
T. Richards, G. I. Webb and N. Craske (1988). “Object-oriented Control for Intelligent
Computer Assisted Learning Systems ”. Page 1 of 15

OBJECT-ORIENTED CONTROL FOR INTELLIGENT COMPUTER
ASSISTED LEARNING SYSTEMS

Tom Richards
Computer Science, La Trobe University

Geoff Webb
Computing and Information Studies, Griffith University

Noel Craske
EDP Department, Chisholm College

Abstract

This paper investigates an approach to providing a general-purpose authoring/tutoring shell for
intelligent computer assisted learning systems. The approach is to outline an object-oriented
representation of task/goal hierarchies, then to consider the ways in which domain expertise,
student information and teacher expertise can be made to interact with such hierarchies. The result
is a skeleton in terms of which exploratory lessons are being constructed; and in terms of which
further research on the domain expert system, student modelling, educational expertise modelling,
and user interfacing can more concretely be developed.

Keywords
Object oriented programming; intelligent tutoring systems authoring systems; computer assisted
learning; frames; student models; teaching strategy.

1 INTRODUCTION
Most current work on the construction of Intelligent Computer Assisted Learning (ICAL) systems
has concentrated on one-topic systems: diagnosing faults in a particular electrical circuit - the
SOPHIE system (Brown, Burton and De Kleer, 1961), solving the WUMPUS game (Goldstein,
1981), and ACE, which discusses the analysis of nuclear magnetic resonance spectra (Sleeman and
Hendley, 1981). These systems and others like them were not intended as vehicles for widespread
educational use; rather, they are vehicles for investigating and solving important research
problems: natural-language communication, modelling the evolution of procedural knowledge in a
learner, and dialogues to monitor and guide student reasoning, respectively. Those are problems
that need solving first if we are to use artificial intelligence effectively in education.

In the EXCALIBUR Project, by way of contrast, the authors and others are investigating what is
involved in providing a general-purpose ICAL system. The search is for a system which provides
an authoring and knowledge engineering shell, analogously to a standard expert system shell, and a
delivery system for students (Richards, 1986a). Such a system is intended to be general-purpose in
that the architecture and knowledge representation methods used should involve no specific
assumptions about the content or nature of the subject domain to be taught, nor about the modes of
learning or presentation (instructional, student driven, exploratory, and problem-oriented, etc) to
be used.

To use such a system, a person, whom we will call the author, will interact with the system to
create what, for lack of a less pejorative word we will call a tutorial - a program which can then be
run by a student with the aim of learning from his or her interaction with it. We stress that it is up

Pre-publication draft of a paper which appeared in Ercoli, P. and R. Lewis (Eds.), Artificial Intelligence Tools
in Education: the IFIP Tc3 Working Conference 1987, pages 203-219. North-Holland, Amsterdam

T. Richards, G. I. Webb and N. Craske (1988). “Object-oriented Control for Intelligent
Computer Assisted Learning Systems ”. Page 2 of 15

to the author to decide the extent to which the student’s interaction with the tutorial is to be
constrained by (for instance) predetermined delivery sequence and student assessment results, in
which case the author will need to specify instructional modes or rules to the system; or to which
the student may treat the tutorial as an educational information kit and tool bag, in which case the
author will need to specify what resources and modes of exploration are available to the student.
The point is that a general-purpose ICAL system should place little constraint on the educational
philosophy the author wishes to adopt.

The question is: how might one build such a general-purpose system? The main problems we have
identified, for which solutions must be found that do not compromise the sought-after generality,
are:

a. How to store data on the subject domain of the tutorials, and how to perform analyses
on that material in ways relevant to the learning process at hand (designing the
Domain System facility, which in many cases will amount to an Expert System or
Knowledge Based System);

b. How to construct a knowledge base about the student, including what the student
believes and has learnt in the domain of the tutorial, and why and how. This facility is
called the Student Model.

c. How to incorporate rules about student knowledge and performance criteria that can
be used to tailor or guide the presentation of the student session in the light of
information gathered about the student so far. This is the Mentor facility (Sussex,
1987).

d. How to unify these under a System Driver which handles authoring sessions as well as
student sessions.

The Domain Information System is not necessarily the same as the material which the student may
learn. Often, it may be much more extensive, for the same reason as a teacher usually needs to
know far more about a subject than s/he will teach, just in order to handle the teaching process
well. In the case of an ICAL system, the Domain Information System may often need to contain
intelligent subsystems enabling the computer to solve problems whose solution is needed for the
tutorial interaction, but whose solution method is either far too advanced for the student or is a
computer-oriented process that can be quite confusing to a human. Crudely put, machines and
people do not think alike. Examples are:

- The parsing of a given French sentence in a French grammar tutorial, in order to generate
the specific grammatical and pragmatic information the student needs for the interaction
about that sentence. Machine parsing methods are usually totally different from those used
in a French language tutorial class, even if the end-products (parts of speech, agreement
relations, etc.) are much the same.

- The checking or production of a proof step in the derivation of a proof in a tutorial on
mathematics or formal logic. A student may, for example, be learning one particular
method of doing formal logic, such as natural deduction; yet the tutorial system will use a
pattern-matching procedure which is not in the least educationally relevant, to check the
students proof steps.

We cannot easily do without the special expertise of the Domain Information System. If we did
away with the French parser, then an author could provide the parsing information needed by the
student for each stored sentence; but then that information could not be generalised to cover
sentences typed in by the student. In the logic example things are worse, for proof checking
information cannot in principle be provided by the author: for non-trivial derivations there can be
an infinity of correct “next steps”. Only a special proof-checking procedure will do the job.

We turn now from considerations about the material to be learned, to questions of how to learn it.
In French grammar, logic, and indeed courses on most topics there may be many modes of
learning. The student might be, for example:

T. Richards, G. I. Webb and N. Craske (1988). “Object-oriented Control for Intelligent
Computer Assisted Learning Systems ”. Page 3 of 15

- Working through a set system-controlled sequence of actions;

- Freely exploring an environment containing knowledge and techniques relevant to the
subject domain;

- Trying to devise his/her own techniques for reaching a goal - and testing them.

The more learning modes such as these that are made available to the student, the more demands
are put onto the content and problem solving power of the underlying Domain Information
System. But even more stress can be put onto the other three facilities, the Student Model, the
Mentor, and the System Driver.

In the rest of this paper we will look at a method of designing and unifying these four facilities.
The result is the specification of an architecture for a general-purpose ICAL system.

2 GOAL/TASK HIERARCHIES
One place to start in trying to analyse this problem is the idea of Goal/Task hierarchies (see Fig. 1.)

A tree-structured Goal/Task hierarchy has at its root the overall goal of the current tutorial, and the
(immediate) dependants of any node are the sub-goals that need to be achieved in order to achieve
the node’s own goal. On each node is a task, which to be carried out requires that the tasks on the
dependant nodes have been executed. The terminals of the tree are initial goals which have no
prior goal; tasks which can be executed without performing prior tasks. Formally, the links from a
node N to its dependant nodes N1, N2 , mean that the tasks on the dependants are individually
necessary and jointly sufficient for the execution of the task on N; so a task hierarchy is an and-
tree, and a link from N to a dependant node N1 means that achieving the goal on N1 is a necessary
condition of achieving that on N. That is to say, in order to achieve the goal on N it is (logically,
pedagogically, epistemically, or . . .) necessary to achieve, or to have achieved, the goals on N1,
N2; and when they have been achieved it is (logically, pedagogically . . .) possible to achieve the
goal on N by doing the task on N. The relation between the goal and the task on a node is simply
that the goal is what has been achieved when that task has been executed, given that the sub-goals
on N1, N2 , have been achieved. Any tighter definition of the linkage relation in a goal/task
hierarchy is not really a matter for the system designer, but for the author of a tutorial, who will
wish to exploit it as a control structure that may be adapted to his or her ideas about the flow of the
tutorial.

Figure 1: A tree-structured Goal/Task hierarchy

T. Richards, G. I. Webb and N. Craske (1988). “Object-oriented Control for Intelligent
Computer Assisted Learning Systems ”. Page 4 of 15

In Figure 2 we have a small example of a Goal/Task hierarchy for detecting subject-verb
agreement in number, which illustrates the points just made.

Figure 2: A task/goal hierarchy for subject-verb agreement

The knowledge needed to determine agreement of subject and verb (the goal on N) is the gender
and number of the subject (left-hand sub-goal) and the gender and number of the verb (other sub-
goal). When they are known, a comparison of them to see if they are the same (task on N) suffices
to reach the goal on N.

S1

OwnSlot aSentence

 Sentence The girls were running

 Parse Parse data

 Subject-number Plural

 Verb-number Plural

 Subject The girls

 Verb were running

N1

Goal Determine number of subject

StudentTest
(=(response-to “What is the number of the
subject of this sentence”
(subject-number CurrentSentence))

StudentRecord
(if(=StudentTest true)
then (put CurrentStudent Goal passed)
else (put CurrentStudent Goal failed))

Figure 3: A Record
or Object S1
holding an example
sentence and
grammatical
information about
it, and a
corresponding
Goal/Task Object
N1.

Italic text is a
description of data
not the data itself.
Parenthesised text
is Method code.

T. Richards, G. I. Webb and N. Craske (1988). “Object-oriented Control for Intelligent
Computer Assisted Learning Systems ”. Page 5 of 15

Sentence

InstanceSlot aSentence

 Sentence

 Parse Parsing function returning parse
data

 Subject-number (subject-number-of Parse)

 Verb-number (verb-number-of Parse)

 Subject (Subject-of Parse)

 Verb (Verb-of Parse)

Figure 4: A type Object for sentence data. Note that S1 of Fig. 3 is an instance of this Object

Suppose now a student is attempting to use an ICAL program based on this Goal/Task hierarchy to
learn about subject-verb agreement. We imagine that the student is presented with a series of
examples - French sentences that may or may not obey the rules about agreement - and is required
to move through the hierarchy with each example. (The pedagogical effectiveness of this approach
is not up for discussion at present: we simply need an example to motivate this description of our
system.) Then on each node we need to record a method of determining if the student is correct in
his/her task solution. One way to do this might be to look up the answer as entered by the tutorial
author on a record containing the current sentence example (S1 of Figure 3 is a record containing
the needed data). More intelligently, such a frame might be created by a parse procedure belonging
to the underlying Domain Information System (Figure 4).

Figure 3 contains (sketchily) three types of control (or, if you prefer, information):

- Domain information, as in the record S1;

- Tutorial driving procedures, as in the StudentTest slot of N1;

- Student modelling services, as in the StudentRecord slot of the frame N1

Each of these three control regimes may embody a great deal of information, procedures, and the
like, but as Figure 3 suggests, each regime intersects with a Goal/Task record, such as N1, in a
simple way. The architectural design of the system is based on this, bringing us to the central
design issues of the system

3 OBJECT HIERARCHIES AND TYPE-SYSTEMS
In Object-Oriented Programming Languages (OOPL’s: see Byte, 1986; OOPSLA, 1986) the entity
that does the work is not a procedure, as in procedural languages, but an Object (with a capital O
to avoid ambiguity) containing local data (like Pascal records) and procedures (called Methods),
which are accessed and activated by Messages (like command lines) sent by one Object to another,
and returning values. Objects are similar to the sets and individuals of set theory, in that one
Object can be a member (usually called an instance) of other Objects; or it can be a subset
(subtype) of other Objects. For instance, an Object containing information about the behaviour of
the French verb ‘voir’ will be an instance of another Object containing generic information about
the behaviour of transitive verbs. That Object in turn will be a subtype of another Object
containing generic information about the behaviour of verbs in general. Note the difference
between an instance and a subtype: ‘voir’ is an instance of a transitive verb, and of a verb. It is not
a subtype of either. And transitive verbs, as a type, are not an instance of verbs; they are a type of
verb.

Subtype relations form a hierarchy (see Fig. 5), with instances as the terminal nodes of the
hierarchy tree.

T. Richards, G. I. Webb and N. Craske (1988). “Object-oriented Control for Intelligent
Computer Assisted Learning Systems ”. Page 6 of 15

Figure 5: An inheritance hierarchy of Objects

Objects in the tree normally inherit properties belonging to any higher Object; for instance if Verb
in Figure 5 recorded that all verbs have subjects, that would hold of transitive verbs and
intransitive verbs, and all instances ‘etre’ and ‘voir’ as well. So if a query were addressed to this
tree: “Do transitive verbs take subjects?” the TransitiveVerb Object would receive this query
message and answer “Yes.” If the lesson designer wished to treat the verb ‘etre’ as an exception to
the rule about subjects, s/he records on the Etre object that it does not take a subject, and the
inheritance of the contradictory property from Verb is blocked. The query “Does ‘etre’ take a
subject?” would go to the Etre Object, which would directly answer “No,” without consulting
further up the hierarchy. In the same way procedures can be stored on the appropriate Object, and
get consulted by lower objects unless overridden by a lower procedure. The procedure for finding
a verb’s subject belongs on Verb, and the procedure for finding a verb’s object belongs on
TransitiveVerb.

Objects that are instances typically record different sort of information from objects that are types.
Instance Objects record information specific to the thing that Object represents, but a type Object
will record generic information true of all instances of that type. The type Object StudentModel
would record the pass mark needed for any student to succeed in the current tutorial; but an
instance of that type, such as Student36, would record that student’s name and mark achieved.

In our ICAL design, the Goal/Task hierarchies are not Object hierarchies as described above, even
though the nodes (see Figure 2 and N1 of Figure 3) are Objects. So from now on we will call them
Goal/Task Objects. The hierarchy shown in Figure 2 is plainly not one of inheritance, for N1 does
not inherit anything from N. The link, as remarked earlier, is that the lower Goal/Task Object
contains a goal that is a necessary condition for attaining that in the higher Object. A goal, filling a
slot in a Goal/Task Object such as N1, is however an instance of the type Object called Goal,
which specifies the structure of any of its instances, which are of course individual goals. (See
Figure 6)

T. Richards, G. I. Webb and N. Craske (1988). “Object-oriented Control for Intelligent
Computer Assisted Learning Systems ”. Page 7 of 15

(a)

Goal

InstanceOf

SubtypeOf Universe

InstanceSlot theGoal

 Key function returning unique keys

 Description instances put English description here

InstanceSlot Goal/Task instances put a pointer to a
Goal/Task Object here

InstanceSlot Subgoals instances put pointers to subgoals
here

InstanceSlot Supergoals instances put a pointer to the
supergoal here

InstanceSlot GoalData instances put methods or pointers
here to obtain data about the goal

(b)

Goal5

InstanceOf Goal

SubtypeOf

OwnSlot theGoal

 Key Goal5

 Description Determine number of subject

OwnSlot Goal/Task N1

OwnSlot Subgoals ()

OwnSlot Supergoals Goal49

OwnSlot GoalData ()

Figure 6: Objects and instances

Figure 6a shows a type Object called Goal containing a number of structured InstanceSlots, which
describe generically the slots occurring on each token of this Object that may get created, i.e. on
any individual goal Object. Goal5 is a token of Goal; and what the Goal slot of N1 in Figure 3
really contains is a pointer to Goal5. To create Goal5, the InstanceSlots of Goal are called upon to
define the structure of Goal5, and so is any Object of which Goal is a subtype - in this case
Universe, which is the unique upper bound of the inheritance lattice. This is the method used to
create any new Object.

The OwnSlots contain data or Methods belonging to that Object itself; these slots are the ones
defined by the corresponding generic InstanceSlot data on the higher Objects. One Object can
access the data in another Object’s OwnSlots, or activate Methods stored there, by sending it a
Message, containing arguments for the Method’s parameters if needed. For example, since the
Goal slot of a Goal/Task Object points to some instance of Goal, Goal/Task Objects are designed
so that they can send messages to Goal. For example, the pointers to Goal/Task nodes making up
the Goal/Task hierarchy (as seen in Figure 2) are determined by a Goal/Task Object sending a

T. Richards, G. I. Webb and N. Craske (1988). “Object-oriented Control for Intelligent
Computer Assisted Learning Systems ”. Page 8 of 15

message to the instance of Goal that its Goal slot points to. In this way, a Message from N1 to its
Goal instance G5, to find G5’s supergoal, will return N’s goal.

Then a Message to that goal to report its subgoals will return G5’s “sibling subgoals” (just one, in
the example) which must also be achieved by the student before the goal of N can be attempted.
Messages can now be sent from N1 to each of those subgoals, accessing the Goal/Task objects
they belong to (just N2) and checking which of them the student has already achieved. This helps
to determine the flow of tutorial control.

Where does the code for these messages reside? In OwnSlots in the type Objects Goal/Task and
Goal, to be inherited by their instances. For example, the Method to find a Goal/Task Object’s
siblings resides on the type Object Goal/Task, and looks like this, in pseudocode :

GetSiblings:
 supergoal := ask Goal for its supergoal Object;
 sib-goals := ask supergoal for list of its subgoal Objects;
 siblings := collect into a list:
 for each sib in sib-goals:
 ask sib for its Goal/Task Object;
 return (siblings less self)

Now if N1 is sent the message GetSiblings it will return the list (N2).

This example of how a slot in an Object can point to another Object, which belongs to a particular
hierarchy of Objects, illustrates an important aspect of the architecture of our design. We have
identified a number of Object hierarchies, or clusters thereof, that are needed in our ICAL
structure. Major ones are:

- Goal type-systems, discussed in detail above;

- Task type-systems, defining activities for the student;

- A type-system to describe the Student Models for individual students and associated
diagnostic procedures;

- Logic type-system to provide rule frameworks for a logic - programming reasoning service
where needed. Sets of these rules comprise the Domain Expert System, reasoners about
the student’s belief base, and the analysers for a natural language interface.

4 OBJECT NETWORKS
We remarked earlier that the hierarchy of Goal/Task Objects was not linked up by inheritance, so
in present terminology it is not a type-system. Type-systems are used to define Objects as types,
subtypes, and ultimately instances, and to provide through inheritance powerful built-in reasoning
services. But the hierarchy of Goal/Task Objects is effectively a simple semantic network: data
nodes joined by labelled links.

Overall, the system we are designing can be viewed as comprising several connected semantic
networks or conceptual graphs (Sowa, 1984), which we will call Object networks. Major Object
networks in a tutorial program are:

- The underlying Domain Information System;

- The Student Model facility;

- The Mentor facility;

- The system Driver;

- The Goal/Task network;

- Human/machine interfaces;

T. Richards, G. I. Webb and N. Craske (1988). “Object-oriented Control for Intelligent
Computer Assisted Learning Systems ”. Page 9 of 15

- Natural language processor;

- Reasoning systems, primarily for the Domain Information System if it is knowledge-based
and for conducting rational dialogues with system users.

Concentrating attention on these Object networks as the architectural framework of an ICAL
system makes the type-systems disappear into the background. On the other hand, if you
concentrate on the type-systems, then you see the Object networks as largely derivative structures,
being created by the pointers in slots of the Objects as created maintained, and manipulated by the
type-systems. Look at how we found the siblings of a particular Goal/Task Object, which
illustrates how the Goal type- system defined the Goal/Task Object network.

Figure 7 tries to depict, on two-dimensional paper, the multi dimensional structure of the resulting
system.

Figure 7: Type -systems and Object networks

It would be better to visualise slots (in Target of Figure 7, for instance) not as containing pointers,
but containing the Objects pointed to, and to visualise each type-system as lying in a different
plane or dimension. The Object networks cannot be entirely determined by the background type-
systems and slot pointers; but to the extent that they are, the authoring task for a given tutorial is
simplified and automated. The author is presented with ready-made prototypes for type—systems,
eg. The type Objects Goal/Task and Goal, and needs to specify instances and what goes into the
OwnSlots of those instances. That can be more like a data-entry task than a programming task. To
the extent that Methods need to be developed by the author of a tutorial, typically in an intelligent
Domain Information System, then to that extent programming or knowledge engineering is
needed.

At its simplest, then, the tutorial construction procedure for an author is:

- Construct a Goal/Task network for the tutorial domain;

- Construct a Domain Information System which will provide the domain data and
processing that a student (or the system) may need at each node of the Goal/Task network.

From the point of view of the system designer, who has to think about how to make the authoring
process simple yet powerful, three important research goals that we are exploring are:

T. Richards, G. I. Webb and N. Craske (1988). “Object-oriented Control for Intelligent
Computer Assisted Learning Systems ”. Page 10 of 15

- To devise skeleton Goal/Task node objects that put few constraints on the type, content, or
style of tutorial to be developed around those tasks, yet which allow the author to express
the cognitive structure of the tutorial with a minimum of special programming or
modification;

- To provide a clean interface to the Domain Information System that allows domain
information to be entered securely; and in a way that permits reasoning on that information
and creates suitable output for student users;

- To develop an author/system interface that requires as little learning as possible by
authors, while giving them as much power and control as possible over the system and the
tutorial they are creating. To do this very high-level editors and browsers are needed, such
as network displays and network editors.

To illustrate the problem of designing authoring facilities for a general-purpose ICAL, and the way
in which an Object-based architecture helps, we will now look at the question of providing various
tutoring strategies or methods for any given tutorial material.

5 PROVISION OF TUTORIAL STRATEGIES
The object-oriented approach allows several useful features and procedures to be developed,
virtually free, as aspects of the OOPL methodology.

- The Goal/Task hierarchy can be generalised to an and/or digraph, in the manner of the
Feature Networks of (Webb, 1986). This now allows us to represent any structure of
necessary and sufficient conditions between nodes, which give great freedom in
representing the epistemological structure of the concepts, skills, etc. being tutored.

- DoFirst and (inversely) DoNext slots on a Goal/Task Object can contain pointers to other
such Goal/Task Objects, thus controlling lesson sequencing in a rigid manner.
Alternatively, the Goal/Task hierarchy can be used to provide default tutorial sequencing.
If the type Object for these nodes has an instruction to do first the dependants of a node (if
any), then a bottom-up tutorial regime is established as the default. Or, an instruction there
to do the parent first establishes a top-down regime, allowing the student to avoid doing
explicitly the subtasks of a task she/he can do in one hit.

- A TutorialStrategy slot on a Goal/Task Object can contain code for an explicit tutorial
strategy, to override the contents of DoFirst and DoNext slots, but accessing them if
needed, typically under certain conditions laid down by the author or inferred from the
student model.

- DoFirst and DoNext slots will in general create a pointer universe for the Goal/Task
Objects that organises them as a directed lattice or even a general digraph, with lower
bounds and upper bounds representing the first and last things to do. This can be even
more complicated if these slots contain disjunctions or conjunctions of pointers. A system-
provided graph search algorithm will act as a tutorial planner for the student, finding
feasible paths to the root task/goal node(s)

- In general, a student will have some task to do at a Goal/Task node, even if it is only to
read something. Slots on the node can specify different tasks for different tutorial
strategies, or for different conditions that the student is in: slots such as Remediate, Check
knowledge, TestKnowledge, Tellstudent. Access to these will typically be determined by
the code on the TutorialStrategy slot. Thus, except in rather primitive lessons, the
Goal/Task network need not of itself define any sort of sequencing of student tasks.

- The task(s) at a Goal/Task node can recursively be defined in terms of another lower-level
Goal/Task hierarchy, effectively providing different levels of abstraction or detail at which
a student might proceed with the tutorial.

T. Richards, G. I. Webb and N. Craske (1988). “Object-oriented Control for Intelligent
Computer Assisted Learning Systems ”. Page 11 of 15

- Costs can be statically or dynamically associated with nodes on the graph, reflecting
difficulty of task, desirability of doing the task, etc. The graph-search algorithm mentioned
above will then seek minimal-cost paths for the student.

- Any slot on a Goal/Task node can have a UserAccess? facet on it, indicating whether the
user may access the information or execute the procedure in that slot. This provides a
control over the openness of the tutorial material to the student, and the extent to which
they can browse, select their own learning method, etc. Such a facet may of course contain
code, not just Yes or No, determining the access conditions for that slot, and
distinguishing between types of user, such as programmer, tutorial author, and student.

- Authoring a tutorial can be treated as one mode of use of the tutorial. This allows a student
access to the authoring tools, and very open access to slots in the Goal/Task network, as
well as to the Domain Information System and the Student Model system. This has the
advantages of providing a uniform user interface, and not one for the author and another
for the student; and of opening up a powerful learning-by-making tutorial strategy. The
disadvantage is that the student could damage or destroy the tutorial by his/her
modifications; so a student-as-author access class needs to be distinguished from a true-
author access class.

6 STUDENT MODELLING
Here too, the OOPL approach to system design allows a lot of student information to be collected
and used more or less automatically.

- Demons on a Goal/Task node can collect any type of monitoring data on student behaviour
when the goal is visited. The data can then be dispatched to appropriate nodes in a student-
modelling structure. Demons on nodes in that structure can then update student statistical
data, revise the profile of the student, and despatch information to the blackboard that will
be needed for the next stages of user interaction.

- Collected student data, either on a Goal/Task node or in the Student Model database or on
the blackboard, can be accessed by message-passing to help control the tutorial or to
determine how to respond to the user.

- Overlay models of student beliefs (Goldstein, 1981) are effectively generated
automatically by storing student beliefs about a Goal/Task node on that node, and
similarly by storing student beliefs about some item or concept in the Domain Information
System database on the Object encoding that concept. This provides the raw data for
analysing bugs in student beliefs (Stevens, Collins and Goldin, 1981), which are important
in directing further tutorial interaction.

7 COMPARISON WITH OTHER SYSTEMS
The idea of Goal/Task nodes is found in a simplified form in the ECCLES system (Richards and
Webb, 1985); although there they are arranged strictly in an or-tree whereas here any and-or graph
is constructible. The point of the or-tree was that a path through the tree represented an appropriate
series of tasks for the student when faced with a particular problem in the domain. Analysis of the
grammar of one type of French sentence, for example, would proceed down one path, determined
by the grammatical features of that type, and analysis of sentences of another type would proceed
down a second path, taking alternatives appropriate to the different features of the second type.
Each sentence to be analysed is flagged by a tip node in the decision tree, thus determining the
path of tasks to take (See Figure 8).

T. Richards, G. I. Webb and N. Craske (1988). “Object-oriented Control for Intelligent
Computer Assisted Learning Systems ”. Page 12 of 15

Figure 8: Part of an ECCLES decision tree for analysing the French ‘passe compose’
construction. Nodes show information gained to reach them; terminal nodes (rounded boxes)

also show the path number to that node.

Also, in ECCLES, the actual tutorial interactions are determined by question-response material
stored on each node. On the present model, many tutorial modes are possible, and a student is not
constrained to any path through the Goal/Task network (though can be). Moreover, in the present
system, if a student is “at” a particular Goal/Task node, the interaction there can be of many sorts,
and be determined by processes in the Student Model, Mentor, and Domain Information System,
and as outlined in the previous section of this paper. Teaching material on a Goal/Task node
generally just consists of pointers to the relevant objects in the Domain Information system, or, in
more complex cases, messages to the Mentor who organises appropriate material from the Domain
Information system. It is important to realise that the Goal/Task Objects in the present system are
mainly there as points of intersection of Objects from many type-systems, thereby acting as nodes
for an Object network (the Goal/Task network) that describes epistemological relationships in the
subject domain to be taught.

The Goal/Task network provides a description of the operations that students must perform to
complete learning tasks from a subject domain. Often this network will map directly onto the
Domain Information System - the network that describes the knowledge that the student is to
acquire through the performance of those tasks. For example, in Figure 2, N1 should map directly
onto a node in the Domain Information System specifying that the number of the subject of a
sentence must be singular or plural. N2 should map onto a similar node relating to verbs. Finally,
N should map onto a Domain Information System node specifying that there is subject/verb
number agreement in a phrase if and only if the number of the subject is the same as the number of
the verb.

A Goal/Task network will only map directly in this manner onto a Domain Information System
network if each element of knowledge that the student is to learn is to be taught by a single
operation that the student is to perform and if each operation in turn relates only to a single
element of domain knowledge. There will be many domains for which these conditions do not
hold.

The idea of basing lessons on explicit descriptions of the knowledge to be taught has been
explored through the DABIS system (Webb, 1986). DABIS utilises a form of and/or digraph, the
feature network, to represent the epistemological structure of the domain to be taught. Thus,

T. Richards, G. I. Webb and N. Craske (1988). “Object-oriented Control for Intelligent
Computer Assisted Learning Systems ”. Page 13 of 15

DABIS lessons are based on explicit descriptions of the knowledge they are to teach (the Domain
Information System) rather than on explicit descriptions of the teaching strategy that is to be
pursued (the Goal/Task Hierarchy) as is the case with ECCLES. Figure 9 illustrates the difference.
This allows DABIS to construct far better student models than ECCLES in domains for which
there is not a one to one correspondence between the Goal/Task hierarchy and the epistemological
structure of the domain.

However, DABIS has the shortcoming that it is difficult to specify instructional flow that differs
substantially from the structure of the Domain Information System. Thus, like ECCLES, and for
the converse of the same reason, DABIS operates best in domains in which the Goal/Task
hierarchy maps directly onto the Domain Information System. As a result, tutorials for both
systems tend to be selected where these conditions hold. This, unfortunately, tends to obscure the
fundamental differences between the semantics of the underlying structures utilised by the two
systems. However, as described in (Webb, 1986), these differences are both real and significant.

Figure 9: Part of a DABIS feature network for the French ‘passe compose’.
This covers much the same features as the ECCLES tree in Figure 8. The loop joining the
links coming down from the top node indicates that it is an AND-node: all four subtrees

below it must be visited, not just one.

The present project, EXCALIBUR, can be seen as unifying the ECCLES and DABIS approaches
to allowing the explicit description of both a Goal/Task network and a Domain Information
System within the one system. What EXCALIBUR adds to the other systems is:

- explicit Goal/Task networks (missing from DABIS);

- explicit knowledge structures (missing from ECCLES);

- the allowance that student paths through the Goal/Task network need not be constrained
by the necessary-condition vectors of that network, but by pointers in DoFirst and NoNext
slots in the Goal/Task Objects;

- the provision an Object-oriented architecture for the construction of ICAL lessons around
the Goal/Task networks.

The reason for treating the Domain Information System separately is just that in general a lot more
information and reasoning ability is needed in a teacher than the curriculum they teach (see the
Introduction, above.) However, the Domain Information system can, in the Object-structured
architecture of the present system, be coupled as closely as needed with the Goal/Task network. In
some cases it could be dispensed with entirely; as where the tutorial author provides the necessary
parse data for the problem French sentences.

T. Richards, G. I. Webb and N. Craske (1988). “Object-oriented Control for Intelligent
Computer Assisted Learning Systems ”. Page 14 of 15

8 CONCLUSION: FURTHER RESEARCH
The design of a suitable architecture is just the starting point of the EXCALIBUR Project. Current
active research by the authors consists of:

- building small tutorial systems along the above lines, as different in subject area and
tutorial approach as possible, as test beds for the design of Goal/Task hierarchies and
nodes, and of the various Object networks and their interaction (Richards, 1986b).

- abstracting from those cases to an adequate common Object formalism.

Other current EXCALIBUR work comprises:

- design of Student Model systems that incorporate different theories of cognitive structure
and learning; with the aim of using EXCALIBUR as empirical tests of those theories
(Cumming, 1986). The use of ICAL systems as test beds for cognitive theories has been
explored by (Anderson et al., 1984).

- the problem of incorporating current work on “Instructional Design’ - the study of how to
design good teaching vehicles and learning environments — into EXCALIBUR as
features available by default or on the author’s choice (Barrett, 1986).

- natural language processing for the system (Sussex, 1967).

- user-computer discourse management, including answer negotiation, logic of dialogue,
and modelling student beliefs (Girle, 1986).

Acknowledgements

This research is supported by grants from the Apple Educational Foundation, Australian
Telecommunications and Electronics Research Board, La Trobe University School of
Mathematical and Information Sciences, and the Victorian Department of Industry, Technology
and Resources.

The authors wish to thank Jan Reed, Dennis Hill and Roly Sussex for valuable discussions.

References

[1] Anderson, J.R., Boyle, C.F., Farrell, R. and Reiser, B.J. (1984) Cognitive Principles in the
Design of Computer Tutors . Proceedings of the Sixth Annual Conference of the Cognitive
Science Society, Boulder, Colorado.

[2] Barrett, J. (1986) Intelligent CAL - some development considerations . Proceedings of
1986 CALITE conference, 23- 27, University of Adelaide.

[3] Brown, J.S., Burton, R.R. and De Kleer, J. (1981) Pedagogical, natural language and
knowledge engineering techniques in SOPHIE I, II and III. In Sleeman and Brown, op
cit., Ch.11, Byte, (1986). [Special issue on OOPL’s].

[4] Cumming, G. (1986) The Mentor Component in EXCAL. In Proceedings of the First
Round Table Conference, Technical Report 3, EXCALIBUR Project, La Trobe University.

[5] Girle, R.A. (1986) Dialogue and discourse. Proceedings of 1986 CALITE conference, 123-
135, University of Adelaide.

[6] Goldstein, I.P. (1981) The genetic graph: a representation for the evolution of
procedural knowledge. In Sleeman and Brown, op cit, Ch.3. (1986). Proceedings of the
OOPSLA ’86 Conference. Constituting SIGPLAN Notices, September 1986.

[7] Richards, T.J. (1986a) A Description of the Educational Expert Systems Project,
Technical Report 1, EXCALIBUR Project, La Trobe University.

T. Richards, G. I. Webb and N. Craske (1988). “Object-oriented Control for Intelligent
Computer Assisted Learning Systems ”. Page 15 of 15

[8] Richards, T.J. (1986b) Knowledge representation in expert system based computer
assisted learning. Proceedings of 1st Australian Artificial Intelligence Congress, Section H,
Deakin University.

[9] Richards, T.J. and Webb, G.I. (1985) ECCLES - An “Expert System” for CAL.
Proceedings of the 1985 Western Educational Computing Conference, Oakland, CA
Educational Computing Consortium, 151-157.

[10] Sleeman, D. and Brown, J.S. (eds) (1982) Intelligent Tutoring Systems, Academic Press,
New York.

[11] Sleeman, D.H. and Hendley, R.J. (1981) ACE: a system which analyses complex
explanations . In Sleeman and Brown, op cit., Ch. 5.

[12] Sowa, J.F. (1984) Conceptual Structures, Addison Wesley, Reading, MA.

[13] Stevens, A., Collins, A. and Goldin, S.E. (1981) Misconceptions in students’
understanding. In Sleeman and Brown, op cit., Chapter 1.

[14] Sussex, R. (1987) Natural Language Interfaces and Representations , Technical Report 4,
EXCALIBUR Project, La Trobe University.

[15] Webb, G.I. (1986) Knowledge representation in computer-aided learning, PhD. Thesis,
Department of Computer Science, La Trobe University.

