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Abstract Similarity measures are central to many machine learning algorithms. There are
many different similarity measures, each catering for different applications and data require-
ments. Most similarity measures used with numerical data assume that the attributes are in-
terval scale. In the interval scale, it is assumed that a unit difference has the same meaning
irrespective of the magnitudes of the values separated. When this assumption is violated,
accuracy may be reduced. Our experiments show that removing the interval scale assump-
tion by transforming data to ranks can improve the accuracy of distance-based similarity
measures on some tasks. However the rank transform has high time and storage overheads.
In this paper, we introduce an efficient similarity measure which does not consider the mag-
nitudes of inter-instance distances. We compare the new similarity measure with popular
similarity measures in two applications: DBScan clustering and content based multimedia
information retrieval (CBMIR) with real world datasets and different transform functions.
The results show that the proposed similarity measure provides good performance on a range
of tasks and is invariant to violations of the interval scale assumption.

Keywords Similarity Measure - Interval Scale - Clustering - CBMIR

1 Introduction

Many machine learning algorithms rely on similarity calculations between instances. Clus-
tering algorithms group instances that are most similar. Information retrieval ranks instances
on similarity to a query. No single measure can capture all notions of similarity that may be
relevant to all different applications. Hence, a variety of similarity measures are used for
different applications and data.

A numeric attribute of a dataset can be interpreted in one out of four scales—nominal,
ordinal, interval and ratio. Unfortunately, unless there are only few values, which is sugges-
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(a) The compactness attribute of the Seeds dataset
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(b) Inverse of the compactness attribute of the Seeds dataset

Fig. 1: Effect of the attribute representation on the distances between instances of the Seeds
dataset. (The values are min-max normalized.)

tive of a nominal or ordinal scale, the data usually contain few clues as to which is the highest
order scale applicable to an attribute. Often the data analyst is given little or no information
about the scale that is appropriate for a given attribute. When an attribute is interpreted as in-
terval or ratio scale, a given difference between two values is treated identically irrespective
of the magnitudes of those values.

Often the units in which quantities are measured are arbitrary (e.g. miles per gallon or
gallons per mile). For example, the compactness in the Seeds dataset (Lichman, 2014) is
defined differently to the compactness in the Breast Cancer Wisconsin dataset (Lichman,
2014), such that each is the inverse form of the other. Figure 1(a) shows the distribution of
the original compactness values in the Seeds dataset. If the inverse is used (as defined in
the Breast Cancer Wisconsin dataset), the compactness values of the Seeds dataset will be
distributed as shown in Figure 1(b). There is a huge difference in inter-instance distances
between the two forms.

Often the only way to determine which transform of a numeric attribute will produce
the best results is to try them. For example, in Figure 3 we show that when the Euclidean
distance is used as a similarity measure within the DBScan clustering, using the square
roots of the attributes produces the best clustering for the Seeds dataset out of the original
representation and 6 transformations tested. As there are an infinite number of possible
transformations, finding the best one by trial and error is infeasible.

There is often much uncertainty about the true scale of data. We show that making
poor assumptions can greatly harm the accuracy of a learning algorithm. In consequence, in
some applications it is advantageous to minimize the assumptions that are made. One way of
doing so is to make no stronger assumption than that the data are ordinal. The assumptions
of ordinality hold for all higher order scales, but the reverse is not true.

One simple approach to this end is to replace numeric values by their ranks before ap-
plying traditional (dis)similarity measures such as the Euclidean distance. Our experiments
show that for most tasks examined this approach can produce results that are at least compet-
itive with the best outcomes of the corresponding similarity measures applied to the original
data, while being impervious to transformations of the data that preserve order. However,
using the rank transform is inefficient when previously unseen instances are used in algo-
rithms.

Another well-known measure which is invariant to violations of the interval scale as-
sumption is the random forest. The random forest is very successful in supervised learn-
ing. The Addcll sampling based unsupervised random forest produces a similarity measure
(SimURF) which is invariant to violations of the interval scale assumption. However, in our
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experiments it was more effective than the cityblock distance on ranked data only in two out
of the twelve tested cases of clustering and information retrieval. Further, Addcll unsuper-
vised random forest is very inefficient, as it needs high execution time and space to generate
decision trees from intermingled real and synthetic data.

In this paper we introduce a new formalism, unsupervised stochastic forest (usForest),
and define a new similarity measure (SimUSF), based thereon. SimUSF is more efficient
than replacing data values with their ranks. With respect to cityblock, Euclidean, cosine,
Chebychev distance measures and unsupervised random forest, SimUSF provides greater
accuracy in DBScan clustering and very competitive accuracy in CBMIR. SimUSF is in-
variant to violations of the interval scale assumption.

The rest of the paper is organized as follows. Section 2 contains a summary of related
work. The use of popular distance based similarity measures with rank transformed data
is discussed in Section 3. Section 4 includes details of the unsupervised random forest.
We introduce the unsupervised stochastic forest (usForest) and the new similarity measure
(SimUSF) in Section 5. Section 6 details similarity based ranking, DBScan clustering and
CBMIR experiments to support the claims of this paper. The computational complexities
and execution times are compared in Section 7. We summarize the results in Section 8. The
conclusion is given in Section 9.

2 Related work

Similarity is a concept that is used extensively, not only in machine learning, but also in
many other fields such as psychology (Ashby and Ennis, 2007) and biology (Altschul et al,
1990). Different types of similarity measures are best suited to different tasks. No similarity
measure works equally well in all cases. We refer the reader to (Cha, 2007) and (Zezula
et al, 2006) for a rich collection of similarity measures. The assessment and comparison of
similarity measures are mostly empirical.

An attribute of a dataset can be interpreted in one of four scales: nominal, ordinal, inter-
val and ratio (Stevens, 1946; Han et al, 2011). In the nominal scale, values imply categories.
The comparison between two values in the nominal scale is limited to identifying whether
the two values are the same or different. The magnitudes of differences are meaningless
in this scale. In the ordinal scale, attribute values represent orders. The ordinal difference
represents how many values lie between two given values of the given attribute. In the in-
terval scale, differences between values represent distances in the particular dimension. The
absolute zero is not defined in the interval scale and therefore the ratio between two values
is meaningless. As absolute zero is defined, the ratio between two values is meaningful in
the ratio scale. The information contained in a value increases in the order nominal, ordinal,
interval and ratio. Hence these scales are also called the levels of measurement. An attribute
in a higher scale can be transformed to an attribute in a lower scale. However, a lower scale
attribute cannot safely be transformed to or interpreted in a higher scale because a higher
scale attribute requires additional information to the corresponding lower scale one.

Often, there is no standard for the representation of attributes of a dataset. Some are
defined by the mechanism of attribute extraction or the output of the sensors or other pro-
cesses that generate them. Some are transformed into a particular range in the pre-processing
stage. Osborne (2002, 2010) discusses the use of data transforms, highlighting that data
transformed inappropriately may produce anomalous conclusions and can complicate inter-
pretations.
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In the literature we found two similarity judgment solutions which are invariant to viola-
tions of the interval scale assumption. One solution to the problem is to use standard distance
measures on rank transformed data (Conover, 1980). The most popular solution to the prob-
lem is using a distance measure derived from the random forest. In the trees of a random
forest (Breiman, 2001), split points are chosen from values of instances. Tree generation
and deployment use only ordinal scale operations where values of instances are compared
with a split value to test whether they are less than, greater than or equal to the split value.
Hence, random forest based algorithms are invariant to strictly monotonic transforms. Shi
and Horvath (2006) introduced a random forest based similarity measure for unsupervised
learning.

3 Rank transformation

One way to convert a standard distance measure so as to remove any assumptions relating to
the data being in a higher scale than ordinal is to replace each value in the dataset by its tied
rank. The tied ranks are calculated independently for each attribute. Let us take a dataset of
n instances where in attribute a, which has k* distinct values, Dom(a) = {v{,v§,V5,...,v{. }.
The value of attribute @ of an instance x is denoted by V¢, where V € Dom(a). We denote
the number of instances with value v{ by n{, n{ = ]}:1 1 (V]“ = vj’), where [ is the indicator

function and n = Zf-‘i 1. Let us use NY to represent the number of instances that share
the value of instance x. Ny = Y0 [(Vy! = V() = Y&, nfI(vi = V¢). Then, the tied rank of
instance x in attribute a, TR(x,a) is given by Equation 1.

K 1 K

TR(x,a) = anal(vf <ViH+ 5{1 + Z nil(vi=V¢)}
l;l 1 j=1 ( 1)
= Y < VE) + 5 {14+N¢)
i=1
Ifve < Vy“, Equation 2 shows the difference between tied ranks of two instances x and

y in attribute a. The difference between the tied ranks of two instances x and y counts the
number of instances between x and y assuming that they are each located in the middle of
their duplicates.

@
RD(x,y,a) = TR(y,a) — TR(x,a) = %{Nf — N} + an[(V; <vi <Vy) 2)
i=1

Tied ranks for the training data can be calculated and stored in memory. However, to use

rank transformed data with many algorithms, the rank differences between a new instance,

k and the instances in the training dataset have to be calculated. First the sorted values of

the training data are searched to find whether there is an exact value V;; such that V,} = V.

If it does not exist, the largest Vp“ and the smallest Vq” are found such that V; <Vi< Vq".

The rank difference between the new instance, k and existing instance, x can be calculated
as given in Equation 3.

ITR(p,a) — TR(x,a)| +0.5 if v\ = v and v £ v
RD(x,a) = { 0 VO v v v @)
|TR(p,a) — TR(x,a) +0.5|+0.5 otherwise
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If the dataset has n instances and d attributes, the rank transform needs O(dnlog(n))
time. It takes O(dlog(n)) to find V), or/and V,, values in d attributes by binary search. To
calculate the similarity between two instances takes O(d) time. Thus, even after the ranks
of the training dataset are pre-calculated, calculation of the similarity between an unseen
instance and an instance in the dataset still requires O(dlog(n)) time. Therefore the rank
transform is inefficient, as the time taken for similarity calculation with each previously
unseen instance depends on the number of instances in the training dataset.

The rank transform converts the data to ranks. As the transform loses information, there
is no inverse transform which can be used to recover the original data from the transformed
data. Therefore there is an additional memory overhead of retaining the sorted original data
in order to calculate the ranks of previously unseen instances.

4 Unsupervised random forest

A random forest (Breiman, 2001) consists of decision trees in each of which data instances
are separated into classes. Shi and Horvath (2006) introduced a random forest for unsuper-
vised learning. For the unsupervised random forest, a synthetic dataset of the same size as
the real dataset is generated. The two datasets are combined to form a training set and the
instances from the real dataset are identified as one class and the instances from the syn-
thetic dataset are identified as another class. Decision trees are generated to separate these
two classes. Similar to the supervised random forest, bootstrap samples from the training set
are used to generate trees.

To measure the similarity between two instances x and y, they are parsed through the
out-of-bag trees, i.e. the trees which are generated without using x or y. If T'(x,y) and L(x, y)
represent the number of out-of-bag trees and the number of common leaves for x and y on the
out-of-bag trees respectively, the unsupervised random forest based similarity (SimURF) is
defined as given in Equation 4. Equation 5 shows the definition of the unsupervised random
forest based dissimilarity, DissimURF.

. _ L(x,y)
SimURF (x,y) = T(ey) 4
DissimURF (x,y) = \/1 — SimURF (x,y) 5)

The authors have introduced two different methods to generate the synthetic data. The
first, Addcl1 randomizes the values of each attribute in real dataset to obtain a synthetic
dataset. In the second method, Addcl2, the synthetic dataset is generated by uniform random
sampling from the hyper rectangle which encloses the real dataset. Out of the two methods,
Addcl1 produces better results than Addcl2 in most cases (Shi and Horvath, 2006). Addcl1
based random forests are tolerant to violations of the interval scale assumption as the Addcl1
sampling randomly arranges the existing values of each attribute of the real data to generate
the synthetic data. The Addcl2 sampling is affected by violations of the interval scale as-
sumption as in a given attribute the probability of finding a sample value between given two
real data values is proportional to the distance between the two values.

The unsupervised random forest has not been designed to learn different real data clus-
ters. It rather segregates the synthetic data from the real data. As the real and synthetic
instances are intermingled, the unsupervised random forest cannot successfully segregate
real data from the synthetic data without growing trees to greater heights that require high
execution time and memory. Further, when the trees are large, smaller numbers of instances
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end up at each individual leaf. As the similarity is defined based on the shared leaves, as the
number of leaves increases the number of pairs of instances with no shared leaves increases
and increasing numbers of similarity assessments return the maximum level of dissimilarity.

5 Unsupervised stochastic forest

Distance based similarity measures are invariant to violations of the interval scale assump-
tion when used with the rank transformed data. However, they require high execution time
when calculating the similarity with previously unseen data. The other solution, which does
not depend on the interval scale assumption is the SImURF, which is calculated based on the
Addcl1 unsupervised random forest. As we identified, the use of synthetic data is the main
draw back in the unsupervised random forest. The unsupervised random forest focuses on
segregating the synthetic data from the real data instead of trying to identify the real data
clusters. Further, it requires high execution time and memory resources as the decision trees
in unsupervised random forests are exceptionally tall. As an alternative solution which is
invariant to violations of the interval scale assumption, we propose Unsupervised Stochastic
Forest (usForest) and a similarity measure (SimUSF) based on that. usForest does not use
synthetic data. It splits small data samples to generate shorter trees which require less time
and memory compared with the unsupervised random forest. SimUSF is more efficient than
using distance based similarity measures with ranked data when previously unseen instances
are involved in similarity calculations.

Algorithm 1: usForest(D,T ,H)

Input: D - data, T - number of trees, H - tree height
Output: usForest
1: Initialize usForest
2: fori=1—1tdo
3: D < select 2 instances from D without replacements.
4: T < usTree(D)
5
6
7

usForest < usForest UT
. end for
: return usForest

Algorithm 2: usTree(D)

Input: D - input data
Output: usTree
1: if |D| is 1 then
2 return ExternalNode
3: end if
4: Let A be the set of attributes
5: a < Randomly selected attribute from A
6
7
8
9

C Vi (@)’h largest value of a in D

: Dy + filter(D, D@ <V')

: D, filter(D, D@ > V)

: return InternalNode{
LeftChild < usTree(Dy),
RightChild < usTree(D;),
SplitAttribute < a, SplitValue <V }

A usForest consists of T usTrees. We create usTrees such that in a given usForest all
the usTrees have the same height, H. Each usTree has exactly 27 external nodes and each
external node is located at height H from the root. To create a usTree we first randomly select
2f instances without replacements from the training dataset. Then at each internal node
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(including the root) an attribute, a, is randomly selected from all attributes in the dataset.
Where £ is the height of the node, with the height of the root being 0, the split value, V is the
2(H=h=1) th largest value of attribute a out of the 2(H=h) sample instances at the node. Half
of the sample instances have attribute a values less than or equal to V and they are referred
to the left child node. The other half of the instances are referred to as the right child node.
This is repeated for each child node and stops at height H, where each node has exactly one
sample instance. The process is explained in Algorithms 1 and 2.

It may not be possible to split some samples into two equal halves using some attributes
because of duplicate values. Then another attribute is randomly selected from the remaining
attributes. If a split point cannot be found on any attribute the tree is discarded and a new
tree is built from a new sample. We did not include this exception handling in Algorithm 2
for the sake of clarity.

Following the form of analysis used for the random forest in (Breiman, 2001), we use
the variable 0 to denote a usTree. By the definition of the usTree, 0 is identically and in-
dependently distributed and we denote the /" usTree by 6;. If L(x, 6;) represents the leaf
traced by instance x on usTree 6; and / is the indicator function, we define the similarity be-
tween x and y, SimUSF (x,y) and dissimilarity between x and y, DissimUSF (x,y) as shown
in Equations 6 and 7 respectively.

T
SimUSF(x,y) = Jim £ Y I(L(x,6) = L(5,67) ®)
e T

DissimUSF (x,y) = 1 — SimUSF (x,y) @)

Following the method used by Breiman (2001), we can represent usTree 6; by a set
of non-overlapping & hyper-rectangles S; 1),5(;2),S(3)---S(ix)- Then, SimUSF (x,y) can be
written as shown in Equation 8.

) ) 1 kK T
SimUSF (x,y) = Thi‘l,f Y Y 1((xeSi;) and (y €S ;)
j=li=1

k ) 1 T
:;{Tlg?igil((xes(i,j))and (€ Si )} 8
k
- ZP(x7y7j7e)
=
Where,
.
P(x,y,j,0) = TII_I,IL? Y I((x€S; ;) and (y € S, ) )
=1

By the law of large numbers P(x,y, j,0) is the probability of finding x and y in hyper
rectangle S; generated by stochastic process 6. By design k (= 27) is a constant. Hence, the
number of usTrees needed to estimate SimUSF (x,y) with a sufficient accuracy depends on
0.

In a usForest, 0 consists of random processes for selecting k instances without replace-
ments from the dataset, D and for selecting a split attribute, a at each internal node. There
are (Z) ways of selecting k out of n instances. As there are k — 1 internal nodes in a usTree,

the split attributes can be selected in d*~! different ways. Therefore, the maximum number

of different trees is d“~1 (}).
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Similar analysis can be done for the unsupervised random forest. k in the unsupervised
random forest is in the order of O(n) having the maximum value 2n which is much larger
than k in usForest. If values are unique in each attribute there are (n!)¢ ways to generate
Addcl1 synthetic data. As 2n instances are selected with replacements from a dataset having
n real instances and n synthetic instances, (4’;1) different samples can be generated. If we
assume that only one attribute is used in split point selection, the number of different trees
that can be generated from a given sample takes the order of O(d*"). As k of usForest < 2n
and (7) of usForest < (1) (n!)? we can expect the usForest based similarity, SimUSF to
converge faster than the similarity calculated from the unsupervised random forest, SimURF
to respective expected values. Section 6.2.1 provides experimental results to support this

analysis.

The SimUSF takes O(TH2M) time to generate T usTrees. For an unseen instance, it
takes O(TH) to traverse the trees to find the leaves. To calculate the similarity between two
instances takes O(T) time. Thus, after a usForest is created it takes O(TH) to calculate sim-
ilarity between a pair of unseen instances. In contrast to the rank transform, it is independent
from the number of instances in the original dataset. Once the usForest is created the orig-
inal dataset is not required for further processing and the memory requirement, O(7T2) is
small and independent from the number of instances in the original dataset.

6 Empirical Evaluation

In this section we empirically evaluate SimUSF in similarity based ranking, DBScan cluster-
ing and content based multimedia information retrieval (CBMIR). We used similarity based
ranking to compare SimUSF with other similarity/dissimilarity measures as ranking is one
of the main purposes of using a similarity measure. DBScan clustering (Ester et al, 1996)
was chosen to compare the similarity measures as it can identify arbitrary shaped clusters
and is a highly regarded and widely used algorithm (SIGKDD, 2015). Then we tested the
similarity measures in CBMIR as it is one of the active research areas with number of recent
publications.

It should be noted that SimUSF is not directly applicable to k-means clustering, which
requires the computation of the mean of objects in the probability space constructed by the
similarity measure. SImUSF is a distance measure and constructing a mean relative to it
might be challenging because there is no direct access to the associated probability space.
The most common approach to k-means assumes the instances can be interpreted as points
in Euclidean space, implicitly assuming an interval scale, and hence not appropriate for our
purposes. Note that this observation about the difficulty of calculating an average object
with regard to a measure has been studied for different measures, such as Dynamic Time
Warping (Petitjean and Gangarski, 2012). A work-around could have been to use the k-
medoids algorithm, but its drawbacks (eg: potential oscillation of the results, computational
complexity, inferior clustering results) have led us to consider the more popular DBScan
algorithm.
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6.1 Experimental set-up

We designed the experiments to study how similarity measures are affected by violations
of the interval scale assumption. To this end, we applied a number of strictly monotonic
transforms' to change the inter-instance distances.

A strictly monotonic transform can be order preserving or order reversing. They can also
be linear or non-linear. We tested common non-linear? order preserving and order reversing
transforms: X, X2, /X, In(X), & and e, where X = b(x+a) and X > 0. A value of a min-
max normalized attribute is represented by x. Since the functions /n(X) and % are not defined
for X = 0, a small positive value a is used. We employed a positive value b to transform the
values into a wide range which considerably change the inter-instance distances within the
data-type limits. Hence, the values a = 0.0001 and b = 100 were used with all datasets.
Some real world datasets are already min-max normalized. Hence, to induce the same effect
on all the datasets the original datasets were first min-max normalized, then subjected to
one of the transformations; and then renormalized using min-max before calculating the
similarity values.

The lines in the figures should be used only as aids to identify and compare the corre-
sponding points. They are useful for the clarity of the figures as there are many overlapping
points. The lines do not represent functional relationships.

6.2 Similarity based ranking

Let us define a list R(i,Sim) which ranks the instances in the dataset D based on the sim-
ilarity calculated between a given instance, i € D and each other instance in D using the
similarity measure Sim. As in (Faith et al, 1987) we used Spearman’s rank correlation coef-
ficient, p(R(i,Sim™), R(i,Sim™)) to calculate the similarity between two such lists R(i, Sim™)
and R(i,Sim"). As p(R(i,Sim™),R(i,Sim")) values approximated the Gaussian distribution
the average, p(Sim™,Sim",D) and standard deviation, ¢ (Sim”™,Sim",D) of {p(R(i,Sim™),
R(i,Sim"))]i € D} were used to asses how similar the ranking produced by Sim™ and Sim".

6.2.1 Comparison between SimUSF and SimURF estimations

For a tree based similarity measure, we calculate p(Sim")), Sim"?) D) and o (SimT-)),
Sim<T=2>,D), where SimT'1) and Sim(T2) use the same similarity measure, Sim and they are
independently calculated from two independently built forests each with T trees and identi-
cal parameter settings. When T increases p(Sim'""") Sim(T-2) | D) increases and o (Sim(T-!),
Sim<T"2>,D) decreases as Sim calculations converge to the expected value.

To compare the convergence of SIimUSF and SimURF calculations we used a dataset
which has 1000 instances and 4 dimensions. Each value in the dataset was independently
selected from a uniform distribution having the range [0,1]. The calculations were done
for T values 100,1000 and 10000. The p(Sim""V), SimT?) D) and o (Sim™V), SimT?) | D)
values are given in Table 1. With a given number of usTrees SimUSF produced a much

' A monotonic transform, f: R — R is either Vx > y < f(x) > f(y) or Vx >y & f(x) < f(»). Such a
transform can produce ambiguities in the order. A strictly monotonic transform is either Vx >y < f(x) > f(y)
or Vx >y < f(x) < f(y). Hence, a strictly monotonic transform can guarantee either order preservation or
order reversal.

2 Datasets are generally subjected to min-max normalization. As a result, linear order preserving trans-
forms do not alter the similarity scores.
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Table 1: p(Sim""V) SimT2) D), p and o(SimTV), SimT?) D), G values produced by
SimUSF and SimURF

SimUSF SimURF

T p c p c
100 0.951 | 0.016 | 0.418 | 0.078

1000 | 0.994 | 0.002 | 0.694 | 0.035
10000 | 0.999 | 0.000 | 0.867 | 0.018

closer estimation for its expected value than SImURF estimated its expected value with the
same number of decision trees. This observation supports our analysis given in Section 5.

Increasing the number of decision trees in an unsupervised random forest for a better
estimate is not a viable option in many practical cases as they have high execution time
and memory overheads. The unsupervised random forests needed taller trees to segregate
the synthetic data from the real data. As a result, fewer instances were traced to individual
leaves. In consequence, in these experiments SimURF produced zero values for 96.0%,
85.5% and 71.0% out of the total number of similarity calculations between the instance
pairs when 100, 1000 and 10000 decision trees were used respectively. In contrast, SimUSF
produced 0.00% zero similarity values when calculated using 100 usTrees. Having non-zero
similarity values are important when a large number of instances are to be ordered with
respect to a given instance as zero (or non-unique) values do not differentiate the instances.
Thus, a large number of zero values (or non-unique) may affect the precisions of some
algorithms. As the SimURF produces a huge number of zero values and non-zero values
having very small magnitudes, the SimURF mean square error values convey a false notion
of convergence. Therefore, we used similarity based ranking to compare the convergence of
the SimURF with that of the SimUSF.

6.2.2 Effects of violations of the interval scale assumption

p(Sim@ Sim!™) D) and & (Sim'®), Sim’™) | D) are used in this section to assess the effects
of violations of the interval scale assumption when the similarity measure, Sim is used for
ranking. Sim(©) represents the similarity calculation for the original data and Sin/ @) repre-
sents the similarity calculation after the data are transformed with the function f(x). The
transforms were discussed in Section 6.1. Two four-dimensional synthetic datasets were
used in the experiments. Their characteristics are described along with the plots in Figure
2. SimUSF was compared with four popular similarity/distance measures: cityblock, Eu-
clidean, cosine and Chebychev. It was also compared with the unsupervised random forest
based similarity (SimURF). The SimUSF values were calculated from usForests each with
1000 height 5 trees. The SimUREF values were calculated from Addcll unsupervised random
forests each with 1000 decision trees.

SimUSF consistently showed a high correlation across all the tested transforms whereas
the other similarity measures except SimURF were considerably affected by the transforms.
SimUSF always had very small standard deviation values which indicate that it performed
equally well for all the instances in the dataset after all the transforms. The other similarity
measures showed high standard deviation values in most of the cases. In such cases the
rankings for different instances were differently affected even within the same transformed
dataset. Based on our experiments we can conclude that the rankings produced by SimUSF
and SimURF are invariant to violations of the interval scale assumption and the rankings
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Fig. 2: Effects of violations of the interval scale assumption on similarity based ranking

Table 2: Clustering Datasets

Dataset Instances | Dimensions | Classes
Iris 150 4 3
Wine 178 13 3
Seeds 210 7 3
Libras Movement 360 91 15
Image Segmentation 2,310 19 7
S-set S2 5,000 2 15

produced by cityblock, Euclidean, cosine and Chebychev distances are not tolerant to such
violations. Despite the fact that both SimUSF and SimUREF use trees that are invariant to
violations of the interval scale assumption, neither could produce average rank correlation
value = 1, as those are ensemble measures where different iterations produce different sets
of trees. SimUSF showed a high average rank correlation value than SimURF as it could
produce a better estimation for its expected value when compared with SimURF with the
given number of trees. This is in-line with the discussion in Sub section 6.2.1.

6.3 DBScan clustering

DissimUSF was compared with the cityblock, Euclidean, cosine, Chebychev distance mea-
sures and unsupervised random forest based dissimilarity measure (DissimURF) in DBScan
clustering. Each dissimilarity measure was used as the distance measure in the DBScan and
the best F-Measure (F1 measure) values found in the experiments were compared. The de-
tails of the datasets used in the experiments are given in Table 2. S-sets S2 dataset was taken
from the University of Eastern Finland (2015). The remaining datasets were downloaded
from the UCI repository (Lichman, 2014).

1000 usTrees, each generated with height 5 (H = 5) were used in all the usForest calcu-
lations for the DBScan clustering. 1000 decision trees were generated for the unsupervised
random forests. In the DBScan parameter estimation, for a given K, a K-distance graph was
used as a clue to find the start and end € values to search. The € value where the first cluster
started to form was identified as the starting €. The end € was identified as the minimum €
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Fig. 4: Effects of usForest parameters on DBScan F-Merasure

value where all instances gather to form a single cluster. The range was searched in 20 equal
size steps. Then the search was focused on the maximum F-Measure found so far for the
given K. The new minimum € was set to one step less than the best € and the new maximum
was set to one step more. Then the search was done again in 20 steps covering the new €
range. This process was repeated to find the best F-measure till € values were explored to
three significant digits. The entire process was repeated for all K values from 2 to 25. The
best F-Measure found in the entire search were used in the comparisons. The results of the
DBScan clustering experiments are shown in Figure 3.

When cityblock, Euclidean, cosine and Chebychev distances were used in DBScan clus-
tering algorithm there were number of cases where each of the four distance based similar-
ity measures produced better F-Measure values after some transforms than with the original
data. Therefore, in such cases, the original data representations were not the optimal to use
in DBScan clustering with the respective similarity measures. Even though out of the tested
transforms some transforms produced better F-Measure values with some datasets, we can-
not conclude that they produced the best results as there are infinite number of possible
transforms and testing all of them is infeasible.

The cityblock and Euclidean distance measures with the rank transformed data often
produced better or similar F-Measure values when compared with the best F-Measure values
produced by respective similarity measures with the original data or data transformed using
the six functions. With the rank transformed data, the cityblock distance always performed
better than the Euclidean distance. Except for the Image Segmentation dataset in the DBScan
clustering, the cityblock distance with the rank transformed data produced better or equally
good results as the best results produced by all four distance based similarity measures:
cityblock, Euclidean, cosine and Chebychev with the original or the data transformed by the
other six functions. Therefore, based on these results we can argue that using the cityblock
distance with rank transformed data is a better alternative to using the cityblock, Euclidean,
cosine and Chebychev distances with original data. In contrast to using cityblock, Euclidean,
cosine and Chebychev distances, the cityblock distance with rank transformed data produces
results that are invariant to violations of the interval scale assumption.

In the DBScan clustering experiments, only with the Wine dataset, the unsupervised
random forest based similarity, SimURF produced a better F-Measure value than the F-
Measure value produced by the cityblock distance with rank transformed data. In all other 5
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cases (i.e. 83.33%) it did not produce competitive results. As shown in the plots of Figure 3
the new similarity measure, SimUSF which is based on our newly introduced unsupervised
stochastic forest, usForest always produced better F-Measure values than all other tested
measures in the DBScan clustering. This is because, SimUSF successfully distinguishes
nearest neighbors from the rest of the instances, as they are gathered at tree leaves of the
usForest. The unsupervised random forest attempts to segregate real data from synthetic data
rather than collecting neighboring instances together. Hence, SimURF proves less effective
than SimUSF for the purposes of clustering.

The effects of parameter settings: the tree height (H) and the number of trees (T') of
the usForest on the best F-measures in the DBScan clustering were studied in the following
experiments. First, T was fixed to 1000 and the best F-measure values were recorded for H
values from 1 to 7. Then H was fixed to 5 and the best F-measure values were recoded for
T values 100, 1000 and 10000. Figure 4 shows the results of the experiments done with the
Wine and Libras Movements datasets. For the Wine and Libras Movements datasets H = 6
and H = 5 produced the best F-measures respectively. For both datasets the F-Measure
values slowly increases with the number of trees, 7. We used the parameter values H = 5
and T = 1000 when DissimUSF was compared with the other similarity measures as those
parameter values could always produce good results in our experiments.

6.4 CBMIR

An information retrieval system fetches relevant instances to a user query from a given
database. The instances are ranked based on the similarity to the query. In relevance feed-
back, the user selects a few relevant and irrelevant instances from the top & results and the
system uses them to fetch an improved result set from the database. The relevance feedback
process is continued several times.

We studied the effect of violations of the interval scale assumption on CBMIR pre-
cision@k results® for standard benchmark datasets. A simplified version of Rocchio’s al-
gorithm (Rocchio, 1971; Manning et al, 2008) was used in the CBMIR experiments with
different dissimilarity measures. Equation 10 describes how query, positive and negative
feedbacks were used to find the distance of an instance x with respect to a composite query
Q = PUN. P represents the initial query and the positive feedbacks. N represents the
negative feedbacks. v is the weighing parameter for the negative feedbacks.

dist(x, dist(x dist(x,z)
(x,Q) = \73|y§g ¥)— W|z§ (10)

Zhou et al (2012) shows that the ReFeat, which is a also a tree based CBMIR system,
can produce higher precision than CBMIR systems manifold learning method (MRBIR)
(He et al, 2004), instance-based relevance feedback method (InstRank) (Giacinto and Roli,
2005), Bayesian learning method (BALAS) (Zhang and Zhang, 2006) and query-sensitive
ranking method (Qsim) (Zhou and Dai, 2006). Therefore, the SimUSF, SimURF and city-
block, Euclidean, cosine, Chebychev distances were also compared with the ReFeat in our
experiments.

Similar to the experiments with ReFeat (Zhou et al, 2012), we used query and five feed-
back rounds. In each feedback round, up to two positive feedbacks and two negative feed-
backs were randomly selected as available in the top 50 results from the previous round. This

3 Only the top k instances are important to the user in information retrieval.
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process was repeated 5 times starting with different randomly selected unseen queries from
each class. The entire process was independently repeated 20 times to calculate the mean
and standard deviation. The standard deviation values were represented as the error bars in
the figures. Initial queries were not used in the tree generations in the usForest, unsupervised
random forest and ReFeat. The query and feedbacks were not included in the results used to
compute precision@50.

We tested with y values 0, 0.25, 0.5, 0.75 and 1 on every dataset. In addition to that,
sample sizes 2, 4, 8, 16, 32, 64 and 128 were used to build the trees for the usForest. Sample
sizes 4, 8, 16, 32, 64 and 128 were used for the ReFeat*. The SimUSF, SimURF and ReFeat
were tested with 1000 trees in each case. The optimal results were used in the comparisons.
Table 3 shows the publicly available datasets used in our experiments. They were also used
before in ReFeat (Zhou et al, 2012) and other similar type of experiments. The feedback
round 5 precision@50 values are shown in Figure 5.

Table 3: CBMIR Datasets

Dataset Instances | Dimensions | Classes
GTZAN Music 1,000 230 10
Steel Plates Faults 1,941 27 7
Cardiotocography 2,126 21 10
ISOLET 7,797 617 26
Corel Image 10,000 64 100
Letter Recognition 20,000 16 26

Similar to the observations in DBScan clustering,in our CBMIR experiments we ob-
served number of cases where the four distance based similarity measures: cityblock, Eu-
clidean, cosine and Chebychev produced better results after some transforms than with the
original data. Therefore in those cases the original data representations were not the optimal
to use in CBMIR with the corresponding similarity measures. As it is impossible to test all
the possible transforms we cannot be conclusive on the best transforms to use with a given
dataset. However, we can argue that the original form may not be optimal and an undesirable
transform may produce lower precision@50 values.

The cityblock and Euclidean distance measures with the rank transformed data in almost
every case resulted in higher or similar precision@50 when compared with the best results
produced by respective similarity measures with the original data or data transformed us-
ing the six functions. One notable exception is the v/X transform on the Cardiotocography
dataset, which improves both cityblock and Euclidean performance, underscoring the im-
portance of recognizing that the measure in which the data are expressed is not necessarily
optimal with respect to judging similarity under an interval scale assumption. With the rank
transformed data, the cityblock distance always performed better than the Euclidean dis-
tance. Except for the Cardiotocography dataset, the cityblock distance with the rank trans-
formed data produced better or equally good results as the best results produced by all four
distance based similarity measures: cityblock, Euclidean, cosine and Chebychev with the
original or the data transformed by the other six functions. Based on these results we can
conclude that the cityblock distance with rank transformed data is a better alternative to
using cityblock, Euclidean, cosine and Chebychev with original data in CBMIR as the city-
block distance with rank transformed data being invariant to violations of the interval scale
assumption, has an additional advantage over the rest.

ReFeat was affected by violations of the interval scale assumption and it did not pro-
duce better CBMIR precision than the cityblock distance with the rank transformed data or

4 ReFeat works only with imbalanced trees. Sample size 2 can only produce balanced trees.
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SimUSEF. In addition, ReFeat is not based on a similarity measure and therefore it cannot be
used with different machine learning applications other than CBMIR.

The unsupervised random forest based similarity, SiImURF produced competitive results
only with the Cardiotocography and Letter datasets. In the other four cases it did not produce
good results when compared with the cityblock distance with rank transformed data and
SimUSEF. It could beat the SimUSF results only in one case, the Cardiotocography out of the
six tested cases of CBMIR. But the error bars show that the difference was not significant.
The plots in Figure 5 show that, the SimUSF is very competitive with the best precisions
produced by the other similarity measures in all six tested CBMIR cases. Further, SimUSF
is invariant to violations of the interval scale assumption.

Figure 6 shows the results of the CBMIR experiments with the GTZAN Music and Corel
Image datasets to study how parameters: the tree height (H) and number of trees (T) affect
the precision@50 achieved by the SimUSF. In order to assess the effect of the tree height
we fixed the number of trees to 1000 and tests were carried out for tree heights from 1 to
7. SimUSF produced good precision@50 over the tested range of H. When the tests were
carried out with tree height 5, the precision@50 increased with the number of trees though
the improvement was small when the number of trees increased from 1000 to 10000.

7 Computational complexity comparison

Table 4 shows the time complexities of calculating similarity between pairs of unseen in-
stances. The complexities of the cityblock, Euclidean, cosine and Chebychev distances are
identical. They usually require O(nd) time for min-max normalization and they require
O(d) time for calculation of similarity between two instances. The tied rank transform and
SimUSF do not require min-max normalization. They have the ranking and usForest build-
ing as preprocessing overheads respectively. The unsupervised random forest is not com-
pared in this section as it could not produce good results in most of the cases. The ReFeat is
also excluded as it does not calculate the pairwise similarity values between the instances.
Table 5 shows the average times taken to calculate the similarity between two unseen
instances. The similarity values between 100 unseen instance pairs were calculated and the
mean values were rounded to three significant digits. The experiments were carried out
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Table 4: Time complexities of cityblock distance (CB), cityblock distance with ranked data
(RCB) and SimUSF

CB RCB SimUSF
Preprocessing nd | dnlog(n) TH27
Similarity Calculation d dlog(n) 21

Table 5: Time taken in seconds for preprocessing (PP) and similarity calculation (SC) be-
tween a pair of unseen instances using cityblock distance, cityblock distance with ranked
data (Cityblock-Ranked) and SimUSF.

Data Cityblock Cityblock-Ranked SimUSF
n d PP SC PP SC PP SC
1000 10 | 176 x1073 | 1.11x107% | 1.76 | 3.17x10°2 | 2.90 | 2.01 x 1072
1000 100 | 1.58x 1072 | 1.12x107* | 16.7 | 3.07x 107" | 2.90 | 2.01 x 1072
1000 | 1000 | 1.53x 107! | 1.36x10~* | 201 3.06 2.90 | 2.01x1072
10000 10 | 276x1073 | 1.11x107* | 17.0 | 3.28x 10! | 291 | 2.02x 1072
10000 100 | 2.54%x1073 | 1.12x107* | 176 3.01 2.90 | 2.02x1072
10000 | 1000 | 2.74x 1073 | 1.38x 10~* | 2090 32.0 3.10 | 2.01x 1072

on a Windows 8.1 machine with 4GB memory and a dual core Pentium i5 processor. The
programs were written in Perl and the compilation times were excluded.

As shown in Table 4 in contrast to using distance measures with rank transformed data
time requirement of the SimUSF calculation is independent from the size of the training
dataset. Table 5 shows that SimUSF needs less execution time than a distance based sim-
ilarity measure used with ranked data when previously unseen instances are involved in
calculations.

8 Discussion

In previous sections, the effects of violations of the interval scale assumption on a few pop-
ular distance based similarity measures were demonstrated. Two solutions which are im-
pervious to such violations: using distance based similarity measures with rank transforms
and the unsupervised random forests were discussed. Then, we introduced a novel similarity
measure SimUSF, which is invariant to violations of the interval scale assumption. We an-
alyzed SimUSF with respect to SimURF and performed similarity based ranking, DBScan
clustering and CBMIR experiments to compare SimURF with the other similarity measures.

Out of the DBScan clustering and CBMIR experiments discussed in Section 6, in all
but two cases, one in the DBScan clustering and the other in the CBMIR, the cityblock
distance with the rank transformed data produced better or equally good results as the best
results produced by all four distance based similarity measures: cityblock, Euclidean, cosine
and Chebychev with the original or the data transformed by the other six functions. The
results produced by rank transformed data are not affected by different data representations
that violate the interval scale assumption. Therefore, we can argue that using the cityblock
distance with rank transformed data is a better alternative to using the cityblock, Euclidean,
cosine and Chebychev distances with original data if the time and storage requirements can
be met. The major drawback of using rank transformed data is that when a previously unseen
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instances are involved in calculations the rank revaluation is computationally expensive and
depends on the size of the dataset.

Though the unsupervised random forest based similarity, SimURF, is invariant to viola-
tions of the interval scale assumption, it did not produce competitive results in our DBScan
clustering and CBMIR experiments except for 3 out of 12 experiments. Even in those cases
it could not significantly beat the newly introduced unsupervised stochastic forest based sim-
ilarity, SimUSF. As discussed in Section 4 SimURF cannot produce good results because
SimURF attempts to segregate real instances from synthetic instances instead of attempting
to collect nearest neighbors together to form clusters. Further SimURF produces large trees
and it is therefore highly time and memory consuming. SimURF needs large number of trees
to produce a good estimate of its expected value when compared with the SimUSF.

The new similarity measure, SimUSF which is based on our newly introduced unsu-
pervised stochastic forest, usForest produced better results than all other tested measures
in the DBScan clustering. This is because, the SimUSF successfully distinguishes nearest
neighbors from the rest of the instances, as they are gathered at tree leaves of the usForest.
The results produced by SimUSF was very competitive with the best results produced by
the other similarity measure in the CBMIR in all six tested cases. Both in DBScan cluster-
ing and CBMIR, SimUSF could produce better results with usForests having 1000 usTrees
with heights 4, 5 and 6. Hence, H and H 2H in the SimUSF time complexities given in Table
4 are small. As shown under similarity based ranking SimUSF converges with its expected
value with small number of trees when compared with the SimUREF. It also produced equally
high average rank correlation values with the two tested datasets where one was uniformly
distributed and the other was normally distributed. This is because SimUSF uses ordinal
scale calculations and therefore it is expected to produce equally good results irrespective
of the underlying distribution of the original data in the interval scale. However, as number
of instances and number of attributes of the dataset increase, SimUSF will need more us-
Trees in usForests to produce reliable estimate of its expected value. usTrees are expected
to be smaller compared with the decision trees in unsupervised random forest. In contrast to
using distance measures with rank transformed data the time and memory requirements of
SimUSF are independent from the size of the training dataset. The SimUSF needs less exe-
cution time than a distance based similarity measure used with ranked data when previously
unseen instances are involved in calculations. Therefore the SimUSF is a better alternative
to using distance measures with rank transformed data.

9 Conclusion

Most distance measures assume that the numeric data are represented in the interval scale.
However, rarely does data provide any clues as to whether this assumption holds. In this
research we studied how common distance measures are affected by violations of the interval
scale assumption. The results of our experiments suggest that the cityblock distance with tied
rank transformed data can often produce good results. It is specially useful when violations
of the interval scale assumption are present. However, using the rank transform has high
time and space overheads when previously unseen instances are introduced. Though the
Addcl1 unsupervised random forest based similarity is invariant to violations of the interval
scale assumption it could not produce good precision values in the DBScan clustering and
CBMIR experiments. Further, it has high time and memory overheads.

We introduced a novel unsupervised learning algorithm, unsupervised stochastic forest
(usForest) and a similarity measure, SimUSF, on top thereof. With lower time and space
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overheads than the rank transform and unsupervised random forest, the SimUSF outper-
forms all other measures in our experiments on DBScan clustering. It produces very com-
petitive results in CBMIR. SimUSF is also invariant to violations of the interval scale as-
sumption. Therefore the SIimUSF is the most successful out of the tested similarity measures
in our experiments.
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