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Abstract

Classi�cation learning is dominated by systems which induce large

numbers of small axis-orthogonal decision surfaces which biases such sys-

tems towards particular hypothesis types. However, there is reason believe

that many domains have underlying concepts which do not involve axis

orthogonal surfaces. Further, the multiplicity of small decision regions

mitigates against any holistic appreciation of the theories produced by

these systems, notwithstanding the fact that many of the small regions

are individually comprehensible. We propose the use of less strongly bi-

ased hypothesis languages which might be expected to model concepts

using a number of structures close to the number of actual structures in

the domain. An instantiation of such a language, a convex hull based

classi�er, CH1, has been implemented to investigate modeling concepts

as a small number of large geometric structures in n-dimensional space.

A comparison of the number of regions induced is made against other

well-known systems on a representative selection of largely or wholly con-

tinuous valued machine learning tasks. The convex hull system is shown

to produce a number of induced regions about an order of magnitude less

than well-known systems and very close to the number of actual concepts.

This representation, as convex hulls, allows the possibility of extraction

of higher level mathematical descriptions of the induced concepts, using

the techniques of computational geometry.

1 Introduction

Classi�cation learning has been dominated by the induction of axis-orthogonal

decision surfaces in the form of rule-based systems, decision trees, inductive

logic programming and decision graphs. While the induction of alternate forms

of decision surface has received some attention, in the context of non-axis or-

thogonal decision trees, statistical clustering algorithms, instance based learning

and regression techniques [15, 17, 1, 31, 19, 8, 7, 28, 12], this issue has received
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little attention in the context of decision rules. In learning systems that divide

the concept space using axis parallel decision surface, the learned concept can

only be expressed in terms of a collection of hyperrectangles. The lack of con-

gruence between the hypothesis language and the underlying concepts causes

the generation of a multiplicity of small and inappropriately shaped regions, the

sum of which gives some degree of approximation to the underlying concepts.

In a domain containing a small number of concepts, it is debatable whether

a representation that involves tens or hundreds of small regions contributes to

human comprehensibility. Certainly each small area may be individually expli-

cable but holistic comprehension may be impossible. Also the hyperrectangular

structure imposed on the domain may be a subset or superset, depending on

the vagaries of the sampling process, of the volume for which the interpretation

is true. Thus, the underlying hypothesis language may cause the exclusion of

volumes that are explicable and the inclusion of volumes that are not.

One might, on philosophical grounds, assert that the universe changes slowly

and regularly as one traverses it and so underlying, natural, concepts will tend

to exhibit some regularity and smoothness. One obvious approach to modelling

concepts is to assert that there is underlying symmetry in the universe and that

an hypothesis language which treats all dimensions symmetrically is attractive.

However, the scales of the metrics which we, as observers, impose on the external

universe might vary between dimensions so that the induced concept is not

symmetric in the set of imposed metrics. This work proposes the induction

of concepts represented by convex hulls and investigates their congruence to

actual underlying concepts and their utility as classi�ers. It is expected that

having an hypothesis language which is congruent with the underlying actual

concepts should lead naturally to a concise representation of those concepts. It

is expected that, although individual rules or groups of decision surfaces may

be moderately sized, composite objects, the collection of rules describing the

domain, will be both simple and small. Indeed, the closeness of the number of

induced concepts and the number of underlying concepts is seen as a measure

of the appropriateness of the hypothesis language for that domain. It might be

considered that it o�ers insight into the underlying actuality of that part of the

universe.

In some contexts, it will be desirable that the rules developed by computer

systems be comprehensible by humans. Typically, machine learning systems

produce many rules per class and, although each rule may be individually com-

prehensible, holistic appreciation of concepts modeled may be impossible due to

the fragmentary representation. We contend that comprehending the set of in-

duced rules is quite di�erent from comprehending the actual underlying domain

and that claims of human comprehensibility of the domain via the rule sets may

be quite unjusti�ed. Each concept, constructed as a large, convex polytope in

this work, is expected to correspond closely to a single underlying concept of

the domain. Although the structure of such concepts is not directly comprehen-

sible, the form of the concepts gives access to work on extracting mathematical
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descriptions via the techniques of computational geometry including diameters

of polytopes, intersections and equations for the surfaces of polytopes [22]. An

important characteristic of systems developed in this work will be the small

number of the regions representing a concept.

2 Choice of Implementations of Convex Hull Form-

ing Algorithms

Several algorithms for the construction and speci�cation of convex hulls have

been published [2, 3, 5, 9, 10, 11, 16, 21, 20, 24]. Typically, but not necessarily,

a convex hull is speci�ed by a set of oriented hyperplanes. The orientation

is speci�ed by the components of an outward pointing vector of length one,

perpendicular to the hyperplane and the position by the perpendicular distance

of the hyperplane from the origin. A point is said to be beneath a plane if it is

coincident with the plane or on the correct (internal to the polytope) side and

beyond the plane otherwise. The time complexity of forming convex hulls of

N points in <

d

has been shown [26, 13] to be O(N

b(d+1)=2c

) For a point to be

within a convex hull, it must be beneath every hyperplane. As soon as a point

is beyond any hyperplane, it is known not to be within the convex hull. Since

the convex hull constraint will provide some degree of smoothing to the edges of

concepts, there is some expectation of avoiding problems of over�tting[29] and

oversearching[23] naturally.

There are a number of implementations available but the choice for this work

is constrained by

1. the need for the implementation to accept input as attribute vectors.

Speci�cally, algorithms that work in dual space [22] are not easily us-

able as it is desirable to use well-known data sets (from UCI Repository)

without transformation.

2. the algorithm should use a oating point representation of values. Con-

version to integers may be done automatically for the training set as it

is processed by the convex hull constructing software. However, it has

to be done externally for the test points since they are not processed by

the hull constructing software. The use of integral values also reduces the

sensitivity of the classi�er at points over the decision surfaces that do not

have integer coordinates.

3. no algorithm that uses rotation of the axis system (especially if the rotation

is random) can be acceptable as attributes are not interchangeable.

4. some forms of internal scaling of data values may not be acceptable be-

cause they cannot be repeated outwith the software package (particularly

scaling dependent on the volume of the initial simplex).
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5. the algorithm needs to function in spaces of high dimensionality and for

most algorithms 5D is very high since the number of facets and ridges

becomes very large. For example, Klee [14] estimates the number of facets,

F(d,N), of a d-polytope with N vertices could be as large as

F (d;N ) =

8
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However, the expected number of facets for random points is proportional

to log

d�1

n [6].

6. the algorithm should output a facet list with components of the unit nor-

mal and the distance from the origin to facilitate later tests for inclusion

of points in the hull by the concept learning software.

The qhull software [27], which is an implementation of the Gr�unbaumBeneath-

Beyond Theorem [11], was chosen for the construction of convex hulls and will

be called from the classi�er software written for this work. This choice was made

because it provides straightforward use of data sets from the UCI repository [18]

without transformation, output in an immediately useful form; control over the

size of the facet list, easy access to testing new points for inclusion via inner

products, no rotation of the axis system containing the points,and scaling can

be done simply to both training and test data sets if necessary.

3 CH1 Algorithm

In the system developed, the antecedent of each rule is, in principle, represented

by a single convex hull projected onto the instance space. The consequent of

each rule is a class. There may be more than one rule per class. These rules are

held in a decision list into which an initial default rule, for the most populous

class, is inserted. Subsequent rules, particularly exceptions to the current rule,

are prepended to the decision list in the expectation that this strategy will

shorten the list [30]. The main loop continues until there are no misclassi�ed

points or the rule just constructed does not reduce the number of misclassi�ed

points

The system should be tested on purely numeric domains but most data sets

will have some categorical attributes so an extension to the structure will be

made to be able to process domains which are largely, or wholly numeric. As

categorical attributes cannot take part in hulls, a separate rule component is

formed for them and so, if we consider examples E, with attributes 1 : : :k being

categorical and attributes k + 1 : : :n being numeric, a Rule, R, of a class is
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is beneath(X;h)

where is beneath() is true i� the point de�ned by the numeric attributes of X

are beneath the hyperplane h. While for domains with both categorical and

numeric attributes both the convex and categorical hulls will exist, we will refer

to the categorical and numeric hull pair as `the hull' for ease of expression. If a

set of points has zero thickness in one or more dimensions, then the quickhull

software exits with an error indicating the hull is degenerate and the convex hull

is replaced with an hyperrectangle which contains a maximum and minimum

value pair for each attribute. This seems to be an infrequent occurence and, for

the purposes here, it will be assumed that these are treated transparently by

the CH1 software.

3.1 Time Complexity of classi�cation using CH1

Consider the classi�cation of n points in d dimensional space where there are

c actual concepts. It is a design expectation that there will be approximately

c hulls. It is also the case that a point that is outside any given hull will be

beneath approximately half the facets and beyond the other half of the facets

of the given hull. Firstly, the time for considering the coverage of categorical

values is negligible compared to coverage of continuous attributes and will be

ignored. Thus, it is only necessary to consider a point as being covered when it

is beneath every facet for a given hull. Since the hulls are in a decision list and

the facets are unordered, they will both be inspected sequentially but when the

current point is found to be beyond the current facet, the inspection of facets of

the current hull can be abandoned. Assuming the data points are approximately

evenly divided among hulls, a hull will have log

d�1

n

c

facets. Typically, we would

expect to test half the hulls before �nding one that does not cover the current

point. Thus testing a single point has time complexity O(c � log

d�1

n

c

).

3.2 Implementation of CH1

The algorithmwas implemented in C and interfaced to the quickhull software [4].

When a convex hull has been created, it is stored in the calling program's rule
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list for use when classifying test points. Each rule contains a set of categorical

attribute values and a list of convex hull facets. Each facet in the list contains

� the signed o�set of the hyperplane from the origin (the sign speci�es which

side is beneath and which is beyond.

� a list of the components of a unit outward pointing normal to the hyper-

plane.

� the distance above the plane that is considered to be beneath the plane.

This is usually a small number reecting the rounding errors in the cal-

culations or a representation of the thickness of a hull (used by Quickhull

when needing an approximation to a hull).

Thus, in an N-dimensional domain, each facet is represented by N + 2 oating

point numbers.

4 Experimental Evaluation

The implementation was evaluated using 22 data sets from the UCI Repository

[18]. Since the implementation of CH1 is principally using convex hulls, domains

with few or no continuous values will not be used in the evaluation. Domains

that are wholly continuous are of the most interest but, since categorical at-

tributes can be handled, domains with a small number of categorical attributes

and many continuous ones can be used. Each experiment involved shu�ing the

data set and paritioning 80% into the training set and 20% into the test set.

The experiment was run 100 times, using matched data sets, on each domain

using CH1 and C4.5 and the average results are shown in Table 1. Because

of prohibitive run-times, only subsets of the available data were used for some

domains (marked with *).

5 Analysis of Results

For CH1, the number of structures is the number of convex hulls that are con-

structed and for C4.5 the number of structures is the number of hyperrectangu-

lar regions that are identi�ed. The number of actual concepts in each domain

(which is unknown to CH1) and the number of concepts induced by CH1 and

C4.5, averaged over 100 runs, are shown in Table 1. The average number of

concepts for satimage and shuttle1 are lower than one might expect because

the sample used contains e�ectively only 5 classes for satimage rather than 6

and, for shuttle1, contains about 3 classes rather than 7. The smallness of the

number of concepts induced by CH1 can be seen in comparison with C4.5. The

number of hulls induced by CH1 is always very close to the number of actual

concepts in each domain. In only 4 cases, out of 22, does CH1 produce more
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No. of No. Hulls No. Regions Accuracy Accuracy

Domain
Concepts CH1 C4.5 CH1 C4.5

balance-scale
3 5.6 108.2 83:26

2

76:67

bcwo
2 2.8 33.2 99:06 99:42

1

bupa
2 3.7 95.8 58:77 63:49

1

cleveland
2 3.7 66.8 55:54 87:73

1

echocardiogram
2 2.6 13.5 70:81

2

69:11

german
2 7.3 76.4 50:71 60:66

1

glass
7 13.0 49.4 55:21 66:18

1

heart
2 3.7 11.4 67:71 80:29

1

hepatitis
2 2.0 4.4 40:51 41:57

1

horse-colic
2 2.3 9.6 62:01 77:03

1

hungarian
2 3.6 55.2 62:48 88:55

1

ionosphere
2 5.0 29.4 90:83

2

87:71

iris
3 3 8.6 69:85 94:74

1

new-thyroid
3 3.0 14.5 75:78 91:83

1

page-blocks
5 7.6 14.8 57:47 87:20

1

pid
2 5.1 39.0 80:30 82:34

1

satimage *
6 5.8 19.4 72:36 91:33

1

segment
7 22.0 63.0 91:94 94:41

1

shuttle1 *
7 4.8 9.0 66:32 93:84

1

sonar
2 2.5 31.6 56:64 74:12

1

soybean-large
19 19.7 70.2 81:01 90:68

1

wine
3 3.0 39.5 84:04 87:01

1

Table 1: Comparison of CH1 and C4.5
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than twice as many hulls as concepts whereas C4.5 produces less than four times

as many regions as underlying concepts only 5 out of 22 times. Using a sign

test, the number of hulls produced by CH1 is clearly superior to C4.5 at p=0.01.

It is clear that the primary objective of having a system which induces a similar

number of structures to the underlying actuality has been achieved. Thus, it is

clear that the less strong bias of convex hulls is more appropriate in some way

than the stronger bias of C4.5.

The comparison of average accuracy over the matched datasets does not

favour the convex hulls and this poorer predictive accuracy weakens but does

not invalidate the claims for the appropriateness of the bias of convex hulls. It

is tempting to infer that most of the datasets in the UCI Repository were sub-

mitted after experiments with hyperrectange-based classi�ers and that there is

an implicit bias in the data set as a result. This is plausible but there are some

other di�culties which need clari�cation before establishing such a claim. De-

spite the claims of good performance for new convex hull generating packages,

it is a fact that they struggle with dimensionality of 5 or greater and exhibit

very long run times. To cope with these di�culties, the algorithm makes ap-

proximations, merges facets and manipulates a thickness for each facet of the

convex hull. It is suspected that these a�ect the �nal hulls being constructed.

6 Conclusions

It has been shown that the use of convex hulls for induction is practicable

by the implementation of such a system. The resultant classi�er had a much

less strong hypothesis language bias than axis orthogonal systems and realised

the possibility of representing concepts as a few convex hulls, rather than a

multiplicity of small inappropriately shaped regions. The number of hulls gen-

erated was close to the actual number of underlying concepts and never much

greater, especially in comparison to the typical multiplicity of regions generated

by C4.5. A classi�er that induces one large structure per concept rather than

many small structures is philosophically appealing in its economy of represen-

tation. The possibility of using the tools of computational geometry to extract

higher level mathematical descriptions of concepts was noted although it has

not been demonstrated. Considering the correspondence between the number

of induced concepts and the number of underlying concepts, it can be claimed

that convex hulls provide a good hypothesis language bias and, also, that this

suggests the underlying geometry of these domains is of a similar structure.

The accuracy results have been disappointing and the cause of this needs

investigation to understand if convex hulls are to be generally useful. Given

that there is also a processing time problem with convex hull generating software

packages, it may be necessary to use less direct techniques to construct the hulls

in future work.

One possible such approach would be to use evolutionary programming tech-
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niques to place the hyperplanes, directly, avoiding the long compute times, ap-

proximations within the hull software and arti�cialities such as thickness of

facets. Other approaches, for instance DIPOL92 [25], use regression and do

not position the hyperplanes in the same way that CH1 does and it would be

interesting to explore the di�erences. A demonstration of actual progress to the

extraction of an higher level mathematical description of the concepts modeled

by the hulls would also be desirable.

References

[1] D.W. Aha, D. Kibler, and M.K. Albert. Instance-based learning algorithms.

Machine Learning, 6:37{66, 1991.

[2] W. Altherr. An algorithm for enumerating the vertices of a convex poly-

hedron. Computing, 15:181{193, 1975.

[3] D. Avis and K. Fukuda. A pivoting algorithm for convex hulls and ver-

tex enumeration of arrangements and polyhedra. Discrete Computational

Geometry, 8:295{313, 1992.

[4] C.B. Barber, D.P. Dobkin, and H. Huhdanpaa. The quickhull algorithm

for convex hulls. Submitted to ACM Trans. Mathematical Software, May

1995.

[5] J.L. Bentley, M.G. Faust, and F.P. Preparata. Approximation algorithms

for convex hulls. Comms. of the ACM, 25(1):64{68, 1982.

[6] J.L. Bentley, H.T. Kung, M. Schkolnick, and C.D. Thompson. On the

average number of maxima in a set of vectors. J. ACM, 25:536{543, 1987.

[7] L. Breiman, J.H. Friedman, R.A. Olshen, and C.J. Stone. Classi�cation

and Regression Trees. Wadsworth Int. Group, Belmont, California, 1984.

[8] C.E. Brodley and P.E. Utgo�. Multivariate decision trees. Machine Learn-

ing, 19:45{77, 1995.

[9] Edelsbrunner. Algorithms in Combinatorial Geometry. Springer Verlag,

1987.

[10] I.Z. Emiris, J.F. Canny, and R. Seidel. An e�cient approach to removing

geometric degeneracies. In Proceedings of the 8th Annual ACM Symposium

on Computational Geometry, pages 74{82, 1992.

[11] B. Gr�unbaum. Measures of symmetry for convex sets. In Proc. 7th Sym-

posium in Pure Mathematics of the AMS, pages 233{270, 1961.

9



[12] D. Heath, S. Kasif, and S. Salzberg. Learning oblique decision trees. In

Proc. 13th IJCAI, pages 1002{1007. Morgan Kaufmann, 1993.

[13] M. Kallay. Convex hulls in higher dimensions. Technical report, Dept.

Math., University of Oklahoma, Norman, Oklahoma, 1981.

[14] V. Klee. Convex polytopes and linear programming. In Proc. IBM Sci.

Comput. Symp: Combinatorial Problems, pages 123{158, 1966.

[15] C. Matheus and L.A. Rendell. Constructive induction on decision trees. In

Proceedings of IJCAI, pages 645{650, 1989.

[16] P. McMullen and G.C. Shephard. Convex Polytopes and the Upper Bound

Conjecture. Cambridge University Press, Cambridge, England, 1971.

[17] Michalski, R.S., Mozetic, I., Hong, and N. J. Lavrac. The multi-purpose

incremental learning system aq15 and its testing and application to three

medical domains. In Proceedings of the Fifth National Conference on Ar-

ti�cial Intelligence, pages 1041{1045. Morgan Kaufman, 1986.

[18] P.M. Murphy and D.W. Aha. The uci repository of machine learning

databases, http://www.ics.uci.edu/ mlearn/mlrepository.html.

[19] S.K. Murthy, S. Kasif, and S. Salzberg. A system for induction of oblique

decision trees. Journal of Arti�cial Intelligence Research, 2:1{32, 1994.

[20] F.P. Preparata. An optimal real-time algorithm for planar convex hulls.

Comms. of ACM, 22(7):402{405, 1979.

[21] F.P. Preparata and S.J. Hong. Convex hulls of �nite sets of points in two

and three dimensions. Comms. of ACM, 20(2):87{93, 1977.

[22] F.P. Preparata and M.I. Shamos. Computational Geometry. Texts and

Monographs in Computer Science. Springer-Verlag, New York, 1985.

[23] J.R. Quinlan and R.M. Cameron-Jones. Oversearching and layered search

in empirical learning. IJCAI, pages 1019{1025, 1995.

[24] S. Schuierer, G.J.E. Rawlins, and D. Wood. A generalisation of staircase

visibility.

[25] B. Schulmeister and Wysotzki. The piecewise linear classi�er dipol92. In

Proc. ECML94, pages 411{414, 1994.

[26] R. Seidel. A convex hull algorithm optimal for points in even dimensions.

Master's thesis, U. of B.C., Canada, 1981.

[27] Software Development Group, Geometry Center, 1300 South Second Street,

Suite 500, Minneapolis, MN 55454, USA. Qhickhull Software Manual.

10



[28] P.E. Utgo� and C.E. Brodley. Linear machine decision trees. Technical

report, U. Mass. at Amherst, 1991.

[29] C.J.C.H. Watkins. Combining cross-validation and search. In Progress in

Machine Learning;Proc.of EWSL 87. Sigma Press, Wilmslow, 1987.

[30] G.I. Webb. Recent progress in learning decision lists by prepending inferred

rules. In Second Singapore International Conference on Intelligent Systems,

pages B280{B285, 1994.

[31] Simon Yip and Geo�rey I. Webb. Discriminant attribute �nding in classi�-

cation learning. In A. Adams and L. Sterling, editors, AI'92 { Proceedings

of the Fifth Australian Joint Conference on Arti�cial Intelligence, pages

374{379, Hobart, 1992. World Scienti�c.

11




