
Techniques for Efficient Learning without Search

Houssam Salem, Pramuditha Suraweera, Geoffrey I. Webb, and
Janice R. Boughton

Faculty of Information Technology, Monash University, VIC 3800, Australia
{Houssam.Salem, Pramuditha.Suraweera, Geoff.Webb}@monash.edu

Abstract. Averaged n-Dependence Estimators (AnDE) is a family of
learning algorithms that range from low variance coupled with high bias
through to high variance coupled with low bias. The asymptotic error
of the lowest bias variant is the Bayes optimal. The AnDE family of
algorithms have a training time that is linear with respect to the training
examples, learn in a single pass through the data, support incremental
learning, handle missing values directly and are robust in the face of
noise. These characteristics make the algorithms particularly well suited
to learning from large data. However, for higher orders of n they are
very computationally demanding. This paper presents data structures
and algorithms developed to reduce both memory and time for training
and classification. These enhancements have enabled the evaluation and
comparison of A3DE’s effectiveness. The results provide further support
for the hypothesis that as the number of training examples increases,
decreasing error will be attained by members of the AnDE family with
increasing levels of n.

Keywords: naive Bayes, semi-naive Bayes, probabilistic prediction

1 Introduction

The classical classification learning paradigm performs search through a hypoth-
esis space to identify a hypothesis that optimizes some objective function with
respect to training data. Averaged n-Dependence Estimators (AnDE) [10] is an
approach to learning without search or hypothesis selection, which represents a
fundamental alternative to the classical learning paradigm.

The new paradigm gives rise to a family of algorithms, of which, Webb et. al.

[10] hypothesize, the different members are suited for differing quantities of data.
The algorithms range from low variance with high bias through to high variance
with low bias. Webb et. al. suggest that members with low variance are suited
for small datasets whereas members with low bias are suitable for large datasets.
They claim that the asymptotic error of the lowest bias variant is Bayes optimal.

The algorithms in the family possess a unique set of features that are suitable
for many applications. In particular, they have a training time that is linear
with respect to the number of examples and can learn in a single pass through
the training data without any need to maintain the training data in memory.
Thus, they show great potential for very accurate classification from large data.



Further, they have direct capacity for incremental and anytime [6] learning,
are robust in the face of noise and directly handle missing values. Importantly,
evaluations have shown that their classification accuracy is competitive with the
state-of-the-art in machine learning [10].

AnDE extends the underlying strategy of Averaged One-Dependence Estima-
tors (AODE) [9], which relaxes the Naive Bayes (NB) independence assumption
while retaining many of Naive Bayes’s desirable computational and theoretical
properties. The third member of the AnDE family, A2DE, has been shown to
produce strong predictive accuracy over a wide range of data sets [10].

Although evaluations to date support the hypothesis that the predictive accu-
racy of AnDE increases for larger datasets with higher orders of n, the expected
increase in accuracy comes at the cost of increased computational requirements.
The current implementations further complicate the matter due to their inef-
ficiencies. Thus, efficient implementation is critical. Except in cases of lower
dimensional data, the computational requirements defeat a straightforward ex-
tension of Weka’s AODE [11] to handle A3DE.

This paper presents data structures and algorithms that reduce both memory
and time required for both training and classification. These improvements have
enabled us to evaluate the effectiveness of A3DE on large datasets. The results
provide further evidence that members of the AnDE family with increasing n
are increasingly effective at classifying datasets of increasing size.

The remainder of the paper starts by introducing the AnDE family of al-
gorithms. Section 3 outlines the memory representation developed to reduce
memory usage. The enhancements made to reduce testing times are outlined in
Section 4. Section 5 presents the results of evaluating the effectiveness of the
enhancements. It also compares the effectiveness of A3DE with AnDE members
with lower n. Finally, conclusions are outlined.

2 The AnDE Family of Algorithms

The classification problem can be stated as estimating, from a training sample
τ of classified objects, the probability P(y | x) that an example x = 〈x1, . . . , xa〉
belongs to class y, where xi is the value of the ith attribute and y ∈ c1, . . . , ck
that are k classes. As P(y | x) ∝ P(y,x), we only need to estimate the latter.

The naive Bayes (NB) algorithm extrapolates to P̂(x, y) from each two di-
mensional probability estimate P̂(xi | y), by assuming that attributes are inde-
pendent given the class. Based on this assumption,

P(x | y) =

a
∏

i=1

P(xi | y). (1)

Hence we classify using

P̂NB(y,x) = P̂(y)

a
∏

i=1

P̂(xi | y). (2)

2



We assume herein that NB and the other AnDE family members are imple-
mented by compiling at training time a table of observed low-dimensional prob-
abilities. Under this strategy, the complexity of building this model is O(ta),
where t is the number of training examples and a the number of attributes. As
the model simply stores the frequency of each attribute value for each class after
scanning the training examples, the space complexity is O(kav), where k is the
number of classes and v is the average number of attribute values. As the classi-
fier only needs to estimate the probability of each class for the attribute values
of the test case, the resulting complexity at classification time is O(ka).

Despite the attribute independence assumption, NB delivers relatively ac-
curate results. However, greater accuracy can be achieved if the attribute-
independence assumption is relaxed. New algorithms based on NB have been
developed, referred to as semi-Naive Bayesian techniques, that achieve greater
accuracy by doing this, as real-world problems generally do have relationships
among attributes [12].

Of numerous semi-naive Bayesian techniques, SP-TAN [7], Lazy Bayesian
Rules (LBR) [13] and AODE [9] are among the most accurate. However, SP-
TAN has very high computational complexity at training time and LBR has
high computational complexity for classification. Contrastingly, AODE a more
efficient algorithm, avoids some of the undesirable properties of those algorithms
to achieve comparable results.

2.1 AODE

AODE extends NB’s strategy of extrapolating from lower dimensional probabili-
ties to make use of three-dimensional probabilities. It averages across over all of a
class of three-dimensional models, which are called super-parent one-dependence
estimators (SPODE). Each SPODE relaxes the attribute independence assump-
tion of NB by making all other attributes independent given the class and one
privileged attribute, the super-parent xα.

AODE seeks to use

P̂(y,x) =

a
∑

α=1

P̂(y, xα)P̂(x | y, xα)/a. (3)

In practice, AODE only uses estimates of probabilities for which relevant
examples occur in the data. Hence,

P̂AODE(y,x) =











a
∑

α=1

δ(xα)P̂(y, xα)P̂(x | y, xα)/

a
∑

α=1

δ(xα) :

a
∑

α=1

δ(xα) > 0

P̂NB(y,x) : otherwise

(4)

where δ(xα) is 1 if attribute-value xα is present in the data, otherwise 0. In other
words, AODE averages over all super-parents whose value occurs in the data,
and defaults to NB if there is no such parent.

3



2.2 AnDE

AnDE [10] generalises AODE’s strategy of search free extrapolation from low-
dimensional probabilities to high-dimensional probabilities. The first member
of the AnDE family (where n = 0) is NB, the second member is AODE and
the third is A2DE. Investigation into the accuracy of higher dimensional models
with different training set sizes shows that a higher degree model might be
susceptible to variance in a small training sample, and consequently that a lower
degree model is likely to be more accurate for small data. On the other hand,
higher degrees of AnDE may work better for larger training sets as minimizing
bias will be of increasing importance as the size of the data increases [3].

For notational convenience we define

xi,j,...,q = 〈xi, xj , . . . , xq〉. (5)

For example, x2,3,4 = 〈x2, x3, x4〉.
AnDE classifies using:

P̂AnDE(y,x) =











∑

s∈(A
n
)

δ(xs)P̂(y, xs)P̂(x | y, xs)/
∑

s∈(A
n
)

δ(xs) :
∑

s∈(A
n
)

δ(xs) > 0

P̂A(n−1)DE(y,x) : otherwise.
(6)

Attributes are assumed independent given the parents and the class. Hence,
P(x | y, xs) is estimated by

P̂(x | y, xs) =
a
∏

i=1

P̂(xi | y, xs) (7)

Given sufficient training data, A2DE has lower error than AODE, but at the
cost of significantly more computational resources.

3 Optimising Memory Consumption

In order to support incremental learning, AnDE classifiers compile a table of
observed joint frequencies of attribute-value combinations during training. The
frequencies table is used in testing to calculate posterior probabilities of class
membership. The AnDE classifier requires the joint frequencies of n attribute
value combinations per class. Additionally, as the classifier defaults to lower
orders of n, for super-parents whose values do not occur in the data, the classifier
also requires frequencies of all combinations of length up to n per class. As the
space requirement for storing these joint frequencies for higher orders of n is
undesirable, we developed a new representation that reduces the required space.

The frequency matrix for AODE is a 3-D matrix, where each cell holds the
frequency of a (class, parent, child) combination. As an example, consider the
frequency matrix for a dataset with two attributes (A and B). Attribute A has
two values (a1 and a2), while attribute B has three values (b1, b2 and b3). The

4



Fig. 1: AODE Parent Child Combinations

parent and child dimensions of the frequency matrix is illustrated in Fig. 1a.
It contains cells for each parent-child combination and the (n,n) locations are
reserved for frequencies of parents. The 2-D structure is replicated for each class
to form the 3-D frequency matrix for AODE.

The representation for A2DE is a 4-D matrix that is a collection of tetrahe-
dral structures for each class. Each cell contains the frequencies of (class, par-
ent1, parent2, child) combinations. The matrix reserves (class, parent1, parent1,
parent1) cells for storing frequencies of class-parent1 combinations and (class,
parent1, parent2, parent2) cells for storing class-parent1-parent2 combinations.

AnDE requires a matrix of n + 2 dimensions to store frequencies of all at-
tribute value combinations. The outer dimension has k elements for each class.
The n middle dimensions represent the n parent attribute values and the final
dimension represents the child attribute values. The inner dimensions have av
elements, where a is the number of attributes and v is the average number of
attribute values (including missing values). Consequently, as the size of the fre-
quency matrix is determined by figurate numbers (Pn+1(av) =

(

av+n

n+1

)

), resulting

in a memory complexity of O(k
(

av+n
n+1

)

).

Although this representation allows for straight forward access of the fre-
quency of a class-parent-child combination, the matrix has to be implemented
as a collection of arrays. This incurs overhead and the does not guarantee that a
contiguous block of memory is allocated for the matrix, reducing the possibility
that required parts of the matrix are available in the system’s cache.

The frequency matrix can be stored compactly with the elements of each
row stored in consecutive positions. This representation minimises the overheads
that can occur with multi-dimensional arrays. Taking AODE as an example, the
rows in the 2-D matrix, which are all combinations involving the corresponding
parent, can be stored sequentially in a 1-D array as shown in Fig. 1b.

Allocating slots for all combinations of attribute values in the frequency ma-
trix simplifies access. However, this produces a sparse matrix containing unused
slots allocated for impossible combinations. As training and testing cases have
only single valued attributes, combinations of attribute values of the same at-
tribute are impossible. In the case of the AODE example, the frequency matrix
contains slots to record frequencies of a1a2, b1b2, b1b3 and b2b3, which are im-
possible combinations (shaded in black in Fig. 2a). The size of the frequency
matrix can be reduced by avoiding the allocation of memory for such impossible

5



combinations. In the AODE example, the size of the 2-combinations matrix can
be reduced from 10 to 6. The size of the n combinations matrix is

(

a

n+1

)

vn+1.
To avoid allocating space for impossible combinations and simplify indexing,

the frequency matrix is decomposed into a series of structures for storing at-
tribute value combinations of a specific length. Taking the AODE example, the
set of 1-D arrays for storing only possible attribute value combinations is shown
in Fig. 2b. Array freq1 contains frequencies of each attribute value and Array
freq2 contains frequencies of all valid attribute value pairs.

4 Optimising Testing Time

AnDE classifies a test instance by calculating posterior probabilities of class
membership. They are calculated by iterating through all parent-child permu-
tations, resulting in a time complexity of O(ka(n+1)). We reduced the overall
testing time by reorganising the frequency matrix and the looping structure to
taking advantage of locality of reference.

The CPU cache is a fast but limited memory resource, which stores copies of
most frequently used data. It is used to reduce average time to access memory.
We reorganized the memory representation and minimized data retrieval from
memory to improve the likelihood of availability of data in the CPU cache.

The compact memory representation for the frequency matrix is a 2-D array,
which contains k copies of arrays that record n-combination attribute value fre-
quencies per class. For example, Fig. 3a illustrates the memory representation
for a dataset with two attributes (A and B) and two classes (c1 and c2). The
2-D representation is poorly suited for accessing all class frequencies of some
attribute-value combination. Especially, in the case of datasets with large collec-
tion of attributes, this representation reduces the likelihood of all the per-class

f req1

f req2

Fig. 2: Valid AODE Parent Child Combinations

a�b�c� a�b�c� a�b�c�a�b�c� a�b�c� a�b�c�c�

c� a�b�c� a�b�c� a�b�c�a�b�c� a�b�c� a�b�c�

Class = {c�, c�}

a�b�c� a�b�c� a�b�c�a�b�c� a�b�c� a�b�c�a� b�c� a�b�c�a�b�c� a� b�c�...
b)

a)

Fig. 3: Storing per Class Frequencies in Sequence

6



frequencies of some attribute value combination being available in the system’s
high-speed access cache.

The locality of reference of attribute-value combinations for all classes can be
improved by storing them next to each other. Taking AODE as an example, the
2-D frequency matrix (Fig. 3a) can be represented in a 1-D array by interleaving
the per class frequencies as shown in Fig. 3b. This representation improves the
chances of the frequencies of attribute-value combinations for both the classes
being available in high-performance memory. In order to take full advantage of
locality of reference of class frequency combinations the looping structure of the
classifier also had to be rearranged from looping through each class, parent and
child to loop through each parent, child and class.

AnDE requires conditional probabilities for all parent child permutations.
Iterating through all permutations requires all relevant offsets to be retrieved,
indexes to be calculated and the relevant frequencies to be retrieved. Although
these retrievals would be loaded into the CPU cache, they are only used once.
In order to reuse data and improve the likelihood of data being available in the
CPU cache, we modified the implementation to only iterate over unique com-
binations. During each iteration conditional probabilities for all permutations
of each combination are calculated. This results in reducing the iterations from
ka(n+1) to ka(n) and reducing the total number of memory accesses.

The conditional probability of a parent-child attribute permutation is calcu-
lated by dividing the frequency of parent-child attributes occurring together by
the frequency of parents. The numerator is constant for all permutations of a
parent combination. The improved implementation also allows this numerator to
be reused, reducing the amount of frequency fetches and the number of index cal-
culations. Overall, this reduces the number of frequency accesses of parent-child
attribute value combinations to 1

2 for AODE, 1
3 for A2DE and 1

4 for A3DE.

5 Evaluation

The effectiveness of the improvements to reduce memory usage and testing times
were evaluated on a collection of Datasets from the UCI machine learning repos-
itory[1]. The evaluation was focused on three members of the AnDE family of
algorithms: AODE, A2DE and A3DE. Although NB is the first member of the
AnDE family, it was not evaluated as the improvements are unlikely to have any
impact. The improvements were compared against the Weka version of AODE
and naive versions of A2DE and A3DE.

5.1 Test Environment

We selected nine datasets, described in Table 1, from the UCI machine learning
repository for the comparisons. The chosen collection includes small, medium
and large datasets with small, medium and high dimensionality. The datasets
were split into two sets, with 90% of the data used for training and the remaining
10% used for testing. The experiments were conducted on a single CPU single

7



Dataset Cases Att Values Classes

Abalone 4177 8 24 3
Adult 48842 14 117 2
Connect-4 67557 42 126 3
Covertype 581012 54 118 7
Dermatology 366 34 132 6

Dataset Cases Att Values Classes

House Votes 84 435 16 48 2
Sonar 208 60 180 2
SPAM E-mail 4601 57 171 2
Waveform-5000 5000 40 120 3

Table 1: Datasets used for experiments

core virtual Linux machine running on a Dell PowerEdge 1950 with dual quad
core Intel Xeon E5410 processor running at 2.33GHz with 8 GB of RAM.

The implementations of the three algorithms of the AnDE family are lim-
ited to categorical data. Consequently, all numerical attributes are discretized.
When MDL discretization [5], a common discretization method for NB, was
used within each cross-validation fold, we identified that many attributes have
only one value. So, we discretized numerical attributes using three-bin equal-
frequency discretization prior to classification for these experiments.

The memory usage of the classifier was measured by the ‘Classmexer’ tool [4],
which uses Java’s instrumentation framework to query the Java virtual machine
(JVM). It follows relations of objects, so that the size of the arrays inside arrays
are measured, including their object overhead and padding.

Accurately measuring execution time for the Java platform is difficult. There
can be interferences due to a number of JVM processes such as garbage col-
lection and code profiling. Consequently, to make accurate execution time mea-
surements, we use a Java benchmarking framework [2] that aims to minimize
the noise during measurements. The framework executes the code for a fixed
time period (more than 10 seconds) to allow the JVM to complete all dynamic
optimizations and forces the JVM to perform garbage collection before mea-
surements. All tests are repeated in cases where the code is modified by the
JVM. The code is also executed a number of times with the goal of ensuring the
cumulative execution time to be large enough for small errors to be insignificant.

5.2 Optimised Memory Consumption

The memory usage for AnDE was reduced by the introduction of a new data
structure that avoids the allocation of space for impossible combinations. The
reductions in memory usage for the enhanced AnDE implementations were com-
pared against the respective versions of AnDE that stores the frequency matrix
in a single array. We do not present the memory reductions of compacting the
multi-dimensional array into one dimension as they are specific to Java.

The reductions in memory usages are summarised in Fig. 4a. Results show
that the memory reduction for AODE ranged from 1% to 14%. The highest per-
centage in reduction was observed for the adult dataset, which had a reduction
of 9.67KB. The main reason for the large reduction is the high average number

8



(a) Memory Usage (b) Mean Testing Times

Fig. 4: Proportions of Reductions in Memory Usage and Testing Times

of attribute values of 8.36 for the adult dataset. In contrast, the other datasets
have average number of attribute values of around 3.

The memory usage for A2DE was reduced by a minimum of 9% to a maximum
of 53%. The maximum amount of reduction in memory was observed for the
high-dimensional Covertype dataset, which had a reduction of around 4.68MB.

The enhanced version of A3DE resulted in the highest reduction in memory
usage with reductions ranging from 13% to 64%. The reductions in memory
usage for the high dimensional Covertype, Dermatology, Sonar Classification
and SPAM E-mail datasets were over 100MB.

5.3 Optimised Testing

The total testing times of the algorithms were compared using the test envi-
ronment. The proportions of reduction in mean test times for AnDE are given
in Fig. 4b. The optimisations result in reductions in average testing times for
all three algorithms. The reductions for A3DE were highest, with a 61% (0.83s)
mean reduction for the small but high-dimensional Dermatology dataset and
60% (8.89ks) reduction for the large and high-dimensional Covertype dataset.
The improvements also reduced the testing times of low dimensional datasets of
Abalone (6%) and House Votes (28%)

The reductions in testing times were substantial for A2DE, with reductions
ranging from 16% (for Abalone) to 50% (Covertype). The improvements to
AODE also resulted in reduced total execution times ranging from 23% to 30%.
The highest percentage of reduction was exhibited for the dataset with the largest
number of attributes, Sonar Classification.

6 The Evaluation of A3DE

We evaluated the classification accuracy of AnDE algorithms comparing how
their performance varies as n increases within the AnDE framework. Previous
research [10] has compared the effectiveness of AODE to A2DE, but only limited

9



experimental results were presented for A3DE as the Weka implementation failed
on high dimensional datasets due to its high memory requirements.

We compared the effectiveness the AnDE members using the enhanced ver-
sions implemented in the Weka workbench on the 62 datasets that were used
to evaluate the performance of A2DE [10]. Each algorithm was tested on each
dataset using the repeated cross-validation bias-variance estimation method [8].
We used two-fold cross validation to maximise variation in the training data be-
tween trials. In order to minimise the variance in our measurements, we report
the mean values over 50 cross-validation trials.

The experiments were conducted on the same virtual machine used to eval-
uate the effectiveness of the improvements. Due to technical issues, including
memory leaks in the Weka implementation, increasing amounts of memory is
required when multiple trials are conducted. Consequently, we were unable to
get bias-variance results for four datasets (Audiology, Census-Income, Covertype
and Cylinder bands), that were of high dimensionality. We compared the relative
performances of AODE, A2DE and A3DE on the remaining 58 datasets. The
lower, equal or higher outcomes when the algorithms are compared to each other
is summarised as win/draw/loss records in Tab. 2.

The results show that the bias decreases as n increases at the expense of
increased variance. The bias of A3DE is lower significantly more often than not
in comparison to A2DE and AODE. The bias of A2DE is lower significantly more
often relative to AODE. In contrast, the variance of AODE is lower significantly
more often than A2DE and A3DE. The variance of A2DE is lower significantly
more often relative to A3DE.

None of the three algorithms have a significantly lower zero-one loss or RMSE
on the evaluated datasets. We believe that this is due to the wide range sizes
of datasets used in the evaluation. We hypothesize that members of the AnDE
family with lower n, that have a low variance, are best suited for small datasets.
In contrast, members with higher degrees of n are best suited for larger datasets.

6.1 A3DE performance on Large datasets

To assess the hypothesis that increasing values of n within the AnDE family
are suited to increasing data quantity, we compared A3DE to lower-order fam-
ily members on datasets with over 10,000 cases. Out of the 58 datasets, seven

A3DE vs A2DE A3DE vs AODE A2DE vs AODE

W/D/L p W/D/L p W/D/L p

Bias 34/3/21 0.052 40/1/17 0.002 43/0/15 <0.001

Variance 17/2/39 0.002 15/2/41 <0.001 16/1/41 <0.001

Zero-one loss 24/3/31 0.209 24/2/32 0.175 29/2/27 0.447
RMSE 24/3/31 0.209 28/0/30 0.445 31/1/26 0.298

Table 2: Win/Draw/Loss: AnDE, n = 1, 2 and 3 on 58 data sets

10



A3DE vs A2DE A3DE vs AODE

W/D/L p W/D/L p

Bias 6/0/1 0.063 7/0/0 0.008

Variance 2/0/5 0.227 1/0/6 0.063
Zero-one loss 7/0/0 0.008 7/0/0 0.008

RMSE 7/0/0 0.008 7/0/0 0.008

Table 3: Win/Draw/Loss: AnDE, n=1,2 and 3 on large data sets

datasets (Adult, Connect-4 Opening, Letter Recognition, MAGIC Gamma Tele-
scope, Nursery, Pen Digits and Sign) satisfied this criterion. The number of cases
of the chosen datasets ranged from just over 10,000 cases (Pen Digits) to over
60,000 cases (Connect-4 Opening).

The evaluation results are summarised as win/draw/loss records in Table 3.
As expected, the results show A3DE has a lower bias and higher variance than
A2DE and AODE. The zero-one loss and the RMSE of A3DE are lower for all
the evaluated datasets in comparison to A2DE and AODE (p=0.008). These
results confirm that A3DE performs better than its lower-dimensional variants
at classifying larger datasets.

7 Conclusions

The AnDE family of algorithms perform search-free learning. The parameter n
controls the bias-variance trade-off such that n = a provides a classifier whose
asymptotic error is the Bayes optimum. We presented techniques for reducing the
memory usage and the testing times of the AnDE implementations that make
A3DE feasible to employ for higher-dimensional data. As A3DE is superior to
AnDE with lower values of n when applied to large data, and as the linear
complexity and single pass learning of AnDE make it particularly attractive
for learning from large data, we believe these optimizations have potential for
considerable impact.

We developed a new compact memory representation for storing the fre-
quencies of attribute-value combinations that stores all frequencies in a 1-D ar-
ray avoiding the allocation of space for impossible attribute-value combinations.
The evaluation results showed that the enhancements substantially reduced the
memory requirements. The enhancements reduced the overall A3DE memory
requirements ranging from 13% to 64%, including reductions of over 100MB for
the high-dimensional datasets.

The classification times of the AnDE algorithms were improved by reorganis-
ing the memory representation to maximise locality of reference and minimising
memory accesses. These enhancements resulted in substantial reductions to the
total testing times for the AnDE family of algorithms. In the case of A3DE, the
maximum reduction in total testing time was 8.89ks, which was a reduction of
60%, for the Covertype dataset.

11



The enhancements to the AnDE algorithms opened the door for evaluat-
ing the performance of A3DE. As expected, the results showed that A3DE has
lower bias in comparison to A2DE and AODE. The results for zero-one error
between A3DE, A2DE and AODE did not produce a clear winner. However,
A3DE produced the lowest error for large datasets (with over 10,000 cases).

The computational complexity of AnDE algorithms is linear with respect to
the number of training examples. Their memory requirements are dictated by
the number of attribute values in the data. Consequently, the most accurate and
feasible member of the AnDE algorithm for a particular dataset will have to be
decided based on the dataset’s size and its dimensionality.

References

1. C. L. Blake and C. J. Merz. UCI Repository of Machine Learning Databases .
http://www.ics.uci.edu/~mlearn/MLRepository.html.

2. B. Boyer. Robust Java benchmarking. http://www.ibm.com/developerworks/

java/library/j-benchmark1.html, 2008.
3. D. Brain and G. Webb. The Need for Low Bias Algorithms in Classification Learn-

ing From Large Data Sets. In Proc. of the 6th European Conference (PKDD 2002),
pages 62–73. Springer-Verlag, 2002.

4. N. Coffey. Classmexer agent. http://www.javamex.com/classmexer/.
5. U. Fayyad and K. Irani. Multi-interval discretization of continuous-valued at-

tributes for classification learning. In Proc. of the 13th Int. Joint Conference on
Artificial Intelligence, pages 1022–1029. Morgan Kaufmann, 1993.

6. B. Hui, Y. Yang, and G. I. Webb. Anytime classification for a pool of instances.
Machine Learning, 77(1): 61-102, 2009.

7. E. Keogh and M. Pazzani. Learning augmented Bayesian classifiers: A comparison
of distribution-based and classification-based approaches. In Proc. of the Interna-
tional Workshop on Artificial Intelligence and Statistics, pages 225–230, 1999.

8. G. I. Webb. Multiboosting: A technique for combining boosting and wagging.
Machine Learning, 40(2):159–196, 2000.

9. G. I. Webb, J. Boughton, and Z. Wang. Not so naive Bayes: Aggregating one-
dependence estimators. Machine Learning, 58(1):5–24, 2005.

10. G. I. Webb, J. Boughton, F. Zheng, K. M. Ting, and H. Salem. Learning by extrap-
olation from marginal to full-multivariate probability distributions: Decreasingly
naive Bayesian classification. Machine Learning, in-press.

11. I. Witten and E. Frank. Data Mining: Practical Machine Learning Tools and
Techniques. Morgan Kaufmann, 2005.

12. F. Zheng and G. I. Webb. A comparative study of semi-naive Bayes methods in
classification learning. In S. J. Simoff, G. J. Williams, J. Galloway, and I. Kolyshak-
ina, editors, Proc. of the 4th Australasian Data Mining Conference (AusDM05),
pages 141–156, 2005.

13. Z. Zheng and G. I. Webb. Lazy learning of Bayesian rules. Machine Learning,
41(1):53–84, 2000.

12


