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Abstract. Naïve-Bayes classifiers (NB) support incremental learning. However, the lack of 

effective incremental discretization methods has been hindering NB’s incremental learning in face 

of quantitative data. This problem is further compounded by the fact that quantitative data are 

everywhere, from temperature readings to share prices. In this paper, we present a novel 

incremental discretization method for NB, incremental flexible frequency discretization (IFFD).  

IFFD discretizes values of a quantitative attribute into a sequence of intervals of flexible sizes.  It 

allows online insertion and splitting operation on intervals. Theoretical analysis and experimental 

test are conducted to compare IFFD with alternative methods. Empirical evidence suggests that 

IFFD is efficient and effective. NB coupled with IFFD achieves a rapport between high learning 

efficiency and high classification accuracy in the context of incremental learning.  

1 Introduction 

Naïve-Bayes classifiers (NB) are simple yet powerful [3, 4]. Its efficiency has witnessed its widespread 

deployment in real-world applications including medical diagnosis, fraud detection, email filtering and 

webpage prefetching. One key contributing factor to NB’s efficiency is its capability of incremental 

learning from qualitative data [5, 6]. To accommodate a new training instance, NB only needs to 

update relevant entries in its probability table. This often has a much lower cost than non-incremental 

approaches that have to rebuild a new classifier from scratch in order to include new training data. 

If learning involves quantitative data, NB often uses discretization to transform them into qualitative 

data. Briefly speaking, discretization groups sorted values of a quantitative attribute into intervals, 

treats each interval as a qualitative value and inputs them into NB. Ideally, discretization should also be 

incremental in order to be coupled with NB. When receiving a new training instance, incremental 

discretization is expected to be able to adjust intervals’ boundaries and statistics, using only the current 

intervals and this new instance instead of re-accessing previous training data.  Unfortunately, the 

majority of existing discretization methods are not oriented to incremental learning. To update 

discretized intervals with new instances, they need to add those new instances into previous training 

data, and then re-discretize on basis of the updated complete training data set.  This is detrimental to 

NB’s efficiency by inevitably slowing down its learning process. Hence there is a real and immediate 

need for appropriate incremental discretization methods for NB.  

Some preliminary research has been contributed to exploring incremental discretization for NB. A 

representative is the method PiD proposed by Gama and Pinto [6]. PiD is based on a two layer 

histograms and is efficient in term of time and space complexity. However it can be sub-optimal in that 

the histograms are not exact and the splitting operation in the first layer possibly produces inexact 

counters.  

This paper proposes a new effective approach, incremental flexible frequency discretization (IFFD). 

IFFD is based on fix frequency discretization (FFD) that has been demonstrated as a very efficient and 

effective discretization method for NB in the context of non-incremental learning [10, 11]. IFFD 

produces intervals with flexible sizes, stipulated by a lower bound and an upper bound. An interval is 

allowed to accept new values until its size reaches the upper bound. An interval whose size exceeds the 

upper bound is allowed to split if the resulting smaller intervals each have a size no smaller than the 

lower bound. Accordingly IFFD is able to incrementally adjust discretized intervals, effectively update 

associated statistics and efficiently synchronize with NB’s incremental learning.  

The remaining of this paper is organized as follows. Section 2 introduces naïve-Bayes learning and 

discretization. Section 3 explains the motivation and methodology of IFFD. Section 4 describes rival 

incremental methods from related work. Section 5 analyzes each alternative method’s complexity in 

terms of learning time and space. Section 6 conducts experiments to verify IFFD’s efficacy and 

efficiency. Section 7 gives concluding remarks. 



 

2 Discretization for Naïve-Bayes Learning 

2.1 Naïve-Bayes Classifier (NB) 

Assume that an instance I is a vector of attribute values <x1, x2, …, xn>, each value being an 

observation of an attribute Xi (i∈ [1,n]). Each instance can have a class label ci },,,{ 21 kccc L∈ , being 

a value of the class variable C . If an instance has a known class label, it is a training instance. If an 

instance has no known class label, it is a testing instance. The dataset of training instances is called the 

training dataset. The dataset of testing instances is called the testing dataset. 

To classify an instance },,,{ 21 nxxxI L= , NB estimates the probability of each class label given I,  

)|( IcCP i=  using Formula (1, 2, 3,4). Formula (2) follows (1) because P(I) is invariant across 

different class labels and can be canceled. Formula (4) follows (3) because of NB’s attributes 

independent assumption.  It then assigns the class with the highest probability to I. NB is called naïve 

because it assumes that attributes are conditionally independent of each other given the class label. 

Although its assumption is sometimes violated, NB is able to offer surprisingly good classification 

accuracy in addition to its very high learning efficiency, which makes NB popular with numerous real-

world classification applications [2, 8]. 
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In naïve-Bayes classifier, the class type must be qualitative while the attribute type can be either 

qualitative or quantitative. When an attribute Xj is quantitative, it often has a large or even infinite 

number of values. As a result, the conditional probability that Xj takes a particular value xj given the 

class label ci covers very few instance if there is any at all. Hence it is not reliable to estimate 

P(Xj=xj|C=ci) according to the observed instances.  One common practice to solve the problem of 

quantitative data for NB is discretization.  

2.2 Discretization 

Discretization is a popular approach to transforming quantitative attributes into qualitative ones for NB. 

It groups sorted values of a quantitative attribute into a sequence of intervals, treats each interval as a 

qualitative value, and maps every quantitative value into a qualitative value according to which interval 

it belongs to. In the paper, the boundaries among intervals are sometimes referred to as cut points. The 

number of instances in an interval is referred to as interval frequency. The total number of intervals 

produced by discretization is referred to as interval number. 

Incremental discretization aims at efficiently updating discretization intervals and associated 

statistics upon receiving each new training instance. Ideally, it does not require to access historical 

training instances to carry out the update. Instead it only needs the current intervals (with associated 

statistics) and the new instance.  

3 Incremental Flexible Frequency Discretization 

In this section, we propose a novel incremental discretization method, incremental flexible frequency 

discretization (IFFD). It is motivated by the pros and cons of fixed frequency discretization (FFD) in 

the context of naive-Bayes learning and incremental learning [10, 11].  



 

3.1 Fixed Frequency Discretization (FFD) 

FFD has been proposed as an effective and efficient discretization method for naïve-Bayes learning 

through bias and variance management. It has been found that large interval size tends to increase NB’s 

classficiation bias while large interval number tends to increase NB’s classification variance [12].  To 

discretize a quantitative attribute, FFD sets a sufficient interval frequency, m = 30 [11,13]. It then 

discretizes the ascendingly sorted values into intervals of frequency m. By introducing m, FFD aims to 

ensure that each interval has sufficient training instances for NB probability estimation, reducing 

classification variance error. On top of that, by not limiting the number of intervals formed, more 

intervals can be formed as the training data size increases, reducing classification bias error. Empirical 

evidence has demonstrated that FFD helps NB achieve lower classification error than alternative 

discretization methods do.  

Although FFD is effective for naïve-Bayes learning, it is developed in the context of non-

incremental learning. Every time when new training instances have arrived, FFD has to rebuild the 

discretization intervals from scratch. It is possible that even a single instance can push every boundary 

to (unnecessarily) move. For example, FFD discretizes the sorted values of a quantitative attribute into 

the following intervals. For simplicity, we assume m =  3: 

{3.0, 4.0, 4.3}, {4.5, 5.1, 5.9}, {6.0, 6.1, 6.2}, {6.5, 6.7, 6.8}, {6.9, 7.1}  

Suppose that a new instance has come with this attribute being value “5.2”. According to the current 

cut points,  the appropriate interval to accommodate “5.2” is {4.5, 5.1, 5.9}. Inserting “5.2” into {4.5, 

5.1, 5.9} will make the interval frequency increase to 4, which is greater than FFD’s specified threshold 

3. Hence we need to move “5.9” out of the updated interval{4.5, 5.1, 5.2, 5.9}  and insert it into the 

interval {6.0, 6.1, 6.2}, which produces another interval {5.9, 6.0, 6.1, 6.2} whose frequency is greater 

than 3. Following the same lines of reasoning, we have to move “6.2” into the next one and so on so 

forth until the last interval. As a result, the updated intervals are {3.0, 4.0, 4.3}, {4.5, 5.1, 5.2}, {5.9, 

6.0, 6.1}, {6.2, 6.5, 6.7}, {6.8, 6.9, 7.1} and almost every cut point has been changed. 

In this case, FFD has to rebuild the intervals and NB’s conditional probability table from the second 

interval all the way to the last one. In the best situation, the new instance is inserted into the last 

interval and the computation cost can be non-trivial. However in the worst situation such as when the 

new instance is inserted into the first interval, FFD is extremely inefficient. The reason is that FFD 

specifies a fixed interval frequency. This observation motivates our new incremental discretization 

approach as follows. 

3.2 Incremental Flexible Frequency Discretization (IFFD) 

IFFD sets its interval frequency to be a range [minBinsize, maxBinsize) instead of a single value m. 

The two arguments, minBinsize and maxBinsize, are respectively the minimum and maximum 

frequency that IFFD allows intervals to assume. Whenever a new value arrives, IFFD first inserts it 

into the interval that the value falls into. IFFD then checks whether the updated interval’s frequency 

reaches maxBinsize. If not, it accepts the change and update statistics accordingly. If yes, IFFD splits 

the overflowed interval into two intervals under the condition that any of the resulting intervals has its 

frequency no less than minBinsize. Otherwise, even if the interval overflows because of the insertion, 

IFFD does not split it, in order to prevent high classification variance [10,11]. In the current 

implementation of IFFD,  minBinsize is set as 30, following FFD’s lines of reasoning so as to minimize 

classification bias and variance; and maxBinsize is set as twice of minBinsize. 

By assuming a more flexible interval frequency, IFFD is able to solve FFD’s dilemma in 

incremental learning. Recall the example in Section 3.1. Assume minBinsize = 3 and hence maxBinsize 

= 6. When the new attribute value “5.2” comes, IFFD inserts it into the second interval {4.5, 5.1, 5.9}. 

That interval is hence changed into {4.5, 5.1, 5.2, 5.9} whose frequency (equal to 4) is still within [3, 

6). So what we need do is only to modify NB’s conditional probabilies related to the second interval. 

Assume another two new attribute values “5.4, 5.5” have come and are again inserted into the second 

interval. This time, the interval {4.5, 5.1, 5.2, 5.4, 5.5, 5.9} has a frequency as 6, reaching  maxBinSize. 

Hence IFFD will split it into {4.5, 5.1, 5.2} and {5.4, 5.5, 5.9} whose frequencies are both within [3, 

6). Then we only need to recalculate NB’s conditional probabilities related to those two intervals. By 

this means, IFFD makes the update process local, affecting a minimum number of intervals and 

associated statistics. As a result, incremental discretization can be carried out very efficiently,  

Table 1 shows the pseudo codes of the IFFD algorithm. For simplicity, we just consider one attribute 

value to update the discretization intervals and classifier and assume all attribute values are different. 

cutPoints is the set of cut points of discretization intervals. counter is the conditional probability table 



 

of the classifier. minBinsize is minimum bin size. IFFD will update the cutpoints and counter according 

to new attribute value V. classLabel is the class label of V. 

Table 1. Pseudo Codes of IFFD 

Function: IFFD(cutPoints, counter, minBinsize, V, classLabel) 

//If V is greater than the last cut point 

if(V > cutPoints[size-2] ) //size is the interval number 

// cutPoints counts from 0 

{ insert V into interval[size-1];  

counter[size-1][classLabel]++;  

chaInt = size-1; //record changed interval   

} 

else 

{ for(j = 0; j < size-1; j++) 

 if(V =< cutPoints[j]) 

 { insert V into interval[j]; 

intFre[j]++; 

  counter[j][classLabel]++;  //update contingency table 

  chaInt = j;  //record the interval which has been changed 

break;   

}  

} 

if(intFre[chaInt] > minBinsize*2) 

{  get new cut point; //split interval[chaInt] into two c1 and c2 

insert the new cut point into cutPoints; 

calculate counter[c1] and counter[c2];//update contingency table 

} 

Please be noted that identical values are always kept in the same interval. For example, if the 

interval is {4.5, 5.1, 5.2, 5.2, 5.2, 5.6, 5.9}, IFFD will not split it into {4.5, 5.1, 5.2} and {5.2, 5.6, 5.9} 

even though its frequency has exceeds maxBinsize (=6). Nor will IFFD split it into {4.5, 5.1} and {5.2, 

5.2, 5.2, 5.6, 5.9} or {4.5, 5.1, 5.2, 5.2, 5.2} and {5.6, 5.9}, because the smaller interval frequency is 

less than minBinsize (=3). 

4 Rival Methods from Related Work 

4.1 Move Boundary FFD (MFFD) 

An intuitive way to relieve FFD’s dilemma in incremental learning (Section 3.1) is to just move the 

interval boundaries instead of redoing discretizaiton. We name this method move boundary FFD 

(MFFD). For the same example as in Section 3.1, if MFFD is applied, we just calculate the change of 

every interval. The second interval {4.5, 5.1, 5.9} has been inserted into an attribute value “5.2” and 

delete an attribute value “5.9”, then we just modify the conditional probability. Attention is only paid to 

the inserted and deleted values. Do like this until the last interval. NB coupled with MFFD has the 

same classification accuracy as NB coupled with FFD, but the former is more efficient than the latter. 

Table 2 presents the pseudo codes of MFFD. For simplicity, we just consider one attribute value to 

update the discretization intervals and classifier and assume all attribute values are different.  cutpoints 

is the set of cut points of discretization intervals. counter is the conditional probability table of the 



 

classifier. MFFD will update the cutpoints and counter according to new attribute value V. classLabel 

is the class label of V. 

Table 2. The Pseudo Codes of MFFD 

Function: MFFD(cutPoints, counter, V, classLabel) 

curVal=V; curClasslabel= classLabel; 

for(j = 0; j < size-1; j++)   //size is the interval number 

{ if(curVal =< cutpoints[j]) 

 { // interval[j] is the jth interval of the attribute 

insert curVal into interval[j]; 

//fre is the specified interval frequency 

// V[j][fre-1]
 
is the last value in interval[j] 

remove V[j][fre-1]
 
from interval[j];  

cutPoints[j]= V[j][fre-2];  //modify cut points 

counter[j][curClasslabel]++;  //update contingency table 

counter[j][ V[j][fre-1]
.class

]--; 

curVal = V[j][fre-1];  

curClasslabel = V[j][fre-1]
.class

; 

} 

} 

If(fre[size-1] < split threshold) 

{ insert curVal into interval[size-1];  

counter[size-1][curClasslabel]++;  

} 

else 

{ split interval[size-1]; 

calculate counter[size-1] and counter[size];  

size = size+1; 

} 

4.2 Partition Incremental Discretization (PiD) 

PiD is a two layer histograms incremental discretization method [6]. The first layer based on equal-

width or equal-frequency determines the candidate cut points according to observed values. At this 

layer, the interval number is significantly greater that the final interval number. For example, the final 

interval number is 40, probably the interval number in the first layer is 200. For incremental learning, it 

inserts the incremental data into the appropriate intervals. To any interval whose frequency is greater 

than the specified threshold, it will be split. Because in this layer, it does not store the historical data, 

the splitting result is inaccurate. It just splits an interval into two uniformly. The second layer merges 

the intervals gained at the first layer. In the second layer, PiD can construct the final discretization 

interval by any different strategies. Namely, PiD discretizes quantitative attributes twice. At first, it 

uses a loose interval number to discretize; and then merges intervals if necessary. The main advantage 

of PiD is low time and space complexity, but during the splitting operation in the first layer, it possibly 

produces inexact counters.  

4.3 Kernel Density Estimation (KDE) 

A counterpart of discretization is probability density estimation to handle quantitative attributes for 

NB. It models each quantitative attribute by some continuous probability distribution. Probability 



 

density estimation methods can manipulate quantitative attributes for naïve-Bayes incremental 

learning.  A representative method is kernel density estimation (KDE) [7]. 

KDE is a non-parametric approach that does not assume the underlying distribution to take any 

particular form. Instead it estimates from sample values. This circumvents unsafe assumptions and 

achieves better accuracy because of real world diversity. For KDE, it calculates the conditional class 

probability as: 
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where ni is the number of training instances with class label ci. For every quantitative attribute of 

testing instance, KDE has to perform probability calculation ni times to get P(Xj=xj|C=ci). If the 

instance number is large, it has a potential computational problem.  

5 Time and Space Complexity Comparison 

In this section, we analyse the time and space complexity incurred by accommodating a new training 

instance. It includes updating the discretized intervals as well as updating required probabilities for NB.  

 5.1 Time Complexity 

In the following, n is abbreviation of instance number; k is the attribute number; C is the number of 

class label, specified Interval Frequency is abbreviated by IntF, IntN represents Interval Number, then 

IntN=n/IntF.  

5.1.1 Train Time Complexity on a New Instance 

Train Time Complexity of MFFD 

Assume the probability of the new attribute value inserting into every interval is equal. 1+− iIntN  is 

the number of intervals which has to be changed, where i is the appropriate interval for the new 

instance. Inserting an instance into the interval while deleting another one from the interval has a 

constant cost in time complexity O(1). So for every incremental attribute value, the training time 

complexity is presents in equation (6). This complexity repeating for k attribute is O(k), so resulting in 

the totally complexity is O(n)*O(k)=O(nk).  
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Train Time Complexity of PiD 

The time complexity of PiD depends on the discretization methods selected in each layer. In our 

experiments, we select equal-width and PD for the two layers separately (the reason that we select them 

is explained in 4.2.1). Here we just analyze time complexity in this situation.  

In the first layer, when the interval frequency of a specified interval is greater than a user defined 

threshold ( a percentage of the total instance number), the interval will be split. The more interval 

number is defined in the first layer, the less probability some interval will be split. In the first layer, the 

interval frequency is a large number, so the time for splitting operation can be ignored. The input of the 

second layer is the intervals and associated statistics of first layer. If the interval gained in the first layer 

is m, then the time complexity of PiD is O(mk).  

Train Time Complexity of IFFD 

Assume the probability of the new attribute value inserting into some interval is equal. Max is the 

maximum interval frequency; Min is the minimum interval frequency.  



 

When a new attribute value inserts into the appropriate interval, the probability that the interval does 

not split is
1+−

−

MinMax

MinMax
. In this situation, the operation is just to insert the new instance. Inserting an 

instance into the interval has a constant cost in time complexity O(1). The probability that the interval 

splits is
1

1

+− MinMax
. In this situation, the operation is to recalculate the conditional probability table 

of the two new intervals and change the cut points. For a single attribute, if the data structure of 

cutPoints is array, the time complexity is presented in equation (7), 
2

IntN
 means the number of cut 

points have to move, when insert a new cut point into the cutPoints. And if tree or list structure is 

selected, the time complexity is demonstrated as equation (8). This complexity repeating for k attribute 

is O(k), so resulting in the totally complexity for array structure  is O(n)*O(k)=O(nk) and for tree 

structure is O(1)*O(k)=O(k). In our experiment, we select array structure to store cutPoints, because 

our select Weka as the platform, in Weka, cutPoints is stored in an array.  
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Train Time Complexity of KDE 

At training time, KDE just store the attribute values, so its time complexity is O(k). 

5.1.2 Test Time Complexity on a New Instance 

Test Time Complexity of MFFD, IFFD and PiD 

For every class label, the classifiers which manipulate quantitative attributes by discretization methods 

can get the conditional probability from the conditional probability table directly, so testing time 

complexity on the new instance is O(Ck).  

Test Time Complexity of KDE 

At testing time, from equation (5) we can see, for every class label ci and every quantitative attributes, 

KDE must evaluate f for every observed different attribute value whose class label is in class ci. So the 

testing time complexity of KDE is O(nk). 

5.2 Space Complexity 

5.2.1 Space Complexity of MFFD, IFFD & KDE on a New Instance 
 

MFFD, IFFD and KDE have to store the historical quantitative attributes, so their space complexity is 

O(nk). 

MFFD has to change the cut points and modify the conditional probability table, so historical 

quantitative attributes are necessary.  

For IFFD, when the interval frequency of some interval exceeds the threshold, the interval has to be 

split. Historical quantitative data is necessary to splitting operation. So IFFD must store the historical 

quantitative attribute values for every instance. But for every new instance, the modified interval is just 

one: split it or insert a point into it, namely the adjustment is local. So we can store the historical data in 

external storage. When change is necessary, we copy it from external storage to memory. With the 

development of hardware, storage is not a big problem.  

KDE must store every different quantitative attribute value for every class label. To classify an 

instance, KDE has to access every attribute value to calculate the conditional class probability. So it is 

necessary to store the attributes values in the memory. However memory store is more expensive than 

external storage. If for every class label there are many duplicate quantitative attribute values, KDE has 

a lower space then MFFD and IFFD; otherwise their storage space are equal. 



 

5.2.2 Space Complexity of PiD on a New Instance 
Splitting operation in PiD is to split an interval uniformly. PiD does not need to store historical 

quantitative attribute values. It just stores the interval information which gained at the first layer. So its 

space complexity is O(m), where m is the number of interval in the first layer. Compared with other 

methods, PiD has the lowest space complexity. 

 

The time and space complexity are summarized in Table 3.  

Table 3. Algorithmic complexity. n is abbreviation of instance number; k is the attribute number; C is the number 

of class label; m is the number of interval number in the first layer for PiD 

Method MFFD IFFD PiD KDE 

Trainning O(nk) O(nk)   (Array) 

O(k)   (Tree) 

O(mk) O(k) Time 

Complexity 

Testing O(Ck) O(Ck) O(Ck) O(nk) 

Space Complexity O(nk) O(nk) O(mk) O(nk) 

6 Experimental Evaluation 

In this section, we compare the incremental learning performance of NB when coupled with IFFD, 

PiD, MFFD and KDE respectively to handle quantitative attributes.  

6.1 Data 

The experiments use a large suite of 30 benchmark datasets from the UCI machine learning repository 

[1]. For the purpose of incremental learning, the chosen datasets each have more than 500 instances. 

Table 4 describes the statistics of each dataset. 

Table 4. Experimental Datasets. For each dataset, Size is the number of instances, Qa is the number of quantitative 

attributes, Ql is the number of qualitative attributes and C is the number of classes. 

ID Dataset     Size Qa Ql C ID Dataset     Size Qa Ql C 

1 cylinder-bands 540 20 19 2 16 Abalone 4177 8 0 3 

2 balance-scale 625 4 0 3 17 spambase 4601 57 0 2 

3 credit-a 690 6 9 2 18 waveform-5000 5000 40 0 3 

4 breast-w 699 9 0 2 19 page-blocks 5473 10 0 5 

5 diabetes 768 8 0 2 20 optdigits 5620 48 0 10 

6 vehicle 846 18 0 4 21 satellite 6435 36 0 6 

7 anneal 898 6 32 6 22 Musk2 6598 166 0 2 

8 vowel 990 10 3 11 23 pioneer 9150 30 6 57 

9 German 1000 7 13 2 24 Thyroid 9169 7 22 20 

10 cmc 1473 2 7 3 25 ae 9961 12 0 9 

11 yeast 1484 7 1 10 26 pendigits 10992 16 0 10 

12 volcanoes 1520 3 0 4 27 Sign 12546 8 0 3 

13 mfeat-zernike 2000 47 0 10 28 letter 20000 16 0 26 

14 segment 2310 19 0 7 29 Adult 48842 6 8 2 

15 hypothyroid 3772 7 23 4 30 Shuttle 58000 9 0 7 

6.2 Design 

For each instance, we randomly shuffle the instances and use the first 200 instances to initialize an NB 

classifier. The remaining instances come one after the other. Each instance is to be classified by the 

current NB first. Its true class label is then made known to the classifier which takes it as a new training 

instance.  Accordingly, the discretized intervals are updated and so is the classifier. Then the next 

instance comes and the same procedure runs again, and so on so forth until the last instance is 

classified. We call this complete process a trial. We conduct five trails and average their classification 

error rates. 



 

For IFFD, minBinSize is 30 while maxBinsize is 60. For PiD, the first layer is equal-width 

discretization and the interval number is 200 [5]. In the second layer, we choose to proportional 

discretization [9], which has been demonstrated efficient and work well [9]. 

Statistically a win/draw/lose record is calculated when we compare IFFD against each alternative 

method. The record represents the number of data sets in which IFFD respectively beats, tie with or 

loses to the rival method. A one-tailed binomial sign test will be applied to the record. If its result is 

less than the critical level of 0.05, the wins against losses are statistically significant, supporting the 

claim that IFFD has a systematic (instead of by chance) advantage over the rival method. 

6.2.1 Comparing at Ten Observation points 
 

Along the time line, 10 observed classification error rates are recorded when 10%, 20%, 30%,…, 100% 

of instances have been classified respectively. At every observation point, we calculate the 

win/draw/lose records on classification error rate when comparing IFFD against alternative methods. 

Table 5 lists the records as well as their sign test results. 

Table 5. Classification error win/draw/lose records on 10 observation points 

Method 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 

Win 20 19 19 20 22 21 20 21 18 19 

Draw 1 0 0 0 0 0 1 1 2 1 

Lose 9 11 11 10 8 9 9 8 10 10 

IFFD 

& 

PiD 

Sign test 0.031 0.1 0.1 0.049 0.008 0.021 0.031 0.012 0.092 0.068 

Win 14 14 15 17 17 16 17 18 17 17 

Draw 1 2 0 1 0 0 0 0 0 2 

Lose 15 14 15 12 13 14 13 12 13 11 

IFFD 

& 

MFFD 

Sign test 0.644 0.575 0.572 0.229 0.292 0.428 0.292 0.181 0.292 0.172 

Win 17 15 16 18 17 19 19 19 19 19 

Draw 0 0 0 0 0 0 0 0 0 0 

Lose 13 15 14 12 13 11 11 11 11 11 

IFFD 

& 

KDE 

Sign test 0.292 0.572 0.428 0.181 0.292 0.1 0.1 0.1 0.1 0.1 

At every observation points, we also record the arithmetic mean of each method’s classification 

error rate averaged on 30 datasets, as in figure 1. 
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Fig. 1.  Incremental Learning Curve. Comparing the classification error rate of naïve-Bayes classifiers which use 

the 4 methods to deal with quantitative attributes respectively at the 10 observation points, we can see, the error 

rate of IFFD is marginally lower than that of MFFD’s for the whole learning curve, the separation between IFFD 

and PiD becomes smaller and smaller with instances increasing. IFFD has substantially lower error rate than KDE. 

In general, the classification error rate decreases gradually while more training instances are 

available. The error rate of IFFD is marginally lower than that of MFFD’s for the whole learning curve. 

There is a larger gap between IFFD and PiD at the beginning, which shrinks with time going on. IFFD 

has substantially lower error rate than KDE and its leading position remains through the whole learning 

period. The learning curve of PiD and KDE have small gaps at the beginning which enlarges later. 



 

Specifically, to compare IFFD against PiD, IFFD is statistically more accurate than PiD at the 0.05 

critical level when the training data size is medium (from the column 40% to the column 80%). On the 

pther hand, IFFD is not significantly better than PiD when the training data size is extremely small or 

large. We suggest the reason that PiD employs proportional discretization at its second layer, which 

controls the interval frequency better than IFFD’s interval [30,60) does. 

For discretization, large interval frequency tends to produce low variance but high bias while large 

interval number tends to produce low bias but high variance. Proportional discretization attains equal 

bias and variance reduction by setting both interval frequency and interval number to be square root of 

the number of  training instances, a strategy that has been demonstrated to react sensibly to varying 

training data size [9]. Figure 2 shows the ideal interval frequency’s changing while training instances 

increase from 1 to 5000. From figure 3, we can see that when instances are fewer then 900, the ideal 

interval frequency should be less then 30, and when instances are more than 3600, the ideal interval 

frequency should be greater than 60. However, the current implementation of IFFD only allows the 

interval frequency to vary in the interval [30, 60). Hence for small datasets, IFFD’s interval frequency 

can be too big; whereas for large datasets, IFFD’s interval frequency can be too small. This explains 

why IFFD’s performance is not significantly better then PiD’s at the beginning and at the very end of 

the incremental learning curve. Our understanding of this issue also leads to an interesting future 

research issue, that is, how to make IFFD’s flexible frequency range change according to different 

training data size. 
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Fig. 2. Different sizes of training data require different ideal interval frequencies. Proportional 

discretization answers this call by setting both interval number and interval frequency to be the square 

root of the number of training instances. With instance number increasing, the interval frequency and 

number increase accordingly. When the instances number is less than 900, the ideal interval frequency 

should be less then 30 and when the instance number is greater than 3600, the ideal interval frequency 

should be greater then 60. 

 

To compare IFFD against MFFD, according to Table 5, the difference between classification error 

rate of IFFD and that of MFFD’s is not significant. When there are a small number of training 

instances, MFFD is better than IFFD. When more training instances are available, IFFD becomes better 

than MFFD. We suggest the reason is that the interval frequency of MFFD is 30 and is smaller than the 

interval frequency [30, 60) of IFFD. According to the interval frequency analysis in Fig 1, 30 is more 

suitable for small datasets. 

To compare IFFD against KDE, according to Table 5, the difference between classification error 

rate of KDE and that of IFFD’s is not significant. However, for some datasets, IFFD is dramatic better 

than KDE, as to be demonstrated in Section 6.2.2. 

Table 6. Classification error win/draw/lose records on 30 datasets 

Method Win Draw Lose Sign Test 

IFFD & PiD 20 0 10 0.049 

IFFD & MFFD 16 0 14 0.428 

IFFD & KDE 19 0 11 0.1 



 

6.2.2 Comparing on Every Dataset 

For every dataset, if the classification error rate of a rival method is less than that of IFFD’s at more 

than half of the 10 observation points, we deem that the rival method is better than IFFD for this 

dataset, and vice versa. The resutling win/draw/lose records across the 30 datasets are listed in Table 6. 

Accordingly, IFFD is significant better than PiD at the 0.05 critical level. Although not statistically 

significant, IFFD wins more often than not when compared with MFFD or KDE. 

6.2.3 Comparing Running Time 
 

This section compares the running time of the four rival methods. Figure 3 demonstrates each method’s 

running time averaged on the 30 datasets. From the fastest to slowest is PiD, IFFD, KDE and MFFD. It 

is consistent with our theoretical analysis in Section 5. PiD is the fastest algorithm. Although IFFD and 

MFFD have the same time complexity, for IFFD, it just modify one or two intervals and update the 

cutPoints, while for MFFD, on average it has to modify IntN /2 intervals and associated statistics, 

where IntN is the interval number.   
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Fig. 3. NB’s running time averaged on 30 datasets when coupled with PiD IFFD, KDE and MFFD respectively. 

PiD and IFFD are more efficient than KDE and MFFD.  

7. Conclusion  

In this paper, we have argued that most existing discretization methods do not suit incremental learning 

of naïve-Bayes classifiers (NB). This is sub-optimal because NB is extensively deployed for real-world 

applications which often involve quantitative data. Accordingly, we have proposed a novel incremental 

discretization method incremental flexible frequency discretization (IFFD). IFFD inherits from fxed 

frequency discretization the strength of minimizing classification bias and variance fir NB. Meanwhile, 

it adopts a more flexible strategy to handle to interval size so as to efficiently update discretized 

intervals upon receiving each new training instance. A comprehensive, theoretical and empirical study 

has been conducted to compare IFFD with representative alternative approaches. Observations suggest 

NB coupled with IFFD can achieve higher classification efficiency than those with MFFD and KDE, 

while achieve higher classification accuracy than those with PiD and KDE. Hence IFFD is a promising 

discretization approach for NB in practice where people want a rapport between learning accuracy and 

efficiency.  
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