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Abstract—Many real-world data streams are non-stationary.
Subject to concept drift, the distributions change over time.
To retain accuracy in the face of such drift, online decision
tree learners must discard parts of the tree that are no longer
accurate and replace them by new subtrees that reflect the
new distribution. The longstanding state-of-the-art online
decision tree learner for non-stationary streams is Hoeffding
Adaptive Tree (HAT), which adds a drift detection and response
mechanism to the classic Very Fast Decision Tree (VFDT) online
decision tree learner. However, for stationary distributions,
VFDT has been superseded by Extremely Fast Decision Tree
(EFDT), which uses a statistically more efficient learning
mechanism than VFDT. This learning mechanism needs to be
coupled with a compensatory revision mechanism that can
compensate for circumstances where the learning mechanism is
too eager.

The current work develops a strategy to combine the best
of both these state-of-the-art approaches, exploiting both the
statistically efficient learning mechanism from EFDT and the
highly effective drift detection and response mechanism of HAT.
To do so requires decoupling of the EFDT splitting and revision
mechanisms, as the latter incorrectly triggers the HAT drift
detection mechanism. The resulting learner, Extremely Fast
Hoeffding Adaptive Tree, responds to drift more rapidly and
effectively than either HAT or EFDT, and attains a statistically
significant advantage in accuracy even on stationary streams.

Index Terms—online learning, concept drift, data mining,
decision trees
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I. INTRODUCTION

Data streams are often subject to concept drift [1]. Such
non-stationary streams pose a challenge for online learning
systems that must adapt their models as the distributions
generating the data evolve [2]. Hoeffding Adaptive Tree (HAT)
[3] is the current state of the art algorithm for online decision
tree learning under drift. It is based on the Hoeffding Tree,
an online decision tree algorithm designed for learning from

Fig. I.1. Extremely Fast Hoeffding Adaptive Tree (EFHAT) achieves superior
recovery from concept drift induced error compared to the state of the art.
It does so by coupling Hoeffding Adaptive Tree (HAT)’s ability to detect and
immediately respond to drift with Extremely Fast Decision Tree (EFDT)’s
superior learning rate for each new distribution. This plot shows prequential
error over time for EFHAT relative to the algorithms from which it draws
inspiration — EFDT, which has a fast learning rate and slow drift recovery;
and HAT, which has fast drift recovery and a slow learning rate.

stationary distributions. The Hoeffding Tree [4] employs a
conservative learning mechanism. It only adds a new branch
to a tree when the risk is negligible that any alternative split
could be better.

Extremely Fast Decision Tree (EFDT) [5] introduced a less
conservative split mechanism for learning from stationary data
streams. Its eager splitting strategy adds a new branch to a tree
when the risk is low that doing so is worse than doing nothing.
However, this introduces risk that while the new split is useful,
it will not be the best split. In consequence, the splitting
strategy must be coupled with a revision strategy that allows a
split to be replaced by a better split if one becomes apparent.
These two mechanisms in concert provide a statistically more
efficient learning mechanism that the Hoeffding Tree, and is
guaranteed to converge to the tree that would be learned by a
batch learner in offline learning.

This paper refines HAT by incorporating the eager splitting
strategy of EFDT. This results in Extremely Fast Hoeffding
Adaptive Tree (EFHAT), a substantially more statistically effi-
cient online learning algorithm for non-stationary distributions,
as illustrated in Figure I.1.

In an online learning toolkit, where no concept drift is
present, EFDT would be ideal for learning from distributions
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expected to be stationary. Where drift is present, EFDT is
not as suitable as HAT is. HAT can generally be replaced by
EFHAT as the choice of learner in concept drifting scenarios,
on account of its ability to both quickly build structure to
mitigate the risk of not learning a concept, and its ability to
effectively penalise outdated concepts.

The core insights are that HAT with eager splitting requires
that the EFDT revision strategy be abandoned when streams
are concept drifting because

• the revision strategy interacts poorly with HAT’s drift
detection, triggering false alarms that result in loss of
sub models; and

• in the context of drift it is more effective to learn good
models quickly than perfect models slowly.

• EFDT’s revision strategy only penalises structure that is
unlikely to match the ideal batch tree in the long term
(in favor of structure that is likely to be so), while HAT’s
revision strategy penalises structure that is not current
with the evolving concept, in favor of structure that is
likely to predict better given the current concept

The statistical efficiency introduced by EFDT is retained,
making it the new “base learner” instead of Hoeffding Tree,
but the subtree revision strategy native to EFDT is removed
due to its harmful interaction with the drift detector. That this
decoupling of the EFDT splitting and revision strategies is
inobvious is demonstrated by two previous lines of related
research having not uncovered it [6], [7].

We show that this new online learning strategy provides a
fundamental improvement to HAT. As HAT, in spite of having
been published in 2009, remains the state of the art decision
tree for concept-drifting streams, this is a clear advance in the
state of the art.

Candidate design elements for algorithms in this space are
very many; other strategies considered prior to arriving at
our particular design included various forms of differentially
weighting leaves, introducing decay factors, utilising change
detectors, and various pruning strategies. A process of sys-
tematic experimentation revealed that in order to improve
upon HAT, a fundamental change in tree growth policy was
necessary—simple embellishments did not work. While this
work does combine two existing works, borrowing the idea of
statistically efficient splitting from a recently published work,
EFDT, and charting how to join the two completely different
tree revision mechanisms from EFDT and HAT through a
process of hypothesis formulation and experimentation were
both inobvious and nontrivial steps.

The proposed algorithm Extremely Fast Hoeffding Adap-
tive Tree (EFHAT) carefully melds the best of the existing
strategies HAT and EFDT. The primary innovations are to

• recognize the elements of each strategy that are beneficial
to learning from non stationary data streams and those
that hinder;

• have the vision to recognize that the beneficial elements
of each might be productively combined; and

• architect an efficient and effective algorithm to realize
that vision.

II. BACKGROUND

A. Base Learners - Hoeffding Tree and EFDT

The primary challenge in online learning with decision trees
is to determine when to split at a given node.

In the batch learning case, all examples that have filtered
to a node are present at that node. Obviously, in the online
learning scenario, it is impossible to decide a split based on
collecting an infinite number of examples. Workarounds based
around collecting some arbitrarily predetermined number N of
examples before deciding to split are cumbersome on account
of having to manually tune the parameter for each individual
stream.

Hoeffding Tree [4] solves these challenges, in the first
instance by storing statistics about the data at each node
instead of the data themselves, and then by deciding when
to split based on a statistically sound evaluation of a split
heuristic; specifically, it employs the Hoeffding Test [8] to
delay splitting until it is possible to be sufficiently confident
that the top split candidate is better than any alternative.

Delaying splitting until there is confidence that the best split
candidate is likely to be fixed in perpetuity slows down the
acquisition of tree structure. The acquisition of relevant struc-
ture is critical for increasing prediction accuracy. Otherwise
the model will underfit [9].

Extremely Fast Decision Tree (EFDT) [5] introduces a
less conservative basis for splitting. A leaf will be split as
soon as the current best candidate is found to be better than
not splitting (in contrast to being better than any alternative
split). As this strategy entails a substantial risk of selecting
suboptimal splits, EFDT augments it with a revision strategy
that allows a split to be replaced if another subsequently proves
superior. This increase in short-term plasticity leads to better
predictions with a smaller amount of training data, that is,
statistical efficiency for prediction is increased.

Most extant online decision tree learners use the Hoeffding
Tree split mechanism as a base, thus making Hoeffding Tree
the “base learner” for the family of online decision trees. It is
of obvious interest to explore the effects of using instead EFDT
as a base learner, especially in the concept-drifting context.
This promising direction of research has been explored by a
two recent studies [6], [7], but both assumed that it is necessary
to retain EFDT’s revision strategy, failing to recognise that for
non-stationary distributions it can be harmful.

B. Hoeffding Test

Constructed from the Hoeffding Inequality [10], the Hoeffd-
ing Test is widely used in machine learning theory to establish
probably-approximately-correct (PAC) bounds [8], [11].

The Hoeffding Bound as used in Hoeffding Tree [4] is
construed as: for n independent random variables r1..rn with
range R and mean r̄ the probability P of the true mean being
at least r̄ − ϵ is 1− δ, where:

ϵ =

√
R2 ln(1/δ)

2n
(1)



The test requires setting the confidence level parameter δ.
Then, the true mean deviates by at least ϵ with a probability
P = 1− δ; ϵ is easily computed using Equation 1. Should an
acceptable threshold for ϵ be crossed, one can declare that the
true mean is different from the population mean.

C. Hoeffding Tree

Hoeffding Trees represent a fundamental advance in one-
pass incremental decision tree induction over preceding at-
tempts [12], [13] by providing deviation guarantees from an
ideal batch tree, and by using a particularly effective and
statistically sound split determination mechanism based on the
Hoeffding Inequality.

As previously mentioned, the central challenge in learning
decision trees from potentially infinite streams is the question
of how to grow the tree. A decision tree represents a sequence
of decision boundaries drawn to divide the input space. Each
node may be considered to represent a subspace of the input;
a split at a node represents a decision boundary.

In the classification setting, a decision boundary drawn
within a subspace would ideally result in two subspaces with
greater class purity than the parent subspace. That is, splitting
at a node should result in more class homogeneity within the
instances that filter to the child nodes. Splits must obviously
be based on some condition, such as the instance values taken
by a particular attribute.

In order to choose a split attribute with higher separation
power than others, we need an indication of the resultant
class purity following conditioning on various split attributes.
For a dataset that is fixed in size, this is straightforward to
determine. All one would have to do is use some measure
of class purity to determine which attribute has the best class
separation power and should be split on. Information gain [14]
and Gini [15] are commonly used split heuristics.

But it is infeasible for an infinite stream to use a measure
that relies on a heuristic computed from a corresponding
infinitely large data set, as we would not like to wait an eternity
to decide our first decision boundary. We must compromise
and use the information we have available. Can we, in a
statistically sound manner, extrapolate into the future the
relative advantage of our choice of split attribute?

This is the problem Hoeffding Tree solves with the use
of the Hoeffding Test. Assuming a stationary data-generating
distribution, the question of whether the best split candidate
will remain so in perpetuity with probability P = 1 − δ is
determined using the Hoeffding Test.

Given we are interested in establishing the best split at-
tribute, Hoeffding Tree uses the formulation from the sub-
section “Background: Hoeffding Test” with random variables
∆Gt, which represents the advantage in split heuristic value
the top candidate split attribute Xa has over the next best
attribute Xb at each timestep t.

If there is no difference in the separation power of the
two top attributes, the true mean of the population of info-
gain difference random variables would be zero. Should the
measured average of all ∆Gt be greater than a threshold ϵ,

Hoeffding Tree concludes that the population mean of infogain
differences is nonzero, and thus that the attribute Xa has, with
high probability, better separation power than Xb, and thus
should be split on.

This is quite a strong constraint; attempting to find the likely
best attribute over all time will necessitate acquiring a large
number of examples to eventuate any split for which there is
more than one useful attribute on which to split.

Note that the authors of the Hoeffding Tree [4] theoretical
construct named their implementation Very Fast Decision Tree
(VFDT), a naming convention that has been consistent across
implementations.

D. EFDT: Extremely Fast Decision Tree
EFDT [5] improves on the statistical efficiency of Hoeffding

Tree by relaxing the split criterion. Rather than splitting when
the best split relative to all other splits is found, EFDT splits a
leaf when the best candidate is better than no split. EFDT split
decisions are Hoeffding tested; giving EFDT a strong element
of stability, while allowing enough plasticity to allow quick
growth of model structure, which aids classification accuracy.

As this eager split strategy fails to give assurance that the
best possible split is selected, EFDT also employs a split
revision strategy whereby splits are continually monitored and
replaced if an alternative split passes a Hoeffding test for
greater precision than the current split. This revision strategy
is designed for use in stationary distributions, and as the
experiments will show, EFDT is less effective than HAT in
the presence of concept drift.

E. CVFDT: Concept-adapting Very Fast Decision Tree
CVFDT [16] uses Hoeffding Tree as a base, along with a

moving window of instances—it deletes statistics due to older
instances from Hoeffding Tree. CVFDT represented, in 2001,
the state-of-art in learning from concept drifting streams. If a
new winning attribute is found at a given node, CVFDT grows
an alternate subtree. The existing subtree is retained and still
used for classification until the new one demonstrates higher
accuracy, at which stage the old subtree is replaced by the new
one. This allows the model to adapt to drifting concepts.

CVFDT also uses the Hoeffding Test as the underlying
mechanism to establish superiority of a split over any alterna-
tive, as does HAT (designed for concept-drifting streams).

F. HAT: Hoeffding Adaptive Tree
As mentioned in the Introduction, Hoeffding Adaptive Tree

(HAT) [3] is a highly effective online decision tree learning
algorithm with state-of-the-art capacity to adjust to drift. It
utilizes the same conservative Hoeffding Test based splitting
strategy as the Hoeffding Tree. Splitting in HAT is thus not as
statistically efficient as splitting in EFDT. Similarly to CVFDT,
HAT relies on replacing outdated subtrees with alternates, but
alternates are grown when a change detector detects drift,
instead of when a new winning attribute is found (the CVFDT
mechanism). HAT’s mechanism, being directly dependent on
changing error rather than on changing split attributes, is more
suited to adapting more rapidly to concept drift.



HAT may also use moving windows of instances, as does
CVFDT. However, HAT also has the option of using the
ADWIN change detector and error estimator instead of a
moving window of instances.

ADWIN maintains a self-adjusting window of bits (which
may represent a sequence of prediction errors), and evaluates
possible changepoints. When it detects a change in the distri-
bution of its input of error values, it can signal change and
adjust the size of the error window [17], [18].

HAT achieves lower prequential error than CVFDT [18].
The flavor of HAT that uses ADWIN as a change detector
and error estimator, being parameter-free, is more robust than
versions of HAT that use moving windows of instances, which
would require a user to carefully tune an appropriate window-
size parameter for each scenario (and continually update it).

As far as we are aware, HAT-ADWIN (which hereafter we
mean when we refer to HAT) has not been outperformed in a
large experimental setting of concept-drifting streams.

HAT is less conservative than CVFDT in growing and
replacing subtrees when drift is occurring. With HAT, alternate
subtrees may be rooted with the same split as the subtree
potentially being replaced; CVFDT, on the other hand, requires
an alternate to be rooted with a different split attribute that
has achieved the status of top split attribute. While HAT can
grow an alternate on the basis of a change detection, CVFDT
must wait for an attribute to win the top spot. HAT is thus far
more plastic and responsive to concept drift than is CVFDT,
as demonstrated in [3].

III. EXTREMELY FAST HOEFFDING ADAPTIVE TREE

HAT is a highly plastic, responsive learner. However, it uses
the conservative split mechanism inherited from Hoeffding
Tree. We hypothesized that coupling the eager split mechanism
of EFDT with HAT’s drift detection and structure revision
mechanisms would lead to a learner that has substantially
more statistically efficient responsiveness to concept drift than
either EFDT with its original revision mechanism, designed for
stationary distributions, or HAT with its conservative structure
acquisition strategy.

As we show in the “Experiments” section, this particular
combination of strategies forms a concept-adapting learner
that outperforms HAT on a testbench comprising 19 real
data streams both with and without concept drift. As we
eliminate EFDT’s revision mechanism, EFHAT’s time and
space complexity hinge on the HAT mechanism alone, and
EFHAT has the same time and space complexity as HAT.

EFHAT is listed in Algorithm III.1, Function III.2 and
Function III.3. In order to conserve space, and to highlight
the changes it entails, it is listed in the form of an update
to the EFDT algorithm [5], with the additions required by
EFHAT preceded by −→ arrows and deletions indicated with
strikethroughs.

ADWIN0 [3] is an efficient change estimator and detector
that is example free. The main parameters to be set are the
number of buckets M and the tolerance δ, which is a confi-
dence level for change not having occurred. Buckets contain 1-

Algorithm III.1: Extremely Fast Hoeffding Adaptive
Tree (EFHAT)

Input: S, a sequence of examples. At time t, the
observed sequence is
St = ((x⃗1, y1), (x⃗2, y2), ...(x⃗t, yt))
X = {X1, X2...Xm}, a set of m attributes
δ, the acceptable probability of choosing the
wrong split attribute at a given node
G(.), a split evaluation function

Result: EFHAT t, the model at time t constructed
from having observed sequence St.

begin
Let EFHAT be a tree with a single leaf, the root
−→ Initialise ADWIN estimators Aijk at root
Let X1 = X ∪X∅
Let G1(X∅) be the G obtained by predicting the
most frequent class in S

foreach class yk do
foreach value xij of each attribute Xi ∈ X do

Set counter nijk(root) = 0
end

end
foreach example (x⃗, y) in S do

Find the leaf l reached by (x⃗, y) using
EFHAT

foreach node in path (root...l) do
foreach xij in x⃗ such that Xi ∈ Xnode do

Increment nijk(node)
−→ Update estimators Aijk

if node = l then
AttemptToSplit(l)

else
ReEvaluateBestSplit(node) −→
HATGrow((x⃗, y), node,
EFHAT )

end
end

end
end

end

0 error and grow exponentially in size as history accumulates;
when for some cutpoint the set of older windows vary in
mean from the set of newer windows, and the confidence that
this change has occurred surpasses the set threshold, the older
buckets previous to the cutpoint are dropped. ADWIN is an
efficient approximation of ADWIN0 also presented in the same
work [3]. In practice, there is little need to tune ADWIN’s
parameters, as intended by the authors; the parameters M and
δ are used with their MOA default values.

IV. EXPERIMENTS

We evaluate our proposed adaptive online decision tree algo-
rithm EFHAT against the algorithm for stationary distributions



Function III.2: AttemptToSplit(leafNode l)

begin
Label l with the majority class at l
if all examples at l are not of the same class then

Compute Gl(Xi) for each attribute Xl − {X∅}
using the counts nijk(l)

Let Xa be the attribute with the highest Gl

Let Xb = X∅
Compute ϵ using equation 1
if Gl(Xa)−Gl(Xb) > ϵ and Xa ̸= X∅ then

Replace l by an internal node that splits on
Xa

for each branch of the split do
Add a new leaf lm and let
Xm = X−Xa

Let Gm(X∅) be the G obtained by
predicting the most frequent class at
lm

for each class yk and each value xij of
each attribute Xi ∈ Xm− {X∅} do

Let nijk(lm) = 0
−→ Initialize estimators Aijk

end
end

end
end

end

Function III.3: HATGrow( x⃗ , y , node, Talt)

begin
if this node has an alternate tree Talt then

HATGrow ((x⃗, y), root(Talt), Talt)
end
if one of the change detectors has detected change
then

Create an alternate subtree if there is none
end
if existing alternate more accurate then

Replace current node with alternate tree
end

end

from which it is derived, EFDT, and against leading adaptive
online decision tree learner HAT.

We carefully isolate the key determinants required to test our
specific hypothesis; that coupling the eager split mechanism
of EFDT with HAT’s drift detection and structure revision
mechanisms would lead to a learner that has substantially
more statistically efficient responsiveness to concept drift than
either EFDT with its original revision mechanism, designed for
stationary distributions, or HAT with its conservative structure
acquisition strategy. We also assess relative performance in
the absence of drift. Accordingly, we present 2 tables of

experimental results (Tables III, IV), one each with and
without concept drift. The tables directly compare the averaged
prequential error of EFHAT with each of the strategies on
which it builds: EFDT and HAT.

A. Experimental Framework

We chose the largest UCI datasets1 [20] that had a clear
prediction objective, and that do not have missing values, in
order to mitigate the confounding factor of how missing values
are handled by the algorithms. We did not include datasets
smaller than Chess, which has only ∼ 28, 000 instances. We
also added CovPokElec [3], [23] and a discretized version (10
buckets) of the AWS pricing dataset [19], which with ∼ 27
million examples is the largest dataset we use. These datasets
are described in Table I.

While our conclusions may be drawn from the real
data alone, experimental results on synthetic concept-drifting
streams are provided for completeness. The synthetic streams
we use comprise a commonly used concept drift testbench [1],
[37]. The recurrent abrupt drift streams comprise data with
widely varying dimensional complexity. For instance, the 555
flavor comprises data with 5 nominal attributes, 5 values per
attribute, and 5 classes. The different parametrizations of the
Hyperplane generator vary the rate at which the hyperplane
rotates (i.e. rate at which the concept changes) and the number
of attributes with drift. Similarly, The random RBF generator
varies the velocity of the centroids (rate of concept change)
and the number of attributes with drift.

The synthetic streams along with their MOA parametriza-
tions are described in Table II. This synthetic testbench with
its current set of parametrizations has demonstrated excellent
discriminative power for comparing strategies that address
concept drift [7]. Therefore, while the results in this paper
skew heavily towards EFHAT, it should be noted that this is
not because of high correlation between the streams.

UCI datasets tend to be ordered, either naturally or as a
consequence of the process of collating published data. This
implies that there is natural and incidental concept drift in
these data. We run our experiments on the datasets in the order
they are provided, with this inherent concept drift. In order
to establish baseline algorithm behaviour on streams without
concept drift, we also remove this inherent drift by randomly
shuffling the order of the instances in the same datasets. This
ensures that each instance encountered is a random draw from
the distribution instantiated by the dataset as a whole. These
shuffled results help establish an effective stationary stream
baseline.

Results on shuffled streams represent averages over ten runs.
In each run the streams are shuffled using a differently seeded
random number generator. The seeds are pre-determined for
replicability.

1We use a testbench of real datasets largely drawn from the UCI Machine
Learning repository with natural or compilation-induced concept drift. Many
individual UCI datasets are offered as multiple files that correspond to
different experimental conditions or different classes. Concatenating these
files results in concept drift at the concatenation boundaries.



TABLE I
PROPERTIES OF DATASETS

Dataset Instances
Attributes
(Numeric,
Nominal)

Classes

1 aws—price-discretized [19] 27410309 7 (4, 3) 10
2 chess [20] 28056 6(3, 3) 18
3 covtype [20], [21] 581012 54 (10, 44) 7
4 cpe [22], [23] 1455525 72 (22, 50) 10
5 fonts [20], [24] 745000 411 (410, 1) 153
6 hhar [20], [25] 43930257 9 (6, 3) 6
7 kdd [20] 4000000 42 (34, 8) 23
8 localization [20], [26] 164860 8 (4, 4) 11
9 miniboone [20], [27] 130065 50 (50, 0) 2
10 nbaiot [20], [28] 7062606 115 (115, 0) 11
11 nswelec [20], [29] 45312 9 (7, 2) 2
12 pamap2 [20], [30] 3850505 53 (53,0) 25
13 poker [20] 1025010 10 (5, 5) 10
14 pucrio [20], [31] 165632 18 (15, 3) 5
15 sensor—home-activity [20], [32] 919438 11 (11, 0) 3
16 sensor—CO-discretized [20], [33], [34] 4095000 19 (19, 0) 5
17 skin [20], [35] 245057 3 (3, 0) 2
18 tnelec [20] 45781 4 (2, 2) 20
19 wisdm [20], [36] 15630426 44 (43, 1) 6

TABLE II
SYNTHETIC DATA STREAMS

MOA Stream Shorthand
1 -s (RecurrentConceptDriftStream -x 200000 -y 200000 -z 100 -s (AgrawalGenerator -f 2 -i 2) -d

(AgrawalGenerator -f 3 -i 3))
recurrent—agrawal

2 -s (RecurrentConceptDriftStream -x 200000 -y 200000 -z 100 -s (LEDGenerator -i 2) -d (LEDGener-
atorDrift -i 3 -d 7))

recurrent—led

3 -s (RecurrentConceptDriftStream -x 200000 -y 200000 -z 100 -s (RandomTreeGenerator -r 1 -i 1) -d
(RandomTreeGenerator -r 2 -i 2))

recurrent—randomtree

4 -s (RecurrentConceptDriftStream -x 200000 -y 200000 -z 100 -s (SEAGenerator -f 2 -i 2) -d
(SEAGenerator -f 3 -i 3))

recurrent—sea

5 -s (RecurrentConceptDriftStream -x 200000 -y 200000 -z 100 -s (STAGGERGenerator -i 2 -f 2) -d
(STAGGERGenerator -i 3 -f 3))

recurrent—stagger

6 -s (RecurrentConceptDriftStream -x 200000 -y 200000 -z 100 -s (WaveformGenerator -i 2 -n) -d
(WaveformGeneratorDrift -i 3 -d 40 -n))

recurrent—waveform

7 -s (HyperplaneGenerator -k 10 -t 0.0001 -i 2) hyperplane—1
8 -s (HyperplaneGenerator -k 10 -t 0.001 -i 2) hyperplane—2
9 -s (HyperplaneGenerator -k 5 -t 0.0001 -i 2) hyperplane—3
10 -s (HyperplaneGenerator -k 5 -t 0.001 -i 2) hyperplane—4
11 -s (RandomRBFGeneratorDrift -s 0.0001 -k 10 -i 2 -r 2) rbf—drift-1
12 -s (RandomRBFGeneratorDrift -s 0.0001 -k 50 -i 2 -r 2) rbf—drift-2
13 -s (RandomRBFGeneratorDrift -s 0.001 -k 10 -i 2 -r 2) rbf—drift-3
14 -s (RandomRBFGeneratorDrift -s 0.001 -k 50 -i 2 -r 2) rbf—drift-4
15 -s (AbruptDriftGenerator -c -o 1.0 -z 2 -n 2 -v 2 -r 2 -b 200000 -d Recurrent) recurrent—abrupt—222
16 -s (AbruptDriftGenerator -c -o 1.0 -z 3 -n 2 -v 2 -r 2 -b 200000 -d Recurrent) recurrent—abrupt—322
17 -s (AbruptDriftGenerator -c -o 1.0 -z 3 -n 3 -v 2 -r 2 -b 200000 -d Recurrent) recurrent—abrupt—332
18 -s (AbruptDriftGenerator -c -o 1.0 -z 3 -n 3 -v 3 -r 2 -b 200000 -d Recurrent) recurrent—abrupt—333
19 -s (AbruptDriftGenerator -c -o 1.0 -z 3 -n 3 -v 4 -r 2 -b 200000 -d Recurrent) recurrent—abrupt—334
20 -s (AbruptDriftGenerator -c -o 1.0 -z 3 -n 3 -v 5 -r 2 -b 200000 -d Recurrent) recurrent—abrupt—335
21 -s (AbruptDriftGenerator -c -o 1.0 -z 4 -n 2 -v 2 -r 2 -b 200000 -d Recurrent) recurrent—abrupt—422
22 -s (AbruptDriftGenerator -c -o 1.0 -z 4 -n 4 -v 4 -r 2 -b 200000 -d Recurrent) recurrent—abrupt—444
23 -s (AbruptDriftGenerator -c -o 1.0 -z 5 -n 2 -v 2 -r 2 -b 200000 -d Recurrent) recurrent—abrupt—522
24 -s (AbruptDriftGenerator -c -o 1.0 -z 5 -n 5 -v 5 -r 2 -b 200000 -d Recurrent) recurrent—abrupt—555

We evaluate the approaches in terms of averaged prequential
error. Prequential accuracy/error, or predictive sequential ac-
curacy/error, are widely used evaluation metrics for the stream
learning scenario [2], [38]. In the prequential setting, the
learner is first presented an example without the target value,
and the target is made available as soon as the learner has
made a prediction and has had its accuracy statistic updated.

We recognize that this experimental setup is a simplified
version of real world online learning, where there may be con-
siderable and varying delay before the true labels are revealed,

some true labels may never be revealed and updates may be
provided in batches. However, the prequential setting captures
the essential property of online prediction and update, with
true labels only revealed after classification. The prequential
setting is standard in the research literature, as it allows us
to make controlled comparisons of algorithms without loss of
generality. We use it to promote comparability with related
research.

For each stream we report prequential error averaged across
all time steps. Prequential error is a time series, and while



we average it to obtain a summary statistic for comparison,
we also present some examples of prequential error series to
illustrate the differing behaviors over time that lead to the final
aggregate statistics that we report.

Our implementation is very straightforward: we change
the MOA [37] Hoeffding Tree implementation so that it
uses the eager splitting mechanism (without the split revision
mechanism due to EFDT). We then inherit Hoeffding Adaptive
Tree with the eager Hoeffding Tree as the base to give us
EFHAT.

We report p-values with Holm-Bonferroni adjusted confi-
dence levels. Holm-Bonferroni corrections account for multi-
ple comparisons, mitigating the possibility that positive results
are false positives. We report 95% confidence intervals over
the proportion of wins out of all runs for which there is not a
draw. Hence, the confidence interval 0.6738 − 1 in Table III
indicates 95% confidence that at least 64% of datasets will
record wins or draws.

We present our results with a precision of 5 significant
figures in order not to claim greater precision than we are
confident about. Our experimental results had 6 significant
figures; using 6 significant figures would not materially alter
our findings — the p-values in Table III would be 0.0022 and
0.0245 respectively instead of 0.0012 and 0.0037, and would
still be within the significance level of 0.05. The p-values in
Table IV would not change.

All experimentation is performed in the MOA online learn-
ing system [37]. All of our code is publicly available.

B. EFDT and EFHAT

Tables III and IV compare the performance of EFDT with
HAT and EFHAT on real data streams in their original order,
and shuffled versions of real data streams that remove concept
drift. Table V compares all three learners on commonly studied
concept drifting streams.

EFHAT achieves lower error than EFDT on 15 UCI streams
with concept drift and has higher error on 2 (Table III).
EFHAT’s advantage is statistically significant, with a p-value
of 0.0012. This is significant at a 0.05 confidence level (which
is also the Holm-Bonferroni confidence level).

On the stationary streams (Table IV) obtained by shuffling
the UCI datasets, EFHAT’s advantage is eroded, with 12 wins
to 7 loses and a p-value of 0.1796, which does not reach
significance. This is not unexpected, as EFDT is designed for
a stable environment with stationary concepts. However, that
EFHAT performs at a similar level in spite of the instability
added by the HAT subtree substitution mechanism is an
interesting result.

On concept-drifting synthetic streams (Table V), EFHAT
has an advantage over EFDT on 20 streams, losing with a
small margin on two Hyperplane streams and one drifting
RBF stream. EFHAT’s faster subtree replacements appear to
slightly disadvantage it when drift is very slow. When a
subtree is replaced to account for a changing subconcept,
useful accumulated knowledge in the discarded subtree that
can be used for prediction is discarded, and the subtree is

TABLE III
AVERAGED PREQUENTIAL ERROR WITH DRIFT

Streams EFDT HAT EFHAT

aws—price-discretized 0.1414 0.1457 0.1396
chess 0.3115 0.0887 0.0440
covertype 0.1543 0.1808 0.1126
covpokelec 0.1939 0.2646 0.1982
fonts 0.0030 0.0053 0.0015
hhar 0.0036 0.0052 0.0013
kdd 0.0009 0.0009 0.0010
localization 0.0975 0.0590 0.0469
miniboone 0.0001 0.0001 0.0001
nbaiot 0.0008 0.0004 0.0002
nswelec 0.1928 0.1677 0.1418
pamap2 0.0614 0.0314 0.0590
poker 0.2180 0.3315 0.2547
pucrio 0.0015 0.0013 0.0013
sensor—home-activity 0.0014 0.0007 0.0007
sensor—CO-discretized 0.0666 0.0323 0.0261
skin 0.0006 0.0003 0.0003
tnelec 0.0050 0.0038 0.0034
wisdm 0.1458 0.1629 0.0926
A bold error value indicates higher accuracy, and bold italics indicate
a tie.
Unique Wins EFDT=2 vs EFHAT=15.
One-tailed binomial test statistics: p-value: 0.0012;
Confidence Interval: 0.6738 — 1
Unique Wins HAT=2 vs EFHAT=13
One-tailed binomial test statistics: p-value: 0.0037;
Confidence Interval: 0.6366 — 1

TABLE IV
AVERAGED PREQUENTIAL ERROR WITHOUT DRIFT

Streams EFDT HAT EFHAT

aws—price-discretized 0.1414 0.1532 0.1496
chess 0.6071 0.6734 0.6083
covertype 0.2765 0.2816 0.2716
covpokelec 0.3745 0.3386 0.3031
fonts 0.0007 0.0006 0.0006
hhar 0.0511 0.0660 0.0804
kdd 0.0009 0.0017 0.0019
localization 0.3386 0.3567 0.3551
miniboone 0.1188 0.1165 0.1095
nbaiot 0.0291 0.3345 0.0020
nswelec 0.2406 0.2411 0.2372
pamap2 0.1567 0.2180 0.1782
poker 0.3091 0.2864 0.3070
pucrio 0.0833 0.1277 0.0502
sensor—home-activity 0.0955 0.0887 0.0359
sensor—CO-discretized 0.2432 0.2250 0.1736
skin 0.0136 0.0159 0.0096
tnelec 0.0059 0.7315 0.7315
wisdm 0.1364 0.1903 0.1228
A bold error value indicates higher accuracy, and bold italics indicate
a tie.
Unique Wins EFDT=7 vs EFHAT=12.
One-tailed binomial test statistics: p-value: 0.1796;
Confidence Interval: 0.4181 — 1
Unique Wins HAT=3 vs EFHAT=14
One-tailed binomial test statistics: p-value: 0.0064;
Confidence Interval: 0.6044 — 1



TABLE V
AVERAGED PREQUENTIAL ERROR ON CONCEPT DRIFTING SYNTHETIC

STREAMS

Streams EFDT HAT EFHAT

recurrent—led 0.3468 0.2677 0.2678
recurrent—randomtree 0.2182 0.0942 0.0855
recurrent—sea 0.1496 0.1117 0.1118
recurrent—stagger 0.1904 0.0016 0.0012
recurrent—waveform 0.1896 0.1767 0.1748
hyperplane—1 0.1168 0.1150 0.1230
hyperplane—2 0.1406 0.1243 0.1316
hyperplane—3 0.1121 0.1141 0.1249
hyperplane—4 0.1338 0.1140 0.1202
rbf—drift-1 0.1126 0.1181 0.1103
rbf—drift-2 0.2623 0.1826 0.1586
rbf—drift-3 0.1431 0.1534 0.1487
rbf—drift-4 0.4060 0.3270 0.3182
recurrent—abrupt—222 0.3538 0.0005 0.0005
recurrent—abrupt—322 0.3760 0.0006 0.0005
recurrent—abrupt—332 0.3338 0.0013 0.0009
recurrent—abrupt—333 0.3658 0.0030 0.0014
recurrent—abrupt—334 0.3900 0.0090 0.0027
recurrent—abrupt—335 0.3945 0.0126 0.0053
recurrent—abrupt—422 0.3357 6e-04 0.0005
recurrent—abrupt—444 0.3897 0.0482 0.0134
recurrent—abrupt—522 0.3337 6e-04 0.0005
recurrent—abrupt—555 0.4087 0.2794 0.0967

A bold error value indicates higher accuracy, and bold italics indicate
a tie.
Unique Wins EFDT=3 vs EFHAT=20.
One-tailed binomial test statistics: p-value: 0.0002 ;
Confidence Interval: 0.6964 — 1

Unique Wins HAT=6 vs EFHAT=17.
One-tailed binomial test statistics: p-value: 0.0173 ;
Confidence Interval: 0.5490 — 1

rebuilt; delaying this process will lead to better predictions on
the previous concept. The p-value, 0.0002, is significant at a
0.05 significance level.

C. HAT and EFHAT

EFHAT achieves lower error than HAT on 13 drifting
streams and higher on 2 (p-value 0.0037, Table III). It achieves
lower error on 14 stationary streams and higher on 3 (p-
value 0.0064, Table IV). Both results are significant at a
0.05 confidence level, and also at Holm-Bonferroni adjusted
confidence levels of 0.05 and 0.025 respectively.

Many of the differences with drift are substantial, with HAT
having more than three times the error of EFHAT on fonts and
hhar and more than twice the error on chess.

As for concept-drifting synthetic streams (Table V), EFHAT
has an advantage over HAT on 17 streams, losing with a
small margin on all Hyperplane streams. Thus, EFHAT’s faster
subtree replacements resulting in structural loss appear to be a
disadvantage with slow drift when compared to HAT as well as
EFDT. The p-value, 0.0173, is significant at a 0.05 significance
level.

The significant outperformance of EFHAT over HAT on
streams without concept drift as well as streams with concept
drift indicates that growing tree structure efficiently is critical
both in responding to concept drift as well as for online
prediction in the stationary setting.

Fig. IV.1. Prequential Error with Abrupt Drift.

Fig. IV.2. Prequential Error with Gradual Drift - Hyperplane.

This effect is particularly pronounced in scenarios with
recurrent abrupt drift, where growing tree structure quickly
is critical for rapid response. We illustrate this point with
a prequential accuracy learning curve drawn on a synthetic
stream designed to exacerbate responses to recurrent abrupt
drift (Figure IV.1). The stream is generated using the
method of [1] with parameters AbruptDriftGenerator
-c -o 1.0 -z 5 -n 5 -v 5 -r 2 -b 200000 -d
Recurrent. It comprises 5 nominal attributes taking on 5
values per attribute, with 5 possible classes for each input.
An initial concept is generated with a full, random probability
table, and a second concept with a specified Hellinger distance
of 1 is used as the alternate concept for drift. Identical abrupt
drifts are generated every 200,000 instances by switching
concepts. The curves represent 10 stream shuffled averages.

Averaged prequential error for EFDT, HAT and EFHAT are
0.4087, 0.2794 and 0.0967 respectively. Note how EFHAT
recovery from abrupt drift is much quicker than that of HAT,
which in turn prevails over EFDT. Both HAT and EFHAT
display more immediate recovery, demonstrating the effect of
the error-based drift detection and recovery strategy. Note,
however, that the statistical efficiency of EFDT’s eager split
strategy prevails in the long run over HAT’s initial advantage
due to drift detection, reinforcing the value of both strategies,
as combined in EFHAT. The upshot of the combination of
these strategies is that EFHAT detects and responds to the
drift more immediately than EFDT and then learns the new
distribution more rapidly than HAT, effectively exploiting the



relative strengths of each algorithm.
Similar results are obtained with a wide range of parame-

terizations of this abrupt drift stream generator.
However, with gradual drift generated by a moving hyper-

plane [16], there is little difference between EFHAT, HAT or
EFDT. We illustrate this with a prequential accuracy learning
curve drawn on a synthetic stream with gradual drift (Figure
IV.2). Averaged prequential error is 0.1406 for EFDT, 0.1243
for HAT and 0.1316 for EFHAT. This result suggests that
while the error-based, drift-responsive subtree substitution
mechanism in HAT and EFHAT is particularly effective in
the case of abrupt drift, EFDT, in-spite of being designed for
stationary streams, is plastic enough to adapt effectively for
gradual drift.

The hyperplane stream is generated using the
MOA Hyperplane Generator [37] with parameters
HyperplaneGenerator -k 10 -t 0.001 -i
2. Similar results are obtained with a wide range of
parameterizations.

Fig. IV.3. Prequential Error, stationary real stream - NBAIOT.

Fig. IV.4. Prequential Error, non-stationary real stream example - WISDM.

Figure IV.3 shows prequential error curves for all three
learners on the NBAIOT UCI dataset [28] when it is shuffled to
remove drift. This illustrates how the eager splitting of EFDT
and EFHAT results in more statistically efficient learning
than the conservative strategy of HAT (which it inherits from
VFDT). The prequential error over this stationary stream is
EFHAT: 0.0020; EFDT: 0.0291; and HAT: 0.3345.

Figure IV.4 shows prequential error curves for all three
learners on the unshuffled WISDM human activity classifica-
tion UCI dataset [36]. This non-stationary data stream clearly
illustrates the real world benefit of combining the adaptive
response to drift of HAT with the statistical efficiency when
learning of EFDT. We see large spikes in error for both EFDT
and HAT. For EFDT these result from the revision strategy,
which was designed for stationary distributions, and routinely
destroys much of the learned tree when the distribution
changes. HAT suffers from the same problem, but at different
times because the tree is revised when drift is detected. EFHAT
does not suffer as much as HAT from these events as it learns
the new distribution more rapidly than HAT. Overall, EFHAT
clearly outperforms both other learners. We present the first
200,000 instances of around 1.5 million for readability of the
chart. The respective prequential errors of the three learners
over the entire stream are EFHAT: 0.09262; EFDT: 0.14576;
and HAT: 0.16293.

Fig. IV.5. Prequential Error with Gradual Drift - RBF.

With the RBF generator, which also generates gradual drift,
averaged prequential error for EFDT, HAT and EFHAT is
0.2623, 0.18264 and 0.1586 respectively (Figure IV.5). While
this re-establishes the general order of performance for our
learners, it is still not quite as remarkable as the difference
observed with recurrent abrupt drift. The RBF stream was
generated using the MOA RBF Generator [23], [37].

V. CONCLUSIONS

We have investigated the efficacy of the eager splitting strat-
egy of EFDT in the context of concept drift. This strategy of
eager splitting for online decision trees is shown to be highly
effective not only for learning from stationary streams (as in
the case of EFDT) but also for learning from concept-drifting
streams, when combined with an appropriate adaptation strat-
egy (as embodied by EFHAT), achieving lower error than HAT
with statistically significant frequency, often by substantial
margins and supporting our hypothesis that combining the
statistical efficieny of EFDT’s splitting mechanism with the
drift detection and response mechanism of the leading decision
tree algorithm for learning from non-stationary streams, HAT,
would result in more accurate learning in a non-stationary
environment.



EFHAT is highly plastic and responsive to concept drift.
Due to the greater statistical efficiency of the eager splitting
strategy, EFHAT can learn new structure much more rapidly
than HAT, enabling alternate subtrees to grow much more
rapidly after HAT’s change detector triggers their growth.

The resulting algorithm is also being capable of being
sufficiently stable in order to attain comparable prequential
accuracy to EFDT on stationary data streams.

A promising direction for future research is to explore
the combination of the effects of eager splitting and active
concept drift adaptation in the context of ensemble learning,
as ensembling is a highly effective and frequently deployed
strategy for decision tree learners [39]–[41].
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[2] J. Gama, I. Žliobaitė, A. Bifet, M. Pechenizkiy, and A. Bouchachia, “A
survey on concept drift adaptation,” ACM Computing Surveys (CSUR),
vol. 46, no. 4, p. 44, 2014.
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