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Abstract 
This paper focuses on the development of a hybrid phenomenological/inductive model to improve the 
current physical setup force model on a five stand industrial hot strip finishing mill. We approached the 
problem from two directions. In the first approach, the starting point was the output of the current setup 
force model. A feedforward multilayer perceptron (MLP) model was then used to estimate the true roll 
separating force using some other available variables as additional inputs to the model. 
 
It was found that it is possible to significantly improve the estimation of a roll separating force from 5.3% 
error on average with the current setup model to 2.5% error on average with the hybrid model. The 
corresponding improvements for the first coils are from 7.5% with the current model to 3.8% with the 
hybrid model. This was achieved by inclusion, in addition to each stand's force from the current model, the 
contributions from setup forces from the other stands, as well as the contributions from a limited set of 
additional variables such as: a) aim width; b) setup thickness; c) setup temperature; and d) measured force 
from the previous coil. 
 
In the second approach, we investigated the correlation between the large errors in the current model and 
input parameters of the model. The data set was split into two subsets, one representing the "normal" level 
of error between the current model and the measured force value, while the other set contained the coils 
with a "large" level of error. Additional set of data with changes in each coil's inputs from the previous 
coil's inputs was created to investigate the dependency on the previous coil. 
 
The data sets were then analyzed using a C4.5 decision tree. The main findings were that the level of the 
speed vernier variable is highly correlated with the large errors in the current setup model. Specifically, a 
high positive speed vernier value often correlated to a large error. Secondly, it has been found that large 
changes to the model flow stress values between coils  are correlated frequently with larger errors in the 
current setup force model. 
 
 
Introduction 
 
Maintaining product consistency and quality in the manufacturing process has become a widespread 
concern as a result of increasing competition in the world markets. Increasing demands on the quality of 
rolling mill products have led to great efforts to improve the control and automation systems of the rolling 
process [1-3]. Hot steel rolling is one of the most important steel manufacturing processes. Hot rolling is 
the first metal shaping process after the slab has been cast, in flat products such as plate, strip and sheet. 
The final shaping stage of hot rolling steel strip is normally performed on a tandem mill known as a 
finishing mill consisting typically of two to six stands. Here the final thickness, flatness and profile of the 
work -piece are determined. It is important to have a sound understanding of the behavio r of the roll gaps in 
the finishing mill for design, scheduling and control purposes  [2]. In particular, accurate predictions of the 
roll separating force are necessary to meet the current and the future quality standards of final product 
dimensions and flatness. 
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This paper focuses on the development of a hybrid phenomenological/inductive model to imp rove the 
current physical setup force model on a five stand industrial hot strip finishing mill. The motivation for the 
application of inductive learning-based methodologies lies in the fact that they do not require the expert 
development of phenomenological models  [4-7]. This technology could provide a powerful tool for 
accurate prediction of the roll separating force, thereby ensuring that the products manufactured conform to 
target specifications and thus contribute to enhanced business benefits. 
 
The mill settings are determined from the physical models based on expert metallurgical and mechanical 
knowledge. The set-up of these models is crucial since it determines, to a large extent, the thickness of the 
final product. In practice, it is sometimes  observed that the roll-gap settings produced by set-up models  are 
not as accurate as those required by increasing consumer product-quality demands. Although small errors 
can usually be compensated for by the mill controllers, larger errors lead to quality degradation and 
potentially out-of-specification product. This is particularly prominent in the case of first coils in a rolling 
campaign whenever there has been a change in  width or thickness or steel grade [3]. 
 
The mill set-up errors arise since the set-up model only uses factors whose exact physical relationships are 
understood. Unfortunately, the rolling process involves many additional factors that affect the 
elastic/plastic material deformation in the roll gap, particularly due to the stochastic nature of the rolling 
process. In this sense, the physical model is far from perfect. 
 
 
Experimental Results 
 
We are interested in improving a current setup force model on five stand hot strip industrial finishing mill 
using the input, intermediate and output values of various setup models and the measured values of the 
force at each stand. We approached the problem from two directions. Firstly, we analyzed which variables 
may add more information to the estimation of the true force for each stand. Secondly, we  investigated 
which variables were correlated to large errors in the current setup force model. 
 

Improving the estimation of the stand forces  
 
A feedforward multilayer perceptron (MLP) model [8] was used to investigate possible improvements to 
the setup force model for each stand. The starting point was the output of the current setup force model for 
the available 10,000 records of production coils. An MLP model was then used to estimate the true force at 
each stand using some other available variables as additional inputs to the model. 
 
The MLP model enables us to measure whether inclusion of certain variables, or groups of variables, in the 
current setup force model can: 
 

a) provide additional information about the rolling stands that has not been included in the current 
model; 

b) achieve a better estimation of the true roll separating force. 
 
The sensitivity of each of the MLP's input variables gives an indication of how much information each 
variable can add to the current model. The input parameters to the MLP model were chosen based on a 
sensitivity analysis where only the most important variables were retained. The final selection of the input 
variables can be found in the Table 1. 
 
 
 
 
 
 
 



Table 1. The final input parameters to the MLP model 
 

Variable Name 
Aim width (current and the previous coil) 

F4 roll balance reference (current and the previous coil) 
F5 roll balance reference (current and the previous coil) 

Setup Force (F1-F5) (current and the previous coil) 
Delayed Measured Force (F1-F5) (previous coil only) 

Setup Forward Slip (F1-F5) (current and the previous coil) 
Setup Speed (Entry and F1-F5) (current and the previous coil) 
Setup Temp (Entry and F1-F5) (current and the previous coil) 

Setup Thickness (Tbar and F1-F5) (current and the previous coil) 
Arc of Contact (F1-F5) (current and the previous coil) 

Strain Rate (F1-F5) (current and the previous coil) 
Carbon (current and the previous coil) 

Molybdenum (current and the previous coil) 
Niobium (current and the previous coil) 

Phosphorus (current and the previous coil) 
Sulphur (current and the previous coil) 

Speed Vernier (current and the previous coil)  
Thickness Vernier (current and the previous coil) 

 
The obtained results for both the current setup and the hybrid models are  in Table 2. 
 
Table 2. The results of the estimation of the roll separating force by the current setup and the hybrid model 

for test data set (3000 coils). First Bar results are for first bars only for the test data set (752 coils). Here, 
F1-F5 are the roll separating forces for the respective stands, and Relative Error =  Abs(Predicted Force - 

Measured Force)/Measured Force. 
 

Relative Error (Current Setup Model) Relative Error (Hybrid Model)  
F1 F2 F3 F4 F5 F1 F2 F3 F4 F5 

Avg  0.036 0.049 0.061 0.044 0.073 0.018 0.020 0.025 0.024 0.043 Overall 
Stdev 0.034 0.045 0.045 0.040 0.063 0.018 0.021 0.025 0.026 0.043 
Avg  0.054 0.073 0.078 0.066 0.104 0.027 0.032 0.038 0.037 0.064 First 

Bars Stdev 0.043 0.057 0.058 0.051 0.083 0.025 0.028 0.034 0.034 0.053 
 
As can be seen from the Table 2, it is possible to significantly improve the estimation of a roll separating 
force from 5.3% error on average with the current setup model to 2.5% error on average with the hybrid 
model by adding some additional variables to the MLP model. The corresponding improvements for the 
first coils are from 7.5% with the current model to 3.8% with the hybrid model. This was achieved by 
inclusion, in addition to each stand's force from the current model, the contributions from setup forces from 
the other stands, as well as the contributions from a limited set of additional variables in Table 1. 
 
The scatter plots of the estimated forces versus measured forces for each stand with the hybrid model are in 
Figs 1-10. 
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Fig 1. Predicted rolling force F1 [t] versus measured rolling force F1 [t] with a hybrid model (overall) 
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Fig 2. Predicted rolling force F2 [t] versus measured rolling force F2 [t] with a hybrid model (overall) 
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Fig 3. Predicted rolling force F3 [t] versus measured rolling force F3 [t] with a hybrid model (overall) 
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Fig 4. Predicted rolling force F4 [t] versus measured rolling force F4 [t] with a hybrid model (overall) 
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Fig 5. Predicted rolling force F5 [t] versus measured rolling force F5 [t] with a hybrid model (overall) 
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Fig 6. Predicted rolling force F1 [t] versus measured rolling force F1 [t] with a hybrid model (first bars) 
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Fig 7. Predicted rolling force F2 [t] versus measured rolling force F2 [t] with a hybrid model (first bars) 
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Fig 8. Predicted rolling force F3 [t] versus measured rolling force F3 [t] with a hybrid model (first bars) 
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Fig 9. Predicted rolling force F4 [t] versus measured rolling force F4 [t] with a hybrid model (first bars) 
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Fig 10. Predicted rolling force F5 [t] versus measured rolling force F5 [t] with a hybrid model (first bars) 

 
The ranking of the input variables to the hybrid model in order of their importance are in the Table 3.  
 
 
 
 



Table 3. The ranking of variables in order of their correlation with F1-F5 overall. 
 

Variable Name Relative 
importance 

Aim Width 0.208 
Setup Thickness 0.178 
Arc of Contact 0.149 
Setup Strip Temp 0.129 
Strain Rate 0.120 
Setup Force 0.114 
Delayed Measured Force 0.113 
Setup Roll Speed 0.071 
Carbon 0.061 
Setup Predicted Forward Slip 0.059 
Niobium 0.045 
Molybdenum 0.039 
F5 Roll Balance Ref 0.027 
Phosphorus 0.020 
F4 Roll Balance Ref 0.015 
Sulphur 0.011 
Thickness Vernier 0.011 
Speed Vernier 0.010 

 

Correlating current setup force model errors 
 
The second approach to improving the current setup force model was to investigate the correlation between 
the large errors of the model and a restricted set of input parameters (or initial conditions) of the current 
setup force model. The intermediate variables, such as Arc of Contact, were not considered. The setup 
force, which is an output of the current model, was also chosen as a (input) variable of interest. The list of 
variables used in  this analysis can be found in Table 4. 
 

Table 4. The input parameters of the current setup force model for correlation analysis . 
 

Variable Name 
F4 Roll Balance Ref 
F5 Roll Balance Ref 

Model Flow Stress F1 -F5 
Base Temp Entry F1-F5 
Lower thread speed limit  
Upper thread speed limit  

Hardness code 
Aim Width 

Aim Thickness 
Aim Exit Temp 
Aim Coil Temp 

Chemical composition 
Work Roll Diameter F1-F5 

Setup Draft 
Tension ref looper 1-4 
Angle ref looper 1-4 
Thickness Vernier 

Speed Vernier 
Gauge Meter Error F1-F5 

 



The data set of production coils was split into two subsets (for each stand), one representing the "normal" 
level of error between the current model and the measured force value, while the other set contained the 
coils with a "large" level of error. A second set of data was created to see if there was any dependency on 
the previous coil. A change in each coil's inputs  from the previous coil's inputs was recorded (the inputs of 
the very first coil in the data set were set to zero). 
 
The data sets of the input parameters and the output variable for each stand were then combined and 
analyzed using a C4.5 decision tree. The decision tree is useful in finding a model that can classify data 
into two or more discrete classes. The decision tree can also be converted into rule sets for each class; these 
rules are often easier to interpret than the tree diagram. 
 
The data distribution of the "normal" sets and the corresponding "large error" sets is highly skewed as each 
"normal" set contained on average 95% of the data. To alleviate this problem, the decision trees were 
grown using an over-sampled "large error" set and then tested on the unmodified sample distribution. This  
provides a bias for the model to the "large error" data to  extract any significant, but small in frequency, 
relationships. A cross validation was used to prevent the model from over-fitting. Next, a rule set was 
extracted for each condition. 
 
The main findings from the analysis of the errors between the output of the current model and the 
measured force for each stand are that the level of the Speed Vernier variable is highly correlated with the 
large errors in the current setup force model. Specifically, it was discovered that a high positive Speed 
Vernier value often correlated to a large error. Secondly, it has been found that large changes to the Model 
Flow Stress values between coils are correlated frequently with larger errors in the current setup force 
model. 
 
The minor findings are that the large errors in the first four stands are not influenced by a coil's chemical 
composition. The last stand was slightly influenced by the Carbon content and the coil to coil change in the 
Chromium levels. There were also minor consistent influences across most stands by the Lower Thread 
Speed Limit and the Aim Exit Thickness variables. The found rules are below. Only the first two most 
accurate rules for Stands 4 and 5 are shown for space reasons, this can lead to anomalies (or interesting 
results) because often the most accurate rules are not the most frequently used rules. A rule (in the IF-
THEN format) is made up of ANDed expressions. A second or third coil is a proceeding coil following a 
first coil (without any changes in the input conditions). The rules for the current condition variables use the 
following labels: 
 

• Low for values that are one standard deviation or more below the average value for that variable; 
• Medium for values that are within one standard deviation from the average value of the variable; 
• High for values that are above one standard deviation from the average value of the variable. 

 
The first order difference variables are treated differently due to them being mainly zero average, so the 
low, medium and high labels do not apply in the same manner. The first order difference variable ranges 
from large negative changes to large positive changes. Slight positive or negative changes are those that are 
much s maller than one standard deviation. 

Stand 4 

Combined Current Condition and First Order Difference data sets 
Rule set error = 18.9% 
18 rules (6 for normal condition, 12 for large errors) 
Normal Condition: 
Rule 1: 

• IF Set-up Force F3  is at low or medium levels  
• AND ∆  F4 Roll Balance Ref is slightly negative or is positive 
• AND ∆  Model Flow Stress F2 is contained within less than one standard deviation 

around zero 
• AND ∆  Set-up Force 1  is slightly negative or is positive 



• AND Coil is not a First Bar 
• THEN Not a Large Error 

Rule 2: 
• IF Set-up Force F3 is at a high level 
• AND Set-up Force F4 is at a high level 
• AND ∆  Model Flow Stress F2 is contained within less than one standard deviation 

around zero 
• AND Coil is not a First Bar 
• THEN Not a Large Error 

 
Large Error Rules: 
Rule 1: 

• IF Set-up Force F3 is at low or medium levels 
• AND Set-up Force F4 is at a high level 
• AND Gauge Meter Error is at a high level 
• AND Coil is not a First Bar 
• THEN Error is Large 

Rule 2: 
• IF Aim Exit Temperature is at a medium temperature and above 
• AND Carbon is at a medium to high carbon steel level 
• AND ∆  Set-up Force 5 is very negative 
• THEN Error is Large 

 
Primary variable Secondary variables Tertiary variables 

 ∆ Model Flow Stress 
F2 ∆ Model Flow Stress F2 

 
Coil Counter (reset at each First 
Bar) 

Aim Exit Temperature 
Speed Vernier 

 

Stand 5 

Combined Current Condition and First Order Difference data sets 
Rule set error = 15.1% 
16 rules (3 for normal condition, 13 for large errors) 
Rule 1: 

• IF F5 Roll Balance Ref is at a low or medium levels 
• AND Lower Thread Speed Limit  is at a low or medium levels  
• AND Set-up Force F5 is at a medium level and above 
• AND ∆  Set-up Force F1 is slightly negative or is positive 
• AND Coil is not a First Bar 
• THEN Not a Large Error 

Rule 2: 
• IF Lower Thread Speed Limit is at a low or medium levels  
• AND Set-up Force F1 is at a medium level or above 
• AND Set-up Force F5 is at a medium level or above 
• AND ∆  Set-up Force F1 is slightly negative or is positive 
• AND Coil is not a First Bar 
• THEN Not a Large Error 

 
Large Error Rules: 
Rule  1: 

• IF Aim Exit Thickness is at a medium level and above 
• AND Carbon is at a high carbon steel level 



• AND ∆  Set-up Force F5 is slightly negative or positive 
• THEN Error is Large 

Rule 2: 
• IF Aim Exit Thickness is at a medium level or above 
• AND Carbon is at a high carbon steel level 
• AND ∆  Model Flow Stress F4 is very negative 
• AND ∆  Set-up Force F1 is very positive 
• THEN Error is Large 

 
Primary variable Secondary variables Tertiary variables 

 
Set-up Force F5 

Lower Thread Speed Limit 
 

Coil Counter (reset at each First Bar) 
Base Temp Entry F1 

∆ Chromium 
 
Conclusion 
 
We were interested in improving a current setup force model on five stand hot strip industrial finishing 
mill. We approached the problem from two directions. Firstly, we analyzed which variables may add more 
information to the estimation of the true force for each stand. Secondly, we  investigated which variables 
were correlated to large errors in the current setup force model. 
 
The most promising direction found for improvement of the current setup model is to include in addition to 
each stand's force from the current setup model a weighted contributions of setup forces from the other 
stands; as well as contributions from a limited set of additional variables. It was also found that the 
improvements made to force estimation on First Bars were similar to the overall improvements made to the 
current setup model with the exception of the Stand 5. Stand 5 required additional minor variables to 
improve its force estimation on First Bars. 
 
The second direction of this investigation has revealed that the Speed Vernier variable is highly correlated 
to the large errors in the current setup model. Moreover, large changes to the Model Flow Stress values 
between coils are correlated with large errors in the current setup model. 
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