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Abstract
Considerable progress has been made on how to reduce the
number of spurious exploratory rules with quantitative at-
tributes. However, little has been done for rules with undis-
cretized quantitative attributes. It is argued that proposi-
tional rules can not effectively describe the interactions be-
tween quantitative and qualitative attributes. Aumann and
Lindell proposed quantitative association rules to provide a
better description of such relationship, together with a rule
pruning techniques . Since their technique is based on the
frequent itemset framework, it is not suitable for rule discov-
ery in large, dense databases. In this paper, an efficient tech-
nique for automatically discarding insignificant rules during
rule discovery is proposed, based on the OPUS search al-
gorithm. Experiments demonstrate that the algorithm we
propose can efficiently remove potentially uninteresting rules
even in very large, dense databases.
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1 Introduction

It has been recognized that mining multiple models may
lead to unmanageable numbers of rules. In some cases,
the vast majority of the resulting rules are spurious or
uninteresting. Summarization of existing rule pruning
approach can be found in related works [4].

Although techniques for discovering rules from qual-
itative data are highly developed, there has been limited
research into how best to discover rules from quantita-
tive data. Srikant et al. [5] discretized the quantitative
variables and mapped them into qualitative ones. Nev-
ertheless, qualitative data have a lower level of measure-
ment scale than quantitative data. Simply applying de-
scretization may lead to information loss. [2] proposed
a variant of association rule whose consequent is quan-
titative, and is described by its distribution instead of
being discretized. They call these rules quantitative as-
sociation rules (QAR). We follow Webb [7] by calling
these rules impact rules instead, to distinguish them
from quantitative rules as defined by Srikant et al [5].

Aumman and Lindell [2] proposed a technique for
QAR pruning. However, their technique is inefficient
for very dense databases. In this paper, we focus on

further developing their technique so that insignificant
rules can be discarded during rule discovery in large,
dense databases.

The rest of this paper is organized as follows. In
section 2, we briefly describe the impact rule discovery
problem settings we use throughout this paper. Sec-
tion 3 presents the algorithm OPUS IR Filter which in-
corporates filtering spurious rules during rule discov-
ery. Section 4 presents techniques for filtering insignif-
icant impact rules. An anti-monotonic triviality filter
is also proposed for improving the insignificance filter
efficiency. We present and summarize our experiments
in section 5, followed by conclusions in section 6.

2 Impact Rule Discovery

Exploratory rule discovery [9] seeks all models that sat-
isfy some set of constraints. Examples include associ-
ation rule discovery [1], contrast set discovery [3] and
QAR discovery. For some of these techniques, both the
antecedent and the consequent of the resulting rules are
conjunctions of Boolean conditions. We use the term
propositional exploratory rule discovery to encompass
these techniques. However, Boolean conditions cannot
effectively describe interactions between quantitative
and qualitative variables and others. We introduce the
distributional-consequent rule (DCR) discovery, which
is designed specially to accommodate the need of dis-
covering relations regarding quantitative variables. The
influence of the antecedent on the target variable is de-
scribed by distributional statistics. It is argued that
DCR can present more useful interactions with quanti-
tative data than can propositional rules [7, 2].

We characterize some impact rule discovery related
terms as follows:

1. A, which is a conjunction of Boolean conditions,
covers a records r, iff r satisfies all conditions in
A. Coverset(A) is the set of records covered by A.

2. An impact rule is a rule in form of A → target,
where the antecedent A is a conjunction of one or
more Boolean conditions and the target, which is
also referred to as the consequent, is the variable
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(or combination of variables) in which we are in-
terested. The status of the rule is the influence on
the target of selecting the itemset records covered
by antecedent A, which is described by the statis-
tics of the target of coverser(A).

3. An k-optimal impact rule discovery task is a 7-
tuple: KOIRD(D, C, T ,M, λ, I, k).

D: is a nonempty set of records, which is called
the database. A record is a pair < c, v >
, c ⊆ C and v is a set of values for T . D is
an available sample from the population D.

C: is a nonempty set of available Boolean con-
ditions for impact rule antecedents, which is
generated from the given data in D.

T : is a nonempty set of the variables in whose
distribution we are interested.

M: is a set of constraints. There are two types
of constraints prunable and non-prunable con-
straints. Prunable constraints are constraints
that you can derive useful bounds for search
space pruning and still ensures the complete-
ness of information. Other constraints are
non-prunable constraints

λ: {X → Y } × {D} → R is a function from
rules and databases to values and defines a
interestingness metric such that the greater
the value of λ(X → Y,D) the greater the
interestingness of this rule given the database.

I: is the set of resulting impact rules satisfying
all the constraints in M, whose antecedents
are conjunctions of conditions in C. The rule
consequent is the target variable T .

k: is a user specified integer number denoting the
number of rules in the ultimate set of solutions
for this rule discovery task.

How the k-optimal constraint is enforced in rule
discovery to facilitate better search space pruning is
explained by Webb [7].

3 Algorithm

Aumann and Lindell [2] adopted the frequent itemset
framework for AQR discovery. However, when there
are numerous large itemsets, the overheads of itemset
maintenance and the manipulation for frequent item-
set techniques can be unwieldy. The separation of rule
discovery process into two phases leads to loss of some
opportunities for using filtering to improve the efficiency
[6]. Impact rule discovery is based on the OPUS algo-
rithm, and can successfully overcome these problems by
performing efficient search space pruning and perform
rule discovery in one phase.

OPUS IR Filter systematically searches through

Algorithm: OPUS IR Filter(Current, Available, M)

1. SoFar := ∅

2. FOR EACH P in Available

2.1 New := Current ∪ P

2.2 IF New satisfies all the prunable constraints in M
except the nontrivial constraint THEN

2.2.1 IF any direct subset of New has the same
coverage as New THEN

New → relevant stats is a trivial rule

Any superset of New is trivial, so do not
access any children of this node, go to
step 2.

2.2.2 ELSE IF the mean of New → relevant stats is
significantly higher than all its direct parents
THEN

IF the rule satisfies all the other
non-prunable constraints in M

THEN record Rule to the ordered
rule list

2.2.3 OPUS IR(New, SoFar, M)

2.2.4 SoFar := SoFar ∪ P

2.2.5 END IF

2.3 END IF

3. END FOR

Table 1: OPUS IR Filter

the condition combinations that may appear in the an-
tecedent of an impact rule and prune the search space
according to the requirements of a particular search.
Depth-first search and the branch and bound [6] pruning
technique is used for pruning the search space. Based
on this structure, the memory requirement is moderate
without the need to store all the frequent itemsets dur-
ing the rule generation process, making it efficient for
rule discovery in very large, dense databases.

Table 1 lists the pseudo code of OPUS IR Filter.
Current is the antecedent of the rule currently being
explored, available is the set of conditions that may
be added to the antecedents of rules. M is the set
of constraints specified by the users. Rule list stores
the top-k optimal rules encountered. The filtering of
insignificant impact rules is done at step 2.2.

4 Filtering Insignificant Rules

In order to make our demonstration easier, we contrived
a fictitious database. It contains 4 attributes among
which target is the quantitative variable in whose dis-
tribution we are interested and num is a numeric vari-
able which is discretized into two ranges: greater than
10 and smaller than or equal to 10.

OPUS IR Filter finds 15 rules out of the fictitious
database without using any filters, when searches with
minimum coverage 0.3. However, by applying the filters
the number of resulting rules can be greatly reduced.



tid target cat1 num cat2
1 5.3 A 13 C
2 3 B 12 D
3 2 B 10 C
4 8.2 A 4 C
5 6 A 15 C
6 6.3 A 11 C
7 6.3 B 7 C
8 4.8 B 11 D
9 0 B 11 D

10 10 A 3 C

Table 2: Database: mean=5.19, variance=8.59878

4.1 Insignificant Impact Rules Aumann and Lin-
dell defined a rule with a significantly different mean
from all its parents as significant (desired). Using Au-
mann and Lindell’s definition, many rules whose perfor-
mance isn’t significantly improved in comparison with
their parents are found, which should be discarded for
some discovery tasks. Some of the conditions in such
rules may be negatively correlated to the consequent
given the others [4].

Definition 4.1. An impact rule A → target is signifi-
cant if the distribution of its target is improved at a given
significance lever, in comparison with any of the target
distribution of the rule A′ → target, where A′ ⊂ A and
|A′| = |A| − 1.

significant(A → target) =
∀x ∈ A, dist(A → target) � dist(A− x → target)

A rule is insignificant if it is not significant.

The most important issue of implementing the in-
significance filter is how exactly the term significantly
improved is defined. We assume a context where the
users seek impact rules that maximize a measure of in-
terestingness, such as the mean. Equivalent techniques
for minimization can be derived from our technique in a
straightforward manner. In this paper, we regard that
if a distribution dista has a mean which is significantly
more desirable than that of distb at a specified signif-
icance level, then dista is said to be significantly im-
proved in comparison to distb. The most general impact
rule is the rule ∅ → target.

4.1.1 Statistical Tests The χ2 [4, 3] and Fisher ex-
act test [9] that are both adopted to assess propositional
rules significance, are not applicable for distributional-
consequent rules. The standard z test is adopted by
Aumman and Lindell for identifying QAR significance,
which is inappropriate for small samples. To address
this problem, we choose the t test instead. Furthermore,
as the degree of freedom increases, the t test approaches
the standard z test.

Using statistical tests to automatically discard the
insignificant rules is inherently statistically unsound.

There are high risks of type-1 errors of accepting spuri-
ous or uninteresting rules, as well as type-2 errors of re-
jecting rules that are not spurious. However, this is not
a problem of concern in our paper. Statistical sound-
ness of such techniques can be achieve by applying the
technique proposed by Webb [9] using a holdout set.

After applying the insignificance filter, only two
impact rules remained as significant. The number of
resulting rules goes through a decrease of near 90%.

4.2 Trivial Impact Rules Although applying a sig-
nificance test during rule discovery enables successful
removal of potentially uninteresting rules, this approach
requires an additional pass through the database so as to
obtain necessary statistics for each rule. Trivial propo-
sitional rules were defined by Webb [8]. We further de-
velop their definition and present trivial impact rules,
which are special cases of an insignificant impact rules.
The property of triviality can speed up the identification
of insignificant rules.

Definition 4.2. An impact rule A → target is trivial
iff there is a rule A′ → target where A′ ⊂ A, and
coverage(A′) = coverage(A).

trivial(A → target) = ∃A′ ⊂ A,
coverage(A) = coverage(A′)

Theorem 4.1. “An impact rule is not trivial” is an
anti-monotone constraint: if a rule A&B → target is
trivial wrt its parent rule A → target, then all the rules,
whose antecedent is a superset of A&B, are also trivial.

Proof. According to definition 4.2,
coverset(A) = coverset(A&B).(4.1)

For any record r′ ∈ D, if
r′ 6∈ coverset(A&B&C)

⇒ r′ 6∈ coverset(A&B) ∨ r′ 6∈ coverset(C)(4.2)

Consider equation 4.1
⇒ r′ 6∈ coverset(A) ∨ r′ 6∈ coversetC

⇒ r′ 6∈ coverset(A&C)

So
∀r 6∈ coverset(A&B&C) → r 6∈ coverset(A&C)

coverset(A&C) ⊆ coverset(A&B&C)(4.3)

Since A&C is a subset of A&B&C,
coverset(A&B&C) ⊆ coverset(A&C)(4.4)

It can be concluded from 4.3 and 4.4 that
coverset(A&B&C) = coverset(A&C)

The rule A&B&C → target is trivial w.r.t. its
parent A&C → target. The theorem is proved.

It can be easily derived from theorem 4.1 that if a
rule A → target is trivial, there must be a condition
x ∈ A where coverage(A) = coverage(A − x). The
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Figure 1: Pruned search space at step 2.2.1

database rec- attri- condi- Target
ords butes tions

Abalone 4117 9 24 ShuckedWeight
Heart 270 13 40 MaxHeartRate
Housing 506 14 49 MEDV
German credit 1000 20 77 CreditAmount
Ipums.la.97 70187 61 1693 TotalIncome
Ipums.la.98 74954 61 1610 TotalIncome
Ipums.la.99 88443 61 1889 TotalIncome
Ticdata2000 5822 86 771 AveIncome
Census income 199523 42 522 Wage/Hour
Covtype* 581012 55 131 Evaluation

Table 3: Basic information of the databases we used

distribution of these two rules are exactly the same,
since they cover the same set of records. The triviality
of rules is more powerful in its effect, since it is anti-
monotone enables more effective search space pruning
during rule discovery. Theorem 4.1 justifies our pruning
at step 2.2.1.

Figure 1 shows the effect of pruning according
to triviality in OPUS IR Filter search space for the
fictitious database. As an example, node {Num>10,
Cat2=D} is trivial, so the whole branch under this node
should be pruned, according to theorem 4.1. After
applying the triviality filter of impact rules, 6 out of
the 15 rules found without using filters are removed.

5 Experimental Evaluation

We evaluate our algorithm by applying OPUS IR Filter
to 10 databases selected from UCI repository and KDD
archive , which are described in table 3. We applied
3-bin equal-frequency descretization to map all the
quantitative attributes, other than the target variable,
into qualitative ones. The significance level for the
insignificance filter is 0.05. The program was run on
a computer with PIII 933MHz processor, 1.5G memory
and 4G of virtual memory, with minimum coverage and
maximum number of conditions that may appear on the
antecedents respectively set to 0.01 and 5 (except for
covtype, which is set to 4).

First, we ran our program by using no filters, to
find the top 1000 impact rules with highest impact.
Second, the insignificance filter is applied to discover
the top 1000 significant impact rules. The two sets
of resulting rules were compared to find the number

Sig Nontri Sig rules
Database rules rules in

in all in all nontri
Abalone 173(173) 998 173
Heart 52(100) 923 54
Housing 83(288) 935 84
German credit 31(295) 738 43
Ipums.la.97 31(1000) 31 1000
Ipums.la.98 133(1000) 138 803
Ipums.la.99 297(1000) 578 507
Ticdata2000 1(1000) 564 1
Census income 30(1000) 466 42
Covtype* 316(1000) 386 866

Table 4: Comparison in number of rules

Database impact trivial sig rules
rules Filter Insig Both

abalone 0.29 0.57 0.75 0.74
heart 0.05 0.08 1.16 1.2
housing 0.06 0.16 1.62 1.47
german-credit 0.47 0.85 30.35 29.14
ipums.la.97 7.25 471.56 7365.23 623.52
ipums.la.98 1382.66 1551.8 1871.35 1860.31
ipums.la.99 874.2 1006.9 1886.07 1414.88
ticdata2000 1996.57 2082.1 10933.98 10808.03
census-income 873.74 1396.2 3960.84 3781.6
Covtype* 8927.16 9164.55 9640.63 9451.2

Table 5: Running time for discovering rules (in seconds)

of significant rules in the top 1000 impact rules. The
triviality filter was then applied to find the top 1000
nontrivial impact rules, followed by comparisons to find
the number of nontrivial rules in top 1000 impact rules
and the number of significant rules in the top 1000
nontrivial rules. Finally, we applied both filters to find
the top 1000 significant rules, and how incorporating the
triviality filter can improve the efficiency is exhibited.
Experimental results are in table 4 and table 5.

5.1 Result Analysis The second column of table 4
shows the number of significant rules in the top 1000
impact rules. Most databases go through a dramatic
change in the resulting rules after the significance filter
is applied. The number of resulting significant impact
rules for abalone, heart, housing and German credit is
less than 1000. The parenthesized numbers are the
actual numbers of resulting significant impact rules
discovered in these databases.

From column 3 and column 4 of table 4, it can be
concluded that although the triviality filter can not au-
tomatically discard as many spurious impact rules as
those by the significance filter, the decrease is also con-
siderable. Notably for ipums.la.97 only 31 rules among
the top 1000 impact rules found without using any fil-
ter is nontrivial, while all the nontrivial impact rules
are accepted as significant! For databases ipums.la.98,
ipums.la.99, covtype, ticdata2000 and census-income,
more than 40% of the resulting impact rules are dis-
carded as trivial.

The results justifies our argument about the effi-
ciency of triviality filter: Applying only the triviality fil-



Database Frequent Itemsets CPU time(sec)
abalone 11131 0.07
heart 91213 0.11

housing 129843 0.2
german-credit 2721279 4.16
ipums.la.97 - stop after 18462.20
ipums.la.98 - stop after 17668.01
ipums.la.99 - stop after 10542.40
ticdata2000 - stop after 103.17

census-income 314908607 7448.52
covtype* 3810921 1496.76

Table 6: Results for Apriori

ter requires less CPU time, and the efficiency of insignif-
icance filter improves when combined with the triviality
filter. The triviality filter is an efficient complement for
the insignificance filter.

5.2 Comparisons As is mentioned before, Aumann
and Lindell’s algorithm for removing insignificant AQR
uses the frequent itemset framework, which is limited in
its capacity to analyze dense data by the requirement of
vast amount of memory to store all the frequent itemsets
and the computation to maintain those frequent item-
sets during the generation procedure. It is after this
stage that the significance test is performed on the set
of resulting rules.

Since we failed to find QAR implementation, we
compile and run Christian Borgelt’s Apriori implemen-
tation using exactly the same environment and param-
eter settings as for OPUS IR Filter. Target attributes
are deleted from the databases, so that the frequent
itemsets found by Christian Borgelt’s Apriori program
are the antecedents of QAR discovered by Aumann and
Lindell’s approach. The running time and the num-
bers of frequent itemsets discovered in each of the 10
databases are listed in table 6. By comparing the
experimental results, Apriori cannot successfully work
on databases with huge number of conditions, exam-
ples are ipums.la.97, ipums.la.98, ipums.la.99 and tic-
data1000, whose number of conditions all exceed 700.
Apriori stops because of insufficient memory for these
databases. However, OPUS IR Filter can be applied to
the above databases successfully and efficiently. The
time spent on looking for all the frequent itemsets in
german-credit and census-income are much longer than
that for OPUS IR Filter. Although for abalone and cov-
type the running time seems better than our approach,
it should be noted that Apriori is only searching for
the frequent itemsets, without performing the expen-
sive computations and data accesses associated with cal-
culating the statistics for the target attribute for each
itemset. However, it is known to all that going through
the data is one of the most disaster for efficiency. Situ-
ation gets worse as the size of database increases. Even
if we do not take the time spent on itemset discovery

into account, to do significance test over all the result-
ing frequent itemset is inefficient, since the number of
itemsets found in some of the databases exceeds 106.
It is safe to conclude that OPUS IR Filter is efficient
for deriving rules from very large dense databases, for
which Aumann and Lindell’s approach cannot.

6 Conclusions

Observing that there is a lack in research on
distributional-consequent rule pruning, Aumann and
Lindell proposed a technique for identifying potentially
uninteresting rules after rule discovery. Their tech-
nique is based on the frequent itemset mechanism and
is therefore inefficient for large, dense databases. Fur-
thermore, the standard z test, which they use is not
suitable for small samples. We proposed an efficient
technique for removing insignificant impact rules using
the student’s t test, which is a better approximation for
small samples. Our algorithm is based on the OPUS
framework, which enables efficient removal of insignifi-
cant rules even for large dense databases. By utilizing
the anti-monotonicity of trivial rules, which is a subset
of insignificant ones, more efficient search space prun-
ing can be facilitated. The triviality filter for is provided
both as an alternative and a complement to the insignif-
icance filter. Experimental result showed that our algo-
rithm can successfully remove potentially uninteresting
impact rules, especially in very large, dense databases
for which the frequent itemset approaches fail to.
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