. However, by examining the implementation of

the derivative extended rule filter, with the status of current rule and any of its

parent rule known, we are able to derive the statistics of the difference sets for

performing the statistical tests without additional accesses to the database. For

example, since the OPUS IR Filter function calls itself recursively, when we are
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trying to identify the derivability of node {Cat1=A, Num<=10}, we can have the

status of rule Num <= 10 → target, which is a parent rule of current rule:

Cat1 = A & Num <= 10 → target, as the function input. The comparison

between coverset(Cat1 = A, Num <= 10) and coverset(Num <= 10) can be

done with no additional data access. The following lemma validates the above

statement.

Lemma 2 Suppose we are searching for impact rules from a database D. If A ⊂ B,

and coverset(A) − coverset(B) = R, where A and B are both conjunctions of

conditions, and R is a set of records from D. If the means and variances of

the target attribute over coverset(A) and coverset(B) are known, as well as the

coverages of both record sets, the mean and variance of the target attribute over

set R can be derived without additional data access.

Proof 3 Since coverset(A)− coverset(B) = R, it is obvious that2

|R| = coverage(A)− coverage(B) (4.5)

mean(R) =
coverage(A)×mean(A → target)− coverage(B)×mean(B → target)

|R|
(4.6)

variance(A → target) =

∑
x∈coverset(A) (target(x)−mean(A → target))2

coverage(A)− 1
(4.7)

variance(B → target) =

∑
x∈coverset(B) (target(x)−mean(B → target))2

coverage(B)− 1
(4.8)

∑
x∈coverset(A)

target(x) = mean(A → target)× coverage(A) (4.9)

∑
x∈coverset(B)

target(x) = mean(B → target)× coverage(B) (4.10)

2Coverset(A) represents the set of records that satisfy all the conditions in A.
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From 4.7, 4.8, 4.9 and 4.10 it is feasible to derive the following equation:

∑
x∈R

target(x)2 =
∑

x∈coverset(A)

target(x)2 −
∑

x∈coverset(B)

target(x)2

= variance(A → target)× (coverage(A)− 1)

+mean(A → target)2 × coverage(A)

−variance(B → target)× (coverage(B)− 1)

−mean(B → target)2 × coverage(B)

(4.11)

∑
x∈R

target(x) =
∑

x∈coverset(A)

target(x)−
∑

x∈coverset(B)

target(x) (4.12)

Thus,

variance(R) =

∑
x∈R (target(x)−mean(R))2

|R| − 1

=

∑
x∈R target(x)2

|R| − 1
− 2mean(R)

∑
x∈R target(x)

|R| − 1
+
|R|mean(R)2

|R| − 1

Since all the parameters in the right hand side of the equation are known, we

are able to derive all the necessary statistics for performing statistical tests without

generating the difference set from the database, or accessing the records in R. The

lemma is proved.

Note: in this proof, mean(A → target) denotes the target mean of the records

covered by rule A → target, variance(A → target) denotes the target variance of

the records covered by rule A → target; while mean(R) denotes the target mean of

the records in record set R, and variance(R) represents the target variance of the

records in R.

According to definition 4, Coverset(¬A) or coverset((A− x) & ¬A) has to be

generated before another necessary pass through the database for collecting neces-

sary statistics for statistical test to determine whether current rule is derivative or

not. Considering the above lemma, we are able to save a great deal of data accesses

and computation for collecting necessary statistics if we have already known the
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Figure 4.4: Difference set derivation approach

status of parent rule. For example, in figure 4.4, when we are trying to identify

whether rule ac → target, which is connected with node ac is derivative or not, we

can derive necessary statistics of coverset(a¬c) for testing rule derivability without

any further data accesses.

Moreover, if current rule is derivative from the input parent rule, right after

which the current rule is explored, following computation for checking the deriv-

ability of current rule with its other parents are not necessary. The efficiency of

the search algorithm can thus be considerably improved.

Moreover, after current rule is identified as significant, everyone of its parent

rules stored in the parent rule list is compared with current rule to assess whether

it is derivative partial or not. By applying the difference set statistics derivation

approach, the comparisons can be done with no additional data accesses either.

Circular Intersection Approach

According to the definition of derivative extended impact rules, we compare

current rule with all its direct parents to identify whether it is derivative extended

or not. In the original OPUS IR Filter algorithm in table 4.1, the procedure de-

scribed in figure 4.5 is employed to generate the coversets of every direct parent

of the current rule. Each arrow in figure 4.5 represents an intersection operation.

When deciding whether a rule with 5 conditions, namely A, B, C, D and E, on

the antecedent is derivative extended or not, the algorithm requires 16 intersection

operations! We call this approach the parallel intersection approach.

By examining figure 4.5, we notice that there are considerable overlaps

in the parallel intersection approach. For example, by using the parallel in-

tersection approach, we have to do the same intersection of coverset(A) and
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Figure 4.5: The parallel intersection Approach for ABCDE

Figure 4.6: The circular intersection approach flow for ABCDE

coverset(B) three times, when searching for coverset(ABCD), coverset(ABCE)

and coverset(ABDE).

We propose a more efficient approach for the same coverset generation task,

named the circular intersection approach, which is shown in figure 4.6. Each dashed

arrow in this figure points to the outcome of that specific intersection operation and

does not represent an actual intersection operation. In this approach, intersections

are done in two stages. Firstly, in the forward stage, intersections are done from

condition A to condition E one at a time, and the meta-resulting coversets are kept

in memory. Then, we do intersections from the last condition E back to the second

one B, one by one, which is referred to as the backward stage. In the backward

stage, the coverset of each direct parent of current rule is found by intersecting the

meta-resulting coversets produced in the forward stage with those in the backward

stage. The memory storage required for storing the outputs of the forward stage is

freed during the backward stage. By introducing the circular intersection approach,

the number of intersection operations required for identifying the derivability of the

current rule is reduced to only 10.
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Complexity

Using the parallel intersection approach, the maximum number of intersection op-

erations for iterating through all the subsets is:

(n− 2)× n + 1,

where n is the maximum number of conditions on the rule antecedent. The com-

plexity is O(n2).

After introducing the circular intersection approach, the maximum intersection

operations for iterating through all the subsets are:

3n− 5.

The complexity is O(n). However, practically, the difference in running time is so

dramatic, since we have introduced several techniques for pruning the search space.

Both the parallel intersection procedure and the circular intersection procedure

are apt to stop at any point when it is identified that current rule is potentially

uninteresting.

The two approaches (the difference set statistics derivation approach and the cir-

cular intersection approach) mentioned above can be combined with each other so

as to achieve more desirable efficiency. We can delete one more intersection opera-

tion by introducing the difference set statistics derivation technique in section 4.1.5.

Suppose that we are deciding whether the rule A & B & C & D & E → target is

significant or not. Now that the statistics of one of its parent A & B & C & D →
target is known, we don’t have to derive necessary statistics for coverset(ABCD).

Hereby, one intersection operation can also be removed by following the procedure

shown in figure 4.7 according to lemma 4.1.5. The maximum number of required

intersection operations is reduced to

3n− 6.

The new OPUS IR Filter algorithm with impact rule discovery efficiency im-

proving techniques that have been introduced is shown in table 4.3. In this table,

parent rule is the corresponding rule for the node whose children that are currently

being explored. The antecedent of parent rule is current.
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Algorithm: OPUS IR Filter(Current, Available, parent rule, M)

1 SoFar := ∅;

2 FOR EACH P in Available

2.1 New := Current ∪ P

2.2 current rule = New → target

2.3 IF New satisfies all the prunable constraints in M except

the nontrivial constraint THEN

2.3.1 Derive the statistics of coverset(Current) − coverset(New)
using the difference set statistics derivation

approach.

2.3.2 IF the tarmean(New → target) 6�
tarmean(coverset(Current)− coverset(New)) THEN

go to step 2.3.4;

2.3.3 ELSE use the circular intersection to compare

tarmean(New → target) with the mean of its direct

parents other than parent rule

2.3.3.1 IF tarmeanNew → target is significantly improved

comparing to all its direct parents’ THEN

IF New → target satisfy all non-prunable

constraints in M THEN

record New → target to rule list;

END IF

2.2.3.2 END IF;

2.3.3.3 OPUS IR Filter(New, SoFar, New → target, M);

2.3.3.4 SoFar := SoFar ∪ P ;

2.3.4 END IF;

2.4 END IF;

3 END FOR

Table 4.3: OPUS IR Filter with efficiency improvement
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Figure 4.7: The circular intersection approach for ABCDE when current is ABCD

4.2 Summary

Since we have observed the necessities for developing efficient distributional-

consequent rule pruning techniques, we designed algorithms for automatically dis-

carding spurious rules which are derivative with regard to other existing solutions

in the context of impact rule discovery. We first proposed a derivative extended

impact rule filter as an efficient variant of the insignificant quantitative association

rule pruning proposed by Aumann and Lindell (1999). We also argued that there

is another type of derivative rules, which is potentially uninteresting and has not

been identified in previous research. We proposed a new filter for pruning such

derivative partial impact rules. In this way, a more compact set of resulting impact

rules is discovered.

Next, we presented three techniques for improving the efficiency of impact rule

pruning. The first technique utilizes the anti-monotonicity of the non-triviality

constraint and enables more powerful search space pruning during the course of rule

discovery, which can theoretically improve the efficiency of our derivative extended

rule filter.

We also identified substantial redundancies of data accesses and intersection

operations in a straightforward implementation of impact rule discovery with fil-

ters. We proposed the difference set statistic derivation approach and the circular

intersection approach to tackle these problems.

In the next chapter, we apply the resulting algorithms to several real world and

synthetic databases. Experimental results are analyzed in detail and comparisons

are done with previous approaches to provide experimental corroboration of the

theoretical analyses.



Chapter 5

Experimental Evaluations

In chapter 4, we have proposed algorithms for automatically pruning derivative

impact rules, together with three techniques which can theoretically improve the

efficiency of derivative impact rule pruning.

In this chapter, we do our experiments by applying the techniques proposed in

the last chapter to several large, dense databases selected from the UCI Machine

Learning repository (Blake and Merz; 1998) and the UCI KDD Archives (Bay;

1999) to justify that a great amount of derivative extended and partial rules exist

in the resulting set of rules. Our proposed algorithm with derivative rule filters

can successfully remove such derivative rules during rule discovery and effectively

reduce the number of resulting rules. Result analyses attest that the overall in-

terestingness of the top k optimal resulting rules can be improved with un-useful

rules removed and more rules that convey interesting information discovered.

We also evaluate the efficiency of OPUS based derivative extended rule filter

against the significant Quantitative Association Rule Discovery proposed by Au-

mann and Lindell (1999) using the Apriori implementation provided by Borgelt

and Kruse (2002). We draw the conclusion that the trivial filter, the difference

set statistics derivation approach and the circular intersection approach can empir-

ically improve the rule discovery efficiency to a great extent, especially for relatively

denser databases.

In the beginning of this chapter, we introduce the databases that are selected

for the experiments and predictions are made on possible effects of our algorithm.

Next, the experiment design is explained, which is followed by the experimental

result analysis and comparisons.
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5.1 Experimental Data

Bayardo, Jr. et al. (1999) argued that a database is dense if it confirms with any

of the following criteria:

1. Strong correlations between several items.

2. Many items in each record.

According to these criteria, we select ten databases from UCI Machine Learning

(Blake and Merz; 1998) and UCI KDD Archives (Bay; 1999) with different density

for our experiments. None of these databases has missing values. The numbers of

records in these database vary from less than 300 to half a million. The numbers of

attributes also vary from under 10 to over 80. With such great differences among

these databases, we will be able to analyze the effectiveness of our techniques more

thoroughly. The databases are described as below.

1. Abalone: This database is originally developed for predicting the age of

abalone from physical measurements (Nash, Sellers, Talbot, Cawthorn and

Ford; 1994). In our experiments, we choose to use this database to discover

connections between the other attributes and shucked weight, which is contin-

uous and is measured by grams. The data set samples are highly overlapped.

The interactions implicit in this database are relatively sparse considering its

size, with only 1 qualitative attribute, 8 quantitative attributes (including 1

discrete attribute and 7 continuous attributes) in this database.

2. Heart: This database was originally designed for classification tasks in which

a diagnose is made about whether a patient has heart disease or not. In our

experiments, we try to discover relationship between other attributes and the

maximum heart rate a patient achieves. Totally 13 attributes are contained

in this database, with 6 being qualitative, 1 being discrete quantitative and

6 being continuous quantitative. This is the smallest database both in terms

of size and density.

3. Housing: Taken from the StatLib library which is maintained at Carnegie

Mellon University, this database concerns about housing values in suburbs of

Boston (Harrison and Rubinfeld; 1978). There are 13 continuous quantitative
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attributes, except one which is nominal qualitative, in this database. In our

experiments, we are interested in the values for the attribute MEDV. This

database is relatively smaller and sparser compared with the others.

4. German-credit: This database was initially designed by Professor Dr. Hans

Hofmann for classifying people described by a set of attributes as good or bad

credit risks. In our impact rule discovery task, we try to discovery influence

of other attributes on Credit amount. 7 quantitative attributes and 13 qual-

itative attributes are in this database.

5. IPUMS Series: The Integrated Public Use Microdata Series project (Rug-

gles and Sobek; 1997) standardize federal census data to allow researcher to

compare demographic groups over different time periods. The databases we

choose are the “large” versions, which contain unweighed, 1 in 100 samples

of the Los Angeles and Long Beach area respectively for the years 1970 (for

Ipums.la.97 ), 1980 (for Ipums.la.98 ), and 1990 (for Ipums.la.99 ). All these

three databases are composed of 19 quantitative attributes among which we

select the total income as the target variable, and 42 qualitative attributes.

Several qualitative attributes have numerous values. The occupation at-

tribute, as an example, may take over 160 different values.

6. Ticdata2000: This database is also known as the COIL2000 (The Insurance

Company Benchmark) database (van der Putten and van Someren; 2000). It

contains great ranges of information about customers. The data was collected

originally to identify customers who would be interested in buying a caravan

insurance policy. Since the income attribute in this database has already been

discretized for classification and regression, we choose the attribute average

income as the target variable of concern. Although this database has less

than 6000 records, the number of attributes turn out to be the greatest of

all, which is 86. There are 60 qualitative attributes, and 26 quantitative

attributes in the Ticdata2000 database.

7. Census income: This dataset contains weighted census data extracted from

the 1994 and 1995 Current Population Surveys conducted by the U.S. Cen-

sus Bureau. The data contains 41 demographic and employment related
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attributes. In this experiment wage per hour is chosen to be the target vari-

able. Except the target variable, the database include 33 qualitative and

7 continuous quantitative attributes. Duplicate or conflicting instances find

their places in this database. We predict that the number of derivative impact

rules discovered from this database would be large.

8. Covtype: This database is composed of the forest cover types for 30 ×
30 meter cells obtained from US Forest Service (USFS) Region 2 Resource

Information System (RIS) data. The forest cover type is the initial problem

of classification. However, we choose to use the attribute ”elevation” which

is measured in meters, as the target variable. Having more than 500,000

records, this is the largest database in size, among those we select. The

computational and data access expenses are expected to be huge, especially

when the derivative filters are applied. However, it does not have a huge

number of attributes considering its size, with 10 quantitative attributes, 44

qualitative attributes.

To run the program on these databases, we applied 3-bin equal-frequency dis-

cretization to map of all continuous quantitative attributes in the above databases

into ordinal qualitative ones, except the specified target variables. After the dis-

cretization, the ipums series, the ticdata2000 and the census income databases

turn out to have more than 500 conditions. We predict that our algorithms can

perform much better on them than the frequent itemset based algorithm. The

largest database of all, covtype, has only 131 conditions. It is not as dense as the

previously mentioned five, but the time for discovering impact rules can be very

long, considering its size. We predict that computation for collecting necessary

statistics for rule description for this database is the most expensive. To produce

a more clear idea of the databases, the basic information is also presented in table

5.1.

5.2 Experimental Design

Since the effectiveness and efficiency of our proposed techniques have been posi-

tively stated, we design our experiments in a protocol that these two improvements

can be exhibited. We devote ourselves to analysis of reductions in the number of
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database records attributes conditions Target
Abalone 4117 9 24 Shucked weight
Heart 270 13 40 Max heart rate

Housing 506 14 49 MEDV
German credit 1000 20 77 Credit amount
Ipums.la.97 70187 61 1693 Total income
Ipums.la.98 74954 61 1610 Total income
Ipums.la.99 88443 61 1889 Total income
Ticdata2000 5822 86 771 Ave. income

Census income 199523 42 522 Wage per hour
Covtype 581012 55 131 Elevation

Table 5.1: Basic information of the databases

resulting rules and the CPU time spent for loading data, discovering rules and out-

puting rules all together. For all the following experiments, we run our algorithms

with the following parameter settings:

1. Minimum coverage: 0.01.

2. Significance level for the derivative filters: 0.05.

3. Maximum number of resulting rules: 1000.

4. Interestingness measure for ranking the resulting rules: imapct1.

The computer on which the algorithms are run has two 933MHz processors

(actually, only one is used for our algorithms), 1.5 G of actual memory and 4 G of

virtual memory.

In the first suite of experiments for evaluating the effectiveness of the derivative

filters, we run the impact rule discovery initially with no filters, after which with the

derivative extended rule filter only. Both filters are applied in the last step. We run

the program with the maximum number of conditions allowed on rule antecedent

set to 3, 4 and 5. The changes in numbers of rules and percentages of decrease in

resulting rules are shown in table 5.2.

To compare the efficiency of the derivative extended filter with that of the

previous technique proposed by Aumann and Lindell (1999), we run the Apriori

implementation using the same databases with target attributes removed. This

is thus designed for the purpose of simulating the first step of frequent itemset

1Please refer to section 2.2.6 for definition of impact.
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generation for Aumann and Lindell (1999)’s insignificant quantitative association

rule pruning. The discovered frequent itemsets compose of the antecedents for the

resulting quantitative association rules. We compile Borgelt and Kruse (2002)’s

Apriori implementation, which, to our knowledge, is one of the most efficient im-

plementations of Apriori, on the same computer with the same compiler settings

as those for the OPUS IR Filter algorithm. The CPU time spent for their Apriori

implementation to discover all the frequent itemsets whose sizes are under 5 is

recorded, as well as the number of frequent itemsets generated by each database.

Then we compare the efficiency of these two algorithms. It should be noted that,

with the Apriori implementation, rule antecedents are discovered, without gen-

erating rules with distributional statistics. However, deriving statistics for rule

description is prohibitively expensive.

In the last set of experiments, we introduce the three efficiency improving tech-

niques proposed in the last chapter into the OPUS IR Filter implementation one

by one. Since we have argued that the triviality filter can function as an alterna-

tive to as well as a complement for the derivative extended rule filter, we compare

resulting rule sets as well as the running time for discovering rules with triviality

filter with those for rule discovery with the derivative extended rule filter. We also

combine both filters to show the efficiency improvement brought by introducing

triviality filter.

After this, the difference set statistics derivation and the circular intersection

approaches are introduced respectively into the algorithm before combining with

each other. The algorithms are run with different maximum numbers of conditions

allowed on rule antecedents. Comparisons are done with the OPUS IR Filter algo-

rithm in table 4.1 with the triviality filter. Trends of changing in CPU time with

the allowed maximum number of conditions are shown.

5.3 Results and Analyses

In this section, we present analyses of experimental results for all the proposed

techniques in detail, according to the three set of experiments described in the

section of experimental design.
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5.3.1 Effectiveness of Derivative Filters

Table 5.2 systematically present the changes in resulting rules caused by applying

the filters. The sub-columns titled “Rules” under the “extended” column contain

the numbers of rules (before the slashes, if there are) that are found significant in

the top 1000 impact rules after the extended rule filter is applied. The numbers in

these sub-columns after the slashes are the numbers of resulting significant rules

actually found after applying the derivative rule filter, if the number is under

1000. The sub-columns titled “percentage” contain the percentages of decrease

in resulting rules after applying the derivative extended rule filter. Similarly, the

sub-columns under “partial” show the numbers of rules remain as fundamental in

the discovered top 1000 significant impact rules and the percentages of decrease in

numbers of rules after introducing the derivative partial rule filter.

Here is an example of derivative extended rules in the abalone database:

Sex = M & 1.0295 <= Whole weight & 0.294 <= Shell weight → Shucked weight

(coverage : 595, mean : 0.631413, variance : 0.0309362, min : 0.315,

max : 1.351, sum : 375.69, impact : 161.867)

With respect to its parent rule:

Sex = M & 0.294 <= Shell weight− > Shucked weight

(coverage : 676, mean : 0.599229, variance : 0.0353118, min : 0.189,

max : 1.351, sum : 405.079, impact : 162.147)

The following impact rule is discarded as derivative partial for the abalone

database:

Sex = M → Shucked weight (coverage : 1528, mean : 0.432946,

variance : 0.049729, min : 0.0065, max : 1.351, sum : 661.542, impact : 112.428)
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It is derivative regarding its child rule:

Sex = M & 1.0295 <= Whole weight → Shucked weight (coverage : 687,

mean : 0.619229, variance : 0.0284951, min : 0.315, max : 1.351,

sum : 425.411, impact : 178.525)

In this example, if an abalone is male but have a whole weight less than 1.0295

can not have a very high shucked weight.

From the experimental results shown in table 5.2, we make the following obser-

vations:

1. As the number of maximum conditions allowed on rule antecedents increases,

generally, more derivative rules are produced.

2. The derivative extended rule filter can successfully remove a great amount of

uninteresting rules from resulting set. As we have predicted, the decreases

of rules for the denser databases are dramatic. It is also notable that after

the derivative extended rule filter is introduced, our k-optimal impact rule

discovery algorithm is able to discover all the significant rules with abalone,

housing, heart and German credit, even when the maximum number of con-

ditions is set to 5 and k is set to 1000.

3. With the derivative partial rule filter applied, a great portion of the resulting

significant rules are identified derivative partial. The greatest change encoun-

tered in the number of resulting rules after introducing the derivative partial

rule filter is as much as 34% for the housing database with the maximum

number of conditions allowed on antecedent set to 4. Even the database with

the slightest change saw a decrease of over 4%. This justify our argument that

there are considerable amount of derivative partial rules in the resulting rules

even after the derivative extended rule filter is applied. Derivative partial

rules exist profoundly in the discovered rules, and cannot be removed using

previous rule pruning techniques. By applying the derivative partial rule fil-

ter, we make another step towards reducing resulting rule in the context of

impact rule discovery.
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5.3.2 Comparisons with Quantitative Association Rule

Discovery

As is mentioned before, Aumann and Lindell’s algorithm for removing insignificant

quantitative association rules used the frequent itemset framework, which is limited

in its capacity to analyze dense data by the requirement of vast amount of mem-

ory to store all the frequent itemsets and excessive computation for manipulating

these frequent itemsets during the generation procedure. It is after this stage that

statistical tests are performed over the set of resulting rules. This frequent itemset

generation task is not optimal in term of efficiency when applied to large, dense

databases.

The running time and the numbers of frequent itemsets discovered in each of the

10 selected databases are listed in table 5.3. The column titled “frequent itemsets”

contains the numbers of generated frequent itemsets for each database, which equal

to the numbers of resulting quantitative association rules. The columns titled

“CPU time” and “CPU time for OPUS IR” show the running time for Borgelt and

Kruse (2002)’s Apriori to generate frequent itemsets and OPUS IR Filter (with

no filters) to discovery the top 1000 impact rules respectively. The maximum size

of frequent itemsets is set to 5, which is the same as the maximum number of

conditions allowed on resulting impact rule antecedents for our OPUS IR Filter

algorithm.

By comparing the experimental results, we discover that is Apriori cannot

successfully discover rules in databases with a huge number of conditions. For

ipums.la.97, ipums.la.98, ipums.la.99 and ticdata1000, whose number of conditions

exceed 700, the program stops because of insufficient memory before generating all

the frequent itemsets can be generated. However, OPUS IR Filter can be applied

to the above databases successfully and efficiently. The time spent on looking for all

the frequent itemsets in german credit, census income and covtype are much longer

than that required for OPUS IR Filter. Although for abalone the running time

appears more desirable than our approach, it should be noted that the recorded

time is only for generating frequent itemsets, time spent for statistics computing

and data accesses associated with the statistics calculation for the target attribute

for each itemset are not taken into account. However, it is known to all that going
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Database Frequent Itemsets CPU time(sec) CPU time for OPUS IR
Abalone 11131 0.07 0.29
Heart 91213 0.11 0.05

Housing 129843 0.20 0.06
German credit 2721279 4.16 0.47
Ipums.la.97 - stop after 18462.20 7.25
Ipums.la.98 - stop after 17668.01 1382.66
Ipums.la.99 - stop after 10542.40 874.20
Ticdata2000 - stop after 103.17 1996.57

Census income 314908607 7448.52 873.74
Covtype 58920053 17488.26 16971.99

Table 5.3: Results for Apriori

through the data is one of the disasters for efficiency. What is more, the computa-

tional and data access expenses are unimaginably cumbersome for large databases

like covtype which has nearly 6 hundred thousand records.

Even if we do not take the time spent on itemset discovery into account, to apply

statistical tests over all the resulting frequent itemset is time-consuming (note that

the number of itemsets found in some of the databases exceeds 106).

5.3.3 Triviality Filter

The triviality filter was proposed as a complement for the derivative extended filter,

and can successfully remove a subset of the derivative extended rules. To evaluate

the effectiveness of the triviality filter, we compare both necessary running time

and changes in resulting rules after introducing the triviality filter alone with those

for the algorithm without filters and those for the algorithm with the derivative

extended rule filter only. Changes in the resulting numbers of rules induced by the

triviality filter is presented in table 5.42. The second column in table 5.4 contains

the number of rules accepted as significant (using the derivative extended rule

filter) in the top 1000 impact rules, while the third column includes the numbers of

non-trivial rules in the top 1000 impact rules. The last column shows the number

of non-trivial rules in the top 1000 that survive the derivative extended rule filter.

CPU time comparisons are shown in table 5.5. The first two columns in this

table present the CPU time for discovering the top 1000 impact rules with no filters

2The maximum number of conditions allowed on resulting impact rule antecedents is set to 5
in this experiment.



104 CHAPTER 5. EXPERIMENTAL EVALUATIONS

Significant Nontrivial Significant
Database rules rules rules in top

in top 1000 in top 1000 1000 nontrivial rules
Abalone 173(173) 998 173
Heart 52(100) 923 54
Housing 83(288) 935 84
German credit 31(295) 738 43
Ipums.la.97 31(1000) 31 1000
Ipums.la.98 133(1000) 138 803
Ipums.la.99 297(1000) 578 507
Ticdata2000 1(1000) 564 1
Census income 30(1000) 466 42
Covtype 255(1000) 410 533

Table 5.4: Comparison in number of rules

Database top 1000 triviality derivative extended rule filter
impact rules Filter Derivative extended only Both

abalone 0.29 0.57 0.75 0.74
heart 0.05 0.08 1.16 1.2
housing 0.06 0.16 1.62 1.47
german-credit 0.47 0.85 30.35 29.14
ipums.la.97 7.25 471.56 7365.23 623.52
ipums.la.98 1382.66 1551.8 1871.35 1860.31
ipums.la.99 874.2 1006.9 1886.07 1414.88
ticdata2000 1996.57 2082.1 10933.98 10808.03
census-income 873.74 1396.2 3960.84 3781.6
Covtype 16971.99 18682.52 20686.95 19496.71

Table 5.5: Running time for discovering rules (in seconds)

and for discovering top 1000 non-trivial rules using the triviality filter. Then the

time spent for discovering significant rules with and without the introduction of

triviality filter is listed in the last two columns.

We can see from column 2 and column 3 of table 5.4 that, although the triviality

filter can not automatically discard as many spurious impact rules as those by the

derivative extended rule filter, the decrease in number is also considerable. For

ipums.la.97 only 31 rules among the top 1000 impact rules found without using any

filter is nontrivial, while all the nontrivial impact rules are accepted as significant!

Moreover, for databases ipums.la.98, ipums.la.99, covtype, ticdata2000 and census

income, more than 40% of the resulting impact rules are discarded as trivial.
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By examining the data in table 5.5, we conclude that applying only the triviality

filter requires less CPU time, and the efficiency of for discovering significant impact

rules is improved considerable when the derivative extended filter is combined with

the triviality filter. The most dramatic reduction in running time can be found

for ipums.la.97, which is as much as 90%. Theoretically, the larger the allowed

number of maximum conditions on rule antecedent the more obvious the efficiency

is improved. Hence, the triviality filter can be regarded as an efficient complement

for the derivative extended filter.

5.3.4 Difference Set Statistics Derivation and Circular In-

tersection Approach

In the first step of this experiment, we ran our original algorithm with the two

derivative filters in table 4.1 with the triviality filter. For databases abalone, heart,

housing, German credit and ipmus.la.97, which are relatively smaller, we set the

maximum number of conditions on the rule antecedents from 3 to 8, and then

run the program with no limit on the maximum number of conditions allowed

on rule antecedents. After this, the difference set statistics derivation approach

and the circular intersection approach are introduced respectively, before the effi-

cient algorithm in table 4.3 is ran following the same procedure. For ipmus.la.98,

ipmus.la.99, ticdata2000, census income and covtype, which are relatively larger

databases, we only ran the programs with maximum number of conditions allowed

on rule antecedents set to 3, 4, and 5. We plot the allowed number of maximum

conditions on antecedents against required running time for these programs to dis-

cover the top 1000 significant impact rules in figure 5.1 and 5.2. The pink lines

with square dots show the changes in CPU time for algorithms with neither of

these efficiency improving techniques. The purple lines with round dots show the

results for algorithm with difference set statistics derivation only, while the yellow

lines with triangular dots denote the trends brought by the algorithms with the

circular intersection approach only. The results for algorithm with both techniques

introduced are plotted using the dark blue lines with diamond dots.

Almost every database undergoes considerable reduction in running time after

the introduction of these two efficiency improving approaches. The differences in
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efficiency increases with the maximum number of conditions allowed on rule an-

tecedent. When there is no limit on the maximum number of conditions on rule

antecedent, CPU time spent for the OPUS IR Filter algorithm with the two effi-

ciency improving techniques applied to search for top 1000 significant impact rules

in ipums.la.97 is less than one sixth of that necessary for OPUS IR Filter without

introducing the techniques. However, necessary running time is also influenced by

other factors including the size of the databases, the number of trivial rules in the

top 1000 impact rule, and the number of significant rules.

After examining the effects of these two efficiency improving techniques indepen-

dently, we come to the conclusion that the difference statistics derivation technique

works better in some databases like census income; while the circular intersection

approach has a greater effect on databases including ipums.la.98. However, the

differences in effect are associated with several subtle factors including the order

in the available conditions are ranked as the input of algorithm, and the order in

which different parent rules are compared with the current rule to be assessed.

5.4 Conclusion of Experiments

This chapter has dealt with evaluating the practical effects of our proposed rule

pruning and efficiency improving techniques, including the derivative extended and

partial rule filters, the triviality filter, the difference set statistics derivation ap-

proach and the circular intersection approach. 10 databases which vary a lot in

size and density are selected for the experiments. The experimental results show

that derivative rules exist profoundly in resulting distributional-consequent rules.

As the allowed maximum number of conditions on rule antecedents increases, so are

the percentages of derivative rules among the resulting sets. Some of the databases

experienced stunning changes in resulting rules after the derivative extended rule

filter is applied. The derivative filters we proposed enable effective pruning of such

potentially uninteresting impact rules and the derivative partial rule filter enables

further reduction of resulting rules after the derivative extended filter is applied.

We also proved that using the OPUS framework for rule discovery can suc-

cessfully discover distributional-consequent rules in very large, dense databases for

which the Apriori based algorithms fail. A typical example is the ipums.la.99

database, which turns out to have nearly 2000 items after discretization. For other
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(a) (b)

(c) (d)

(e)

Figure 5.1: Comparison of Running Time before and after applying data access
saving techniques for (a) abalone, (b) heart, (c) housing, (d) German credit, and
(e) ipums.la.97 with maximum number of conditions allowed on rule antecedent
set to 3-8, and with no restriction on maximum number of conditions allowed on
rule antecedent
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(a) (b)

(c) (d)

(e)

Figure 5.2: Comparison of Running Time before and after applying data access
saving techniques for (a) Ipums.la.98, (b) ipums.la.99, (c) Ticdata2000, (d) Cen-
sus income, and (e) covtype with maximum number of conditions allowed on rule
antecedent set to 3, 4 and 5
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databases where Borgelt and Kruse (2002)’s Apriori implementation can success-

fully discover rules, our proposal generally discover rules in a faster manner.

The triviality filter has been justified as an alternative to derivative extended

rule filter and can introduce desirable efficiency gains when functioning with the

derivative extended rule filter.

The difference set statistics derivation approach for getting rid of data access

redundancies and the circular intersection approach for removing intersection op-

eration redundancies were also proved to independently and effectively reduce nec-

essary running time for discovering significant impact rules practically. Effects are

more notable when the two techniques are combined with each other.
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Chapter 6

Conclusions and Future Research

By now, we have studied the techniques for performing efficient exploratory rule

pruning, and have also proposed several techniques for efficiently mining interesting

rules in the context of k-optimal impact rule discovery. In this chapter, we present

a summarization of this thesis, highlighting our contributions. Finally, we finish

up this thesis with a discussion of future research and some concluding comments.

6.1 Summary of this Thesis

This thesis committed itself to devising and implementing algorithms for efficiently

and effectively rule pruning in distributional-consequent exploratory rule discovery,

based on the analysis of the importance of it in the community of data mining.

We first explained the essentiality of exploratory rule discovery, of which the

distributional-consequent rule discovery is a subclass. Exploratory rule discovery

plays an important role in nowadays data mining, because it seeks multiple mod-

els, instead of one, that satisfy a user specified set of criteria, called constraints.

Contrarily, traditional classification techniques, that only one model is learnt from

the training data maximizing some object function of performance for prediction

or classification. However, whether a model is best or not varies with the context

of application. It is well recognized that in some occasions models that perform

equally well coexist. This make it difficult and unsensible to select only one “best”

model over the others. The characteristics of exploratory rule discovery can suc-

cessfully solve this problem. A rule discovered using exploratory rule discovery

consists of a rule body with Boolean conditions and a description with a set of
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measures and statistics that is comprehensible for human analysts and can be eas-

ily translated for decision making. In some applications, this feature is precious for

result analysis. A famous example is the mining of market basket data, in which ex-

ploratory rule are able to explicitly clarify the relationship among various products

and services.

Drawbacks of exploratory rule discovery come with its virtues. Mining multi-

ple models can lead to the problem of unmanageable numbers of resulting rules, a

great portion of which are potentially uninteresting. How to control the resulting

rules becomes the most important issue of concern in exploratory rule discovery.

Unnecessary computation is wasted on searching for uninteresting models, jeopar-

dizing the efficiency of rule discovery. Accordingly, in the latter part of this thesis,

we occupied ourselves with discussions on how to address these problems.

We classified existing exploratory rule discovery techniques into propositional

rule discovery and distributional-consequent rule discovery considering their traits.

Propositional rule discovery searches for rules with qualitative or discretized quan-

titative attributes only. Propositional rule pruning and optimization techniques

are extensively studied. Plenty research has also been contributed to discretize

quantitative attributes for propositional rule discovery, so as to minimize resulting

information loss. Most of such techniques are constructed following a discretize-

and-merge paradigm. However, since discretized quantitative attributes have lower

levels of measurement scales than its undiscretized counterparts, discretization is

not the best solution for describing quantitative attributes in rule discovery.

Distributional-consequent rule discovery was designed to overcome the limita-

tions of propositional rule discovery. Quantitative association rule discovery pro-

posed by Aumann and Lindell (1999) is a paradigmatic example. Distributional-

consequent rule discovery is so termed, for the consequent of the resulting rules is a

chosen target quantitative variable (or set of variables) of user interests, described

using distributional statistics.

Aumann and Lindell (1999)’s implementation of distributional-consequent rule

discovery was contrived based on the frequent itemset framework, which is inher-

ently unsuitable for performing rule discovery in very dense databases, due to the

prohibitive memory requirements. We referred ourselves to the OPUS framework

instead, as the foundation of our implementation of impact rule discovery (a new

name for quantitative association rule discovery given by Webb (2001) to avoid
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confusions with the quantitative association rule discovery proposed by Srikant

and Agrawal (1996). Since our implementation commits depth-first transversal of

a tree-style search space, and applies the branch and bound techniques for more

effective search space pruning, it manages to discover rules in large and dense

databases for which Aumann and Lindell (1999)’s algorithm fails.

To answer the question of why our research was oriented to developing efficient

distributional-consequent rule pruning techniques, we explained the similarities and

differences between propositional rule discovery and distributional-consequent rule

discovery in chapter 3. The differences in descriptive natures of these two types of

techniques determine that rule pruning techniques designed specially for proposi-

tional rule discovery cannot be transplanted directly to function in distributional-

consequent rule discovery. However, comparing with the popularity in propositional

rule pruning development, research on rule pruning with distributional-consequent

rule discovery is limited. We also argued that it is crucial to improve efficiency of

distributional-consequent rule discovery inasmuch as extra computation and data

accesses are rooted in collecting rule descriptions.

We reviewed existing propositional rule pruning techniques in chapter 3. Con-

straints with properties, including anti-monotonicity, monotonicity, succinctness,

can be utilized for performing powerful search space pruning, and enhancing the

efficiency of rule discovery. The constraint-based techniques can be applied to

distributional-consequent rule discovery with adaptions. Some of the measures

for proportional rule interestingness are applicable in distributional-consequent

rules. Investigations into techniques for deriving compact representations of re-

sulting rules are among the key issues of our research. We asserted that mining

maximal frequent itemsets is not desirable in distributional-consequent rule dis-

covery, in respect that the most specific distributional-consequent rules do not

imply useful information about relationship with respect to the target quantitative

variable. The closed set techniques agree only with propositional rule discovery,

too. Techniques regarding statistical rule significance are interesting topics for

distributional-consequent rule pruning.

How can we efficiently and effectively prune potentially uninteresting

distributional-consequent rules according to the above observations? We imple-

mented two derivative rule filters in OPUS based k-optimal impact rule discovery.

The derivative extended rule filter is proposed for pruning rules that can somehow
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be derived from its parents. It is an efficient variant of the insignificant quantita-

tive association rule pruning proposed by Aumann and Lindell (1999). The second

filter, the derivative partial rule filter, is a brand new technique for pruning rules

that are misleading with the presence of its children. Derivative partial rules have

shown to be extremely common in resulting significant rules (resulting rules that

have been pruned using the derivative extended rule filter). Such derivative partial

rules cannot be discarded using previous rule pruning techniques.

We have demonstrated in chapter 3 that the efficiency impediment in distri-

butional rule discovery is critical. To employ the derivative rule filters, massive

additional computational and I/O expenses are essential for identifying the deriv-

ability of rules. We proposed the triviality filter as a venue of attack. Trivial

rules are special derivative extended rules, which cover the same set of records

as that covered by at least one of their corresponding parents. By utilizing the

anti-monotonicity of the non-trivial constraint, the rule discovery process can be

expedited.

We also detected excessive redundancies in our implementation of derivative

rule pruning algorithm. We proposed an efficiency improving technique by deriving

difference set statistics for identifying whether a rule is derivative or not with

available statistics to eliminate unnecessary data accesses. A new approach for

deriving the coversets of parent rules for identifying whether a rule is derivative

or not, named the circular intersection approach, was employed in place of the

original parallel intersection approach for the purpose of reducing the redundancies

in intersection operations.

To attest our theoretical analysis and arguements for desirable expectations of

the efficiency and effectiveness of our proposed techniques, we conducted empirical

evaluations with ten representative databases. These databases cover a wide range

of size and density. Experiments demonstrated dramatic impact on the rules dis-

covered when the derivative extended rule filter was applied. As much as 99% of the

rules otherwise discovered were shown to be derivative extended. The implemen-

tation of the derivative partial rule filter also witnessed further removal of many

resulting significant rules which are further proved to be “derivative” with respect

to any of their children. Comparisons with the efficient Apriori implementation

supported our declaration about the efficiency of the OPUS IR Filter algorithms

by showing that impact rules in the selected databases are successfully discovered
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in reasonable period of time. While Borgelt and Kruse (2002)’s Apriori, which is

one of the most efficient implementation, stopped midways during the course of

rule discovery in some of the dense databases.

The efficiency gains brought by incorporating the triviality filter provide empiri-

cal support for our statement that triviality filter is a complement for the derivative

extended rule filter. Without affecting the results produced, rule discovery time

was reduced by as much as 90% (for ipums.la.97 ). Experiments were also done

to evaluate the practical effects of the difference set statistics derivation and the

circular intersection approaches, for which conclusions can be drawn that dramatic

reductions in running time are experienced by our impact rule discovery algorithm

with these efficiency improving schemes, with running time being reduced by up

to 90% for some of the databases.

6.2 Future Research

Although light has been shed on efficiently and effectively mining interesting rules

with undiscretized quantitative attributes on rule consequents: the distributional-

consequent rule discovery in this thesis, our studies also bring before us some

research topics that deserve further attention.

1. Our discussions have been restricted primarily on mining rules with a single

undiscretized quantitative attribute in the consequents. However, it would

be helpful to extend single target variable in the rules to a set of arbitrary

number of quantitative target attributes. The principle matter facing us

for implementing this idea is to find interestingness measures or statistics

for describing the target variables. Computational costs are expected to be

overwhelming. Therefore, techniques for efficiency improvement may attract

most attention.

2. No effort has been bestowed on optimally introducing quantitative attributes

into distributional-consequent rule antecedents, either discretized or undis-

cretized, in our research. Discretized-and-merge structures can be employed,

yet the measures of information loss for distributional-consequent rules are

to be devised. Another possible solution is to have undiscretized quantitative
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attributes in rule antecedent and present the resulting rules using novel meth-

ods of presentations. Visualizations are applicable. In this way, information

loss can be minimized.

3. After examining the resulting rules generated using our algorithm, we discov-

ered the existence of multivariate qualitative attributes which are allowed to

have hundreds of values, is often associated with the production of very large

numbers of rules. For example, the occupation in the ipums series databases

can take more than 160 different values. Similarities among these qualitative

attributes cannot be captured and the number of rules increases consequently.

By clustering different qualitative values according to their relationships with

other attributes, especially the target variable of interest, resulting rule sets

can be compressed in a straight forward manner.

4. The t-test, which we applied in our research for comparing the means of two

independent samples, is a parametric test. For parametric tests, we assume

that the populations from which the samples are drawn are approximately

normally distributed, or we rely on the central limit theorem to give us a

normal approximation. Since we have no guarantee that the populations

uniformly take normal distributions, non-parametric tests, for which no such

assumptions are imposed, are better alternatives for this purpose. Zhang,

Padmanabhan and Tuzhilin (2004) have proposed significant market share

rule discovery with non-parametric tests, yet their research was tailored for

propositional rule discovery only. It would be interesting to explore how their

proposals might be transferred to impact rule discovery.

6.3 Concluding Comments

We have investigated efficient techniques for pruning set of rules with undiscretized

quantitative attributes in the consequents, which we call distributional-consequent

rule pruning. This topic attracted our attention because mining multiple models

that satisfy a given set of constraints in exploratory rule discovery may generate

too many rules for users to analyze and may lead to serious efficiency problems.

Moreover, existing research aiming at efficiently discovering and controlling sets

of resulting rules for user analysis are mostly devoted to propositional exploratory
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rule discovery, which mines interrelationships among qualitative attributes or dis-

cretized quantitative attributes. However, it is well recognized that discretization

may lead to unavoidable information loss. Considering quantitative attributes exist

in many databases and require effective analysis, distributional-consequent rules are

proposed, which minimize potential information loss by describing a user-specified

quantitative variable using its distribution.

Rule pruning techniques for distributional-consequent rule discovery and propo-

sitional rule discovery are different due to the dissimilarities between their descrip-

tive natures. Thus, we devoted ourselves to developing effective and efficient rule

pruning techniques for OPUS based k-optimal impact rule discovery, which is a

typical type of distributional-consequent rule discovery. We first proposed an al-

gorithm for removing derivative extended impact rules which delivers better per-

formance over previous frequent itemset based techniques. Experimental results

showed that our algorithm can successfully remove up to 99% of potentially unin-

teresting impact rules in some databases and can work with very dense databases

which previous techniques fail. We also proposed the definition of an other type

of derivative rules which we called derivative partial impact rules. Derivative par-

tial impact rules, which no existing techniques has been developed to discard, are

potentially uninteresting rules that can somehow be derived from their children.

Our derivative partial rule filter identified as much as 34% potentially uninteresting

rules in the resulting set.

It was also recognized that the efficiency problem with distributional-consequent

rule discovery is much more serious than that for propositional rule discovery. The

situation is much worse when the derivative rule filters are applied, because consid-

erable computation and data accesses are required for collecting necessary statistics

for rule descriptions and implementing the filters. We proposed the triviality fil-

ter which can remove a subset of derivative extended rules during rule discovery

and can speed up the efficiency for discovering significant impact rules without

affecting the results, when combined with the derivative extended rule filter. Two

other efficiency improving techniques, the difference set statistics derivation and

the circular intersection approaches were also proposed for eliminating redundant

computation and data accesses. Our algorithms when integrated with these effi-

ciency improving techniques demonstrated substantial reduction in running time
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for discovering significant impact rules, in some cases reducing computation by as

much as 90

Both theoretical analysis about the importance of effective and efficient

distributional-consequent rule pruning together with the outstanding practical per-

formances of our proposed algorithms give us grounds for being positive that our

research is of great utility for mining interrelationships with undiscretized attributes

in very large, dense databases. We hope that the work described in this thesis may

lay an excellent foundation for future research in this context.
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