
To appear in IEEE Transactions on Knowledge and Data Engineering 1

Sample-based Attribute Selective AnDE for
Large Data
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Abstract—More and more applications come with large data sets in the past decade. However, existing algorithms cannot guarantee
to scale well on large data. Averaged n-Dependence Estimators (AnDE) allows for flexible learning from out-of-core data, by varying
the value of n (number of super parents). Hence AnDE is especially appropriate for large data learning. In this paper, we propose a
sample-based attribute selection technique for AnDE. It needs one more pass through the training data, in which a multitude of
approximate AnDE models are built and efficiently assessed by leave-one-out cross validation. The use of a sample reduces the
training time. Experiments on 15 large data sets demonstrate that the proposed technique significantly reduces AnDE’s error at the
cost of a modest increase in training time. This efficient and scalable out-of-core approach delivers superior or comparable
performance to typical in-core Bayesian network classifiers.

Index Terms—Bayesian network classifiers, Large data, Classification learning, Attribute selection, Averaged n-Dependence
Estimators (AnDE), Leave-one-out cross validation
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1 INTRODUCTION

IN the past decade, large data sets have attracted a lot
of research interest [1], [2], [3]. When learning from very

large data, it is infeasible to load the entire data into RAM.
One possible way to process large data is to learn out-of-
core [4]. As data access would be very expensive in this
case, learning algorithms should ideally require only a few
passes through the training data.

At the same time, existing algorithms cannot guarantee
to scale well on large data. Past research shows that clas-
sification error can be usefully decomposed into bias and
variance [5], and variance will be lower when learning on
large data than when learning from small data sets, and
hence have less effect on total error [6]. That is to say, a
low variance algorithm will usually have an advantage for
small data while a low bias algorithm will usually have an
advantage for large data. Accordingly, algorithms with low
bias are highly appealing for large data learning.

Averaged n-Dependence Estimators (AnDE) is one fam-
ily of Bayesian network classifiers that can learn in a single
pass through training examples [7], [8]. The requirement
of only one single pass through training data supports
out-of-core learning. Since AnDE allows every attribute to
depend on n shared super parent attributes, which is more
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coincident with the characteristics of real data sets, it has
lower bias than Naive Bayes (NB) [9] and Tree Augmented
Naive Bayes (TAN) [10]. And as the parameter n increases,
AnDE achieves progressively lower bias at the cost of higher
variance [8]. This low bias characteristic, combined with the
single pass learning, makes AnDE well suited to large data,
where variance is generally low.

When AnDE is applied to large data, we expect large
n to obtain low bias. However, the memory requirements
in AnDE increase combinatorially with the number of at-
tributes and the parameter n. Thus, higher n means not only
lower bias but also higher memory requirements. Given the
memory constraint of existing machines, we focus on Av-
eraged One-Dependence Estimators (AODE) and Averaged
2-Dependence Estimators (A2DE) in this paper.

An efficient out-of-core attribute selection technique for
AODE [11] has been demonstrated to be more effective at
reducing AODE’s bias than previous approaches. However,
performance has only been demonstrated on small data sets.
In order to deal with large data, we exploit the low bias
advantage of A2DE by generalizing the attribute selection
technique to A2DE. Meanwhile, we propose to use a sample
for the attribute selection pass in order to reduce the training
time on large data. This paper presents the empirical evi-
dence that the proposed out-of-core technique significantly
reduces AnDE’s error and delivers superior or comparable
performance to typical in-core Bayesian network classifiers
on 15 large data sets.

The rest of the paper is organized as follows: First, we
summarize related work on Bayes network classification
from three different viewpoints, structure extension to NB,
attribute weighting and attribute selection in Section 2.
Specially, we describe the AnDE algorithm in Section 3.
Then we present our novel attribute selection algorithms
for AODE and A2DE in Section 4. This is followed by the
description of our experimental setup and results in detail
in Section 5. We present conclusions in Section 6.
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TABLE 1
Notation

Symbols Description
X , Xi, Y discrete random variable
x, xi, y value of X , Xi, Y
n number of super parents in AnDE
c number of classes
d number of attributes
X = ⟨X1, . . . , Xd⟩ d-dimensional random vector
x = ⟨x1, . . . , xd⟩ an example
t number of training examples
T set of training examples
v average number of values per attribute
M number of parent tuples in A2DE
S sample size

2 RELATED WORK

In this section, we first introduce some notations and the
idea of NB. Then we review AnDE and some other impor-
tant structure extensions to NB. In the end, we list improve-
ments to AnDE from two different viewpoints, attribute
weighting and attribute selection.

Let X be a discrete random variable taking values in a
countable set X . We assume the domain X is finite. A d-
dimensional random vector is denoted by X = ⟨X1, . . . , Xd⟩
where each component Xi is a random variable over Xi.
For variable X , we denote the value of X by lower letter x.
Then the value x = ⟨x1, . . . , xd⟩ of X represents an example
in classification context. Let Y ∈ {1, . . . , c} represent the
class variable, where c is the number of classes. Then the
classification task could be described as to estimate the
probability P (y | x) that a new example x belongs to
some class y, given a training sample T of t examples, and
predict the class of x as argmaxy P (y | x). These and other
elements of notation are listed in Table 1.

From the definition of conditional probability, we have
P (y | x) = P (y,x)/ P (x) . Since P (x) =

∑c
y=1 P (y,x),

it is reasonable to consider P (x) as the normalizing con-
stant and estimate only the joint probability P (y,x) in the
remainder of this paper.

Since the example x does not appear frequently enough
in the training data, we cannot directly derive an accurate
estimate of the joint probability P (y,x) and must extrap-
olate this estimate from observations of lower-dimensional
probabilities in the data [8]. Applying the definition of con-
ditional probabilities again, we have P (y,x) = P (y)P (x |
y) . The first term P (y) on the right side can be sufficiently
accurately estimated from the sample frequencies, if the
number of classes, c, is not too large. Researchers in Bayesian
Network classification community have developed different
techniques to estimate the second term P (x | y).

NB [9] assumes the attributes are independent of each
other given the class, so it calculates the joint probability
P(y,x) according to the following formula,

PNB(y,x) = P(y)P(x | y) = P(y)
d∏

i=1

P(xi | y). (1)

2.1 Structure Extension to NB

Because the attributes independence assumption is too strict
in NB, many efforts have been done to alleviate the as-
sumption, among which TAN [10] is a popular approach. It

approximates the interactions between attributes by a tree
structure imposed on the NB structure. That is to say, it
requires that the class variable has no parents and each
attribute has as parents the class variable and at most one
other attribute. They developed an algorithm to learn TAN
classifiers in polynomial time, which extends a well-known
result by Chow and Liu [12]. TAN is a one pass algorithm,
because the probability distributions required for selecting
the network structure and parameterizing the conditional
probability tables can be obtained in one pass learning
through the training examples.

Keogh and Pazzani [13] proposed two methods for
adding the set of augmenting arcs, a greedy hill-climbing
search, and a novel, more computationally efficient algo-
rithm called SuperParent. The SuperParent algorithm sig-
nificantly outperforms NB, but it involves relatively high
time complexity. Qiu et al. [14] investigated the class prob-
ability estimation performance of SuperParent in terms of
Conditional log likelihood (CLL).

k-Dependence Bayesian classifier (KDB) [15] is another
famous improvement to NB. It relaxes NB’s independence
assumption by allowing each attribute to have a maximum
of k attributes as parents. In this sense, NB is a 0-dependence
Bayesian classifier and TAN is a 1-dependence Bayesian
classifier. By increasing the value of k, KDB can generalize
to higher degrees of attribute dependence than TAN. KDB
constructs classifiers at arbitrary values of k, while retaining
much of the computational efficiency of NB. It is a two pass
algorithm. The first pass collects the statistics required for
selecting a network structure in which each attribute has at
most k parents. The second pass computes the conditional
probability tables inferred by the structure of k-dependence
Bayesian network.

Jiang et al. [16] proposed a novel Bayes model: Hidden
Naive Bayes (HNB), in which a hidden parent was created
for each attribute which combined the influences from all
other attributes. The experimental results show that HNB
significantly outperforms other improvements of NB.

Another significant improvement to NB is AnDE [8],
which relaxes the attribute independence assumption and
averages over all possible n-dependence estimators (nDE),
with the aim of reducing the inductive bias in the classifier.
Martı́nez et al. [17] argued that the idea of non-disjoint
discretization, already justified in NB classifiers, could also
be profitably extended to AODE.

2.2 Attribute Weighting
Jiang and Zhang [18] first proposed the idea to assign each
attribute a different weight in AODE. Jiang et al. [19] further
designed four different weighting approaches and created
four different versions of weighted AODE (WAODE). These
weighting approaches include mutual information, classifi-
cation accuracy, conditional log likelihood (CLL) and area
under the ROC curve (AUC). Wu et al. [20] proposed a
self-adaptive SPODEs, namely SODE, which used immunity
theory in artificial immune systems to automatically and
self-adaptively select the weight for each single SPODE.

2.3 Attribute Selection
Zheng et al. [21] proposed attribute selection approaches
for AODE, such as backwards sequential elimination (BSE)
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and forward sequential selection (FSS). These approach-
es require multiple passes through the training data, so
they are not feasible on large data sets. Yang et al. [22],
[23] compared attribute selection and weighting techniques
in AODE. Zheng and Webb [24] explored Lazy Elimina-
tion (LE), later called subsumption resolution (SR) [25],
which eliminated highly related attribute-values at classi-
fication time without the computational overheads inherent
in wrapper techniques. It can be considered as a kind of
attribute selection technique.

Zaidi and Webb [4] generalized weighting and subsump-
tion resolution ideas from AODE to the more general case
of AnDE.

3 AVERAGED n-DEPENDENCE ESTIMATORS

In this section, we first describe the probabilistic model of
AnDE. Then we present the algorithm to learn the parame-
ters. Finally, we show how to predict a new example with
AnDE model.

3.1 Probabilistic Model of AnDE
AnDE can be modelled as a set of Bayesian networks
Bi(i = 1, . . . , d), each one is corresponding to an nDE. Each
Bi = ⟨G,Θ⟩ consists of a directed acyclic graph G and a
set of parameters Θ. G = (⟨X, C⟩,E) is composed of a set
of nodes ⟨X, C⟩ and a set of directed edges E connecting
the nodes, where C is the class node. AnDE makes two
important assumptions. One is that each node depends not
only on the class node C , but on n common parent nodes in
each network Bi. The other is that all the nodes can be the
parent nodes in turn. Specifically, AODE assumes all nodes
depend on the class node and one common parent node. Fig.
1 shows an example of a set of networks for AODE with 3
attributes. From left to right, the parent nodes are X1, X2

and X3, respectively.

Fig. 1. An example of a set of networks for AODE with 3 attributes

The set of parameters Θ is used to quantify the net-
work Bi. Each node Xi is represented as a local condi-
tional probability distribution given its parents Π. Here
the subscript i for Π is omitted because AnDE assumes
all nodes depend on the same parent nodes in each Bi. A
specific conditional probability table entry θij|h is used to
denote the probability that variable Xi takes on its jth value
assignment given that its parent take their hth assignment,
i.e. θij|h = PΘ(Xi = j|Π = h).

3.2 Parameters Learning
There are two paradigms for learning the parameters: Gen-
erative and discriminative methods [26]. The goal of genera-
tive learning is to find the parameters that best represent the
sample distribution [27] . One such approach is to find the

parameters that maximize the likelihood of the entire data
or (more conveniently) its logarithm.

Given the training data set T = {⟨xt, yt⟩}Tt=1, the joint
probability distribution of a sample xt is,

PΘ(X = xt) =

d∏
i=1

(θij|h) =

d∏
i=1

|Xi|∏
j=1

∏
h

(θij|h)
µi,t

j|h , (2)

where the indicator function µi,t
j|h is 1 for xt

i = j and xt
Πi

=
h, and is 0 elsewhere. The log likelihood function of a fixed
structure of Bi is

LL(Bi|T ) =
T∑

t=1

PΘ(X = xt) =
T∑

t=1

d∑
i=1

|Xi|∑
j=1

∑
h

µi,t
j|h log(θ

i
j|h),

(3)
Maximizing LL(Bi|T ) leads to the maximum likelihood

(ML) estimate of the parameters,

θij|h =
mi

j|h

mi
h

, (4)

where mi
j|h =

∑T
t=1 µ

i,t
j|h denotes the number of occurrences

in the training set of the jth state of Xi given the hth state
of its parent, and mi

h =
∑T

t=1

∑|Xi|
j=1 µ

i,t
j|h denotes the sum

of mi
j|h over all j.

Based on AnDE’s two assumptions, mi
j|h is actually

the joint frequency of each possible combination of n + 1
attribute values and the class labels. As a result, we should
form an (n+ 2)-dimensional frequency table in the process
of training. For example, Algorithm 1 depicts the training
process of AODE. Note that here we store only the observed
counts of each combination of 2 attributes and the class
label. With these data we can easily compute the frequencies
of each combination when necessary. This process in A2DE
is similar. The only difference lies in that we need to store
the counts of each combination of 3 attributes and the class
label. The restriction that X2 precedes X1 can help to save
memory.

Algorithm 1 Training process of AODE.
1: Count : vector of observed counts of combination of 2

attribute values and the class label
2: for instance inst ∈ T do
3: y = value of class label in inst
4: for X1 ∈ X do
5: x1 = value of attribute X1 in inst
6: for X2 ∈ X AND X2 precedes X1 do
7: x2 = value of attribute X2 in inst
8: increase the element in Count with index

(X1, x1, X2, x2, y) by 1
9: end for

10: end for
11: end for

3.3 Predicting New Examples

When we have a new example, the class labels are predicted
by first computing the maximum a-posteriori (MAP) esti-
mates on each Bi and then averaging them. To be more spe- [c3.1]
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cific, the joint probability P(y,x) for some Bi is calculated
as follows,

PnDE(y,x) = P(y, π)
d∏

i=1

P(xi | y, π), (5)

where π is the set of values of attributes in Π corresponding
to example x. When trying to select the parent set Π of size n
from d attributes, we have C(d, n) = d!/(n!(d−n)!) possible
options. For every eligible set of parents, we have one nDE
model. The average across all eligible models gives a final
probability. So the joint probability in AnDE is calculated by

PAnDE(y,x) =

∑
Π:F (π)≥m P(y, π)

∏d
i=1 P(xi | y, π)

C(d, n)− |{Π : F (π) < m}|
, (6)

where Π ranges over all size-n subsets of attributes, F (π) is
the frequency of π, m is the minimum frequency to accept π
as a parent tuple and |·| denotes the cardinality of a set. The
current research uses m = 1 [18], [28], [29].

The space complexity of the frequency table is
O(cC(d, n + 1)vn+1), where v is the average number of
values per attribute. The time complexity of compiling it is
O(tC(d, n+ 1)), as we need to update each entry for every
combination of the n+1 attribute-values for every instance.

It is evident that AnDE has linear time complexity with
respect to the number of training examples, which allows
single pass learning through the training examples and
makes out-of-core learning for large data sets possible.

4 ATTRIBUTE SELECTION

We can see from Eq. (6) that AnDE averages across all eligi-
ble nDE, where each nDE assume that all children attributes
depend on some parent tuple. These design choices have
been made to gain computational efficiency and control
variance, but they also serve to increase inductive bias.
Previous research has shown that attribute selection can
reduce AnDE’s bias [21], [22]. This inspires us to perform
attribute selection in AnDE.

Furthermore, we could observe from Eq. (6) that the joint
probability is the sum of products of conditional probabili-
ties and the computation process actually contains multiple
approximations to PAnDE(y,x). These observations imply
that it is possible to nest a large space of alternative approx-
imate models such that each one is a trivial extension to
another. Importantly, multiple models that build upon one
another in this way can be efficiently evaluated in a single
set of computations. Using these observations, we create a
space of models that are nested together, and then select
the best model using leave-one-out cross validation in a
single extra pass through the training data. Consequently,
our purpose in attribute selection could be achieved by
selecting the best model.

In this section, we first build the model space. Then we
rank the attributes by mutual information. Next we select
the best model using leave-one-out cross validation error. At
the same time, we propose to sample the data in the second
pass through the training data to accelerate the training
process. Finally, we summarize the algorithm and present
the complexity analysis.

4.1 Building the Model Space

4.1.1 Model Space for AODE

For AODE, the joint probability is calculated by:

PAODE(y,x) =∑
j:1≤j≤d∧F(xj)≥m

P(y, xj)
∏d

i=1
P(xi | y, xj)

|{j : 1 ≤ j ≤ d ∧ F(xj) ≥ m}|
.

(7)

From Eq. (7), we could see that at most d2 nested sub-
models of attribute subsets will be created when calculating
PAODE(y,x). To be more specific, suppose we select the
former r attributes as parents and the former s attributes
as children, where 1 ≤ r, s ≤ d, the approximate AODE
model would be,

PAODE(y,x)r,s =∑
j:1≤j≤r∧F(xj)≥m

P(y, xj)
∏s

i=1
P(xi | y, xj)

|{j : 1 ≤ j ≤ r ∧ F(xj) ≥ m}|
.

(8)

This assumes that there is an ordering on the attributes.
By default AnDE uses the order in which attributes are
presented in the data, because without attribute selection the
order has no effect. However, it has been shown that order-
ings that place more predictive attributes first are preferable
for attribute selection [30], we will rank the attribute in
Section 4.2.

All these approximate AODE models form the mod-
el space as depicted in Fig. 2. Because each model is
only a minor extension to previous model, for instance,
PAODE(y,x)1,2 is obtained by adding child attribute x2 to
PAODE(y,x)1,1, all these models can be applied to a test
instance in a single nested computation. Consequently all
models can be efficiently evaluated.

parent
children

x1 . . . xs . . . xd

x1 PAODE(y,x)1,1 . . . PAODE(y,x)1,s . . . PAODE(y,x)1,d
x2 PAODE(y,x)2,1 . . . PAODE(y,x)2,s . . . PAODE(y,x)2,d
. . . . . . . . . . . . . . . . . .
xr PAODE(y,x)r,1 . . . PAODE(y,x)r,s . . . PAODE(y,x)r,d
. . . . . . . . . . . . . . . . . .
xd PAODE(y,x)d,1 . . . PAODE(y,x)d,s . . . PAODE(y,x)d,d

Fig. 2. Space of approximate models of AODE with d attributes.

Figure 3 gives an example of the model space with 3
attributes. For instance, model m22 considers two attributes
{x1, x2} as parents and two attributes {x1, x2} as children.
Then, when attribute x3 is added as a child, we obtain a new
model m23. When instead attribute x3 is added as a parent,
we obtain a new model m32. Both of these models are minor
extensions to the existing model m22 and all three (and
all their extensions) can be applied to a test instance in a
single nested computation. Consequently all models can be
efficiently evaluated in a single set of nested computations.

children

{x1} {x1, x2} {x1, x2, x3}

p
a
r
e
n
t
s {x1} m11 m12 m13

{x1, x2} m21 m22 m23

{x1, x2, x3} m31 m32 m33

Fig. 3. An example of the model space with 3 attributes.
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4.1.2 Model Space for A2DE
In order to describe the formulation of A2DE conveniently,
we define

x⟨p,q⟩ = ⟨xp, xq⟩ (9)

So from Eq. (6), we can obtain the joint probability of A2DE,

PA2DE(y,x) =∑
1≤q<p≤d∧F(x⟨p,q⟩)≥m

P(y, x⟨p,q⟩)
∏d

i=1
P(xi | y, x⟨p,q⟩)

C(d, 2)− |{⟨p, q⟩ : F (x⟨p,q⟩) < m}|
.

(10)

From Eq. (10), we could see that we have at most
C(d, 2) = d(d − 1)/2 parent tuples. This number of parent
tuples is denoted by M . For any specific parent tuple
x⟨p,q⟩(1 ≤ q < p ≤ d), its index in all parent tuples is
(p − 1)(p − 2)/2 + q, denoted by r. For each parent tuple
x⟨p,q⟩, there are d children attributes xi (i = 1, . . . , d).

During the process of computation of PA2DE(y,x), it
forms d2 × (d − 1)/2 approximate models to PA2DE(y,x).
To be more specific, for the former r parent attribute tuples
and the former s children attributes, where 1 ≤ r ≤
d(d− 1)/2, 1 ≤ s ≤ d, the approximate model would be

PA2DE(y,x)r,s =∑
((p−1)(p−2)/2+q)≤r∧F(x⟨p,q⟩)≥m

P(y, x⟨p,q⟩)
∏s

i=1
P(xi | y, x⟨p,q⟩)

r − |{⟨p, q⟩ : F (x⟨p,q⟩) < m}|
.

(11)

By this means, we obtain a model space as is shown
in Fig. 4. Each model corresponds to a certain selection of
parent attributes and children attributes. They could also
be evaluated efficiently. We could see that PA2DE(y,x)M,d

is actually PA2DE(y,x). Consequently, so long as the best
model is selected, it is guaranteed that the performance of
the selected model is no worse than A2DE. By restricting
ourselves to the d2 × (d − 1)/2 nested models we support
very efficient simultaneous evaluation of all models, at the
cost that we exclude all models that are not in this space of
nested models.

4.2 Ranking the Attributes
As is demonstrated in Fig. 2 and Fig. 4, models containing
attributes that are later in the ordering will be built upon
models containing earlier attributes. Therefor this method
for nesting models depends on an ordering of the attributes.

The mutual information between an attribute X and the
class Y is defined as:

I(X,Y ) = H(X)−H(X | Y )

=
∑
y∈Y

∑
x∈X

P(x, y)log2
P(x, y)

P(x)P(y)
, (12)

where H(X) = −
∑

x∈X P(x)logP(x) is the entropy of X ,
and H(X | Y ) = −

∑
y∈Y P(y)

∑
x∈X P(x | y)logP(x | y)

is the conditional entropy. This mutual information mea-
sures how informative this attribute is about the class [31],
as such it is a suitable metric to rank the attributes.

An advantage of using mutual information is that it can
be computed very efficiently after one pass learning through
the training data. Although the mutual information between

an attribute and the class can help to identify the attributes
that are individually most discriminative, it is important
to note that it does not directly assess the discriminative
power of an attribute in combination with other attributes.
Nevertheless, the ranking of attributes based on mutual
information with the class will permit the search over a
large space of possible models and the deficiencies of this
discriminative approach will be mitigated by the richness
of the search space that is evaluated in a discriminative
fashion.

4.3 Selecting the Best Model

To evaluate the discriminative ability of alternative models
and avoid over fitting on training data, we use leave-one-out
cross validation error as the evaluation criterion [32], [33].
Rather than building new models for every fold, we exploit
incremental cross validation [34], in which the contribution
of the training example being left out in each fold is sim-
ply subtracted from the frequency table, thus producing a
model without that training example. This method not only
obtains a low-bias estimate of the generalization error, but
also allows the models to be evaluated in one pass through
the training data.

In addition, the fact that the models are nested together
such that each one is a trivial extension to another, as is
shown in Eq. 8 and Eq. 11, provides us a way to efficient-
ly evaluate these models. That is to say, for the training
example being left out in each fold, these models can be
simultaneously evaluated inside the process of construction
of them. The process of leave-one-out cross validation has
been demonstrated in Algorithm 2 (line 6-14).

There are several loss functions to measure model per-
formance for leave-one-out cross validation, zero-one loss
and root mean squared error (RMSE) are among the most
common and effective. Zero-one loss simply assigns a loss
of ‘0’ to correct classification, and ‘1’ to incorrect classifi-
cation, treating all misclassifications as equally undesirable.
RMSE, however, accumulates for each example the squared
error, where the error is the difference between 1.0 and the
probability estimated by the algorithm for the true class for
the example, and then computes the squared root of the
mean of the sum. This could be computed as,

Ermse =

√√√√1

t

t∑
i=1

(1− P (y = yi | xi))2 , (13)

where yi is the true class for the example xi. As RMSE
gives a finer grained measure of the calibration of the
probability estimates compared to zero-one loss, with the
error depending not just on which class is predicted, but
also on the probabilities estimated for each class, we use
RMSE to evaluate the candidate models in this research.

Consequently, selecting the best model can be described
as the following optimization problem,

⟨r, s⟩∗ = argmax
⟨r,s⟩

√√√√ 1

T

T∑
t=1

(
1− PLOO

AnDE(y = yt | xt)r,s
)2
(14)
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index parent tuple
children

x1 . . . xs . . . xd

1 x⟨2,1⟩ PA2DE(y,x)1,1 . . . PA2DE(y,x)1,s . . . PA2DE(y,x)1,d
2 x⟨3,1⟩ PA2DE(y,x)2,1 . . . PA2DE(y,x)2,s . . . PA2DE(y,x)2,d
3 x⟨3,2⟩ PA2DE(y,x)3,1 . . . PA2DE(y,x)3,s . . . PA2DE(y,x)3,d

. . . . . . . . . . . . . . . . . . . . .
r x⟨p,q⟩ PA2DE(y,x)r,1 . . . PA2DE(y,x)r,s . . . PA2DE(y,x)r,d

. . . . . . . . . . . . . . . . . . . . .
M * x⟨d,d−1⟩ PA2DE(y,x)M,1 . . . PA2DE(y,x)M,s . . . PA2DE(y,x)M,d

* M = d(d − 1)/2

Fig. 4. Space of approximate models of A2DE with d attributes.

where PLOO
AnDE(y | xt)r,s can be computed by first estimating

PLOO
AnDE(y,xt)r,s from training set (T − {⟨yt, xt⟩}) as in Eq.

6 or Eq.9, and then normalizing across all possible y.

4.4 Sampling the Data in the Second Pass

As we need to evaluate d2 alternative models for AODE or
d2×(d−1)/2 alternative models for A2DE for each example
in the second pass through the training data, the computing
time is high for this model selection stage when processing
high dimension d and large data number t in large data.
In order to reduce the time requirement of this method,
we use only a sample of size S to select among models.
Since we know the number of examples after the first pass,
it is straightforward to use uniform sequential fixed-sized
sampling without replacement (Algorithm 2, line 7-13).

It is worthwhile to clarify this sampling technique as
follows:

1) The sampling process is used to select the best
among alternative models, but not to train the pa-
rameters of the model. The latter will deteriorate
the performance greatly as indicated in Table 5.
But the former will save training time greatly with-
out significant performance loss. Consequently, the
sampling process is an indispensable part in our
framework.

2) Using only a sample to select among models intro-
duces the possibility that the quality of the model
selected might not be as good as if all training
data were used. However, the leave-one-out cross
validation process that we use for model selection
has low variance and hence is reasonably accurate
even when using only a sample of the data. As we
will see from the experiments, the accuracy decrease
in practice is acceptable.

3) It might be thought that using a sample is contrary
to our objective of extracting as much value from
large data as possible by using low-bias algorithms
on the full dataset. However, this does not follow.
AnDE’s low bias is obtained from the probability
tables constructed in the first pass that are able to
extract fine detail about complex high-dimensional
interactions in the data. In theory the use of a sample
to select between low-bias models each developed
from all the data should not affect the quality of
those models, and if the sample is sufficiently large
should provide effective model selection.

4.5 Algorithm

Based on the methodology presented above, we develop
the training algorithm for sample-based attribute selective
AnDE shown in Algorithm 2.

Algorithm 2 Training algorithm for sample-based attribute
selective AnDE.

1: S: sample size, t: number of training examples
2: selected← 0, i← 0
3: Form the table of joint frequencies of all combinations of n

attribute values and the class label as in Algorithm 1 ◃
first pass through training data

4: Compute the mutual information
5: Rank the attributes
6: for instance inst ∈ T do ◃ second pass through training

data
7: with probability (S − selected)/(t− i) do
8: Build d2 models for AODE or d2× (d−1)/2 models

for A2DE
9: Predict inst using all models

10: Accumulate the squared error for each model
11: increment selected
12: end with
13: increment i
14: end for
15: Compute the root mean squared error for each model
16: Select the model with the lowest RMSE

As in AODE or A2DE, we need to form the table of
joint frequencies of attributes values and the class label from
which the probability estimates P(y, xj), P(xi | y, xj), or
P(y, x⟨p,q⟩), P(xi | y, x⟨p,q⟩), and the mutual information
between the attributes and class are derived. This is done
in one pass through the training data (line 3). Note that this
provides all the information needed to create any selective
AnDE model with any sets of parent and child attributes.

In the second pass through the training data (line 6-
14), the squared error is accumulated for each model using
incremental leave-one-out cross validation [34]. Incremental
leave-one-out cross validation simply develops a model
from the full data and then selects each training example
in turn and removes it before classifying and then restoring
it. The addition and removal of an example from an AnDE
model is extremely efficient. In consequence, the compu-
tation is dominated by the classification of the holdout
examples. After this pass, the RMSE will be computed and
used to select the best model.

4.6 Complexity Analysis

From the training process in Algorithm 2, we could see that
the space complexity of the table of joint frequencies of all
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combinations of n attributes values and the class label is
O(c(dv)2) for AODE or O(c(dv)3) for A2DE, where v is the
average number of values per attribute. Attribute selection
will not require more memory. The time complexity consists
of two parts. One is derivation of the frequencies required
to populate the table, the time complexity of which is
O(td2) for AODE or O(td3) for A2DE. The other is attribute
selection in a second pass through the training data, the
time complexity of which for AODE is O(tcd2), since for
each example we need to compute the joint probability
in Eq. (7). The time complexity of attribute selection for
A2DE is O(tcd3) as the frequency of the base operation is
tcd2(d− 1)/2 when we compute the joint probability in Eq.
(10) for each class. So the overall time complexity is O(tcd2)
for AODE and O(tcd3) for A2DE. If sampling is used for
attribute selection, the complexity changes to O(Scd2) and
O(Scd3), where S is the sample size and S < t.

Classification requires the table of joint frequencies
formed at training time of space complexity O(c(dv)2) for
AODE or O(c(dv)3) for A2DE. The time complexity of clas-
sifying a single example is O(cd2) for AODE and O(cd3) for
A2DE in the worst-case scenario, because some attributes
may be omitted after attribute selection.

5 EXPERIMENTS

In this section, we first describe the experiments setting.
Then we evaluate the impact of sample size in sample-
based attribute selective AODE (SASAODE) and compare
different sampling strategies in SASAODE. Next, we present
the RMSE, zero-one loss, and negative conditional log
likelihood comparisons of sample-based attribute selective
AODE and A2DE. Finally we compare attribute selective
AODE (ASAODE) and sample-based selective A2DE with
typical in-core Bayesian network classifiers and state-of-the-
art Random Forest [35].

5.1 Experiments Setting

As the algorithms are proposed for large data, we undertake
an extensive online search to gather a group of large dataset-
s, all of which have more than 100k instances. These are all
the publicly available datasets we could find. The detailed
source of each data set has been indicated in Table 2. From
left to right, we present the following characteristics of each
data set: name, number of instances, number of attributes,
number of classes, source, description. Note that the data
sets have been ranked in ascending order of number of
instances.

All datasets except poker-hand, uscensus1990
and splice contain one or more numeric attributes. 6
datasets contain only numeric attributes: MITFaceSetA,
MITFaceSetB, MITFaceSetC, USPSExtended,
MSDYearPrediction and satellite. We discretize
these numeric attributes using 5-bin equal frequency
discretization (EF5). We have observed that EF5 and
Minimal Description Length (MDL) [42] discretization
provide the best results in approximately half of the
datasets each. In fact, the discretization method does not
matter if the group of data sets is large enough [43]. EF5 has
been chosen because it is faster than MDL, and also because

it is not supervised and hence does not potentially provide
the classifier with class information from the holdout data
when used for pre-discretization. Using a pre-fixed number
of bins gives us another advantage of not having to deal
with a huge number of values per attribute as in MDL
discretization in some cases. To avoid loading the whole
data into memory, only a sample of 100k examples is used
to define the bins for discretization.

We run the experiments on a C++ system which is spe-
cially designed for out-of-core learning1. It has the following
characteristics:

1) It supports out-of-core learning, which means it can
fetch an instance one time from the disk. This could
address the problem that large data sets could not
be loaded into memory entirely.

2) It provides the ability to flexibly set the number of
learning passes through training data.

3) It supports 10-fold cross validation and other run-
ning modes.

The base probabilities are estimated using m-estimation
(m = 1) [18], [28], [29]. Missing values have been considered
as a distinct value. Note that the root mean square error is
calculated exclusively on the true class label. This is different
from Weka’s implementation [44], where all class labels are
considered. All the experiments have been done by 10-fold
cross validation.

We present detailed RMSE, zero-one loss (ZOL) and
negative conditional log likelihood (nCLL) [27] results of
comparing algorithms in Table 9, Table 11 and Table 12 in the
Appendix. In order to give the results a more intuitionistic
explanation, we present also summaries of win/draw/loss
records of alternative algorithms, for example in Table 3,
which indicates the number of data sets on which one
algorithm has lower, equal or higher outcome relative to
the other. Each entry compares the algorithm in the row
against the algorithm in the column. We perform two-tailed
binomial sign test to assess the probability of observing the
given number of wins and losses if each were equally likely.
We consider a difference to be significant if the probability is
less than or equal to 0.05. All such entries have been changed
to boldface in the table.

5.2 Impact of the Sample Size in SASAODE

Attribute selective AODE (ASAODE) has been tested on s-
mall data sets in [11]. In order to obtain an understanding of
the performance of ASAODE and sample-based ASAODE
(SASAODE) on large data sets and evaluate the impact of
sample size S, we run ASAODE and SASAODE on 15 large
data sets.

We set the sample size S to 1k, 5k, 10k, 20k, 50k, 100k and
200k respectively, so we get 7 different SASAODE classifiers.
We evaluate the impact of the sample size with respect
to only RMSE. Table 3 presents win/draw/loss records of
these algorithms.

We could see from Table 3 that ASAODE reduces RMSE
significantly often relative to AODE. As for sample-based
ASAODE, all SASAODE classifiers achieve lower RMSE

1. http://i.giwebb.com/software/sasande.zip
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TABLE 2
Data sets used for experiments1

No. Name ♯Inst ♯Att ♯Class Source Description
1 localization 164860 5 11 UCI [36] Recordings of 5 people performing different activities. Each person wore 4 sensors

while performing the same scenario 5 times.
2 census-income 299285 41 2 UCI [37] Weighted census data extracted from the 1994 and 1995 current population surveys

conducted by the U.S. Census Bureau.
3 USPSExtended 341462 676 2 CVM [38] 0/1 digit classification (extended version of the USPS data set).
4 MITFaceSetA 474101 361 2 CVM [38] Face detection using an extended version of the MIT face databasec. By adding

nonfaces to the original training set.
5 MITFaceSetB 489410 361 2 CVM [38] Each training face is blurred and added to set A. They are then flipped laterally.
6 MSDYearPrediction 515345 90 90 UCI [37] Prediction of the release year of a song from audio features. Songs are mostly western,

commercial tracks ranging from 1922 to 2011, with a peak in the year 2000s.
7 covertype 581012 54 7 UCI [37] Predicting forest cover type from cartographic attributes only (no remotely sensed

data).
8 MITFaceSetC 839330 361 2 CVM [38] Each face in set B is rotated.
9 poker-hand 1025010 10 10 UCI [37] Each record is an example of a hand consisting of five playing cards drawn from a

standard deck of 52. Each card is described using two attributes (suit and rank), for
a total of 10 predictive attributes. The class label describes the “Poker Hand”. The
order of cards is important.

10 uscensus1990 2458285 67 4 UCI [37] Discretized version of the USCensus1990raw dataset, a 1% sample from the full 1990
census. ‘Temp. Absence From Work’ has been selected as class.

11 PAMAP2 3850505 54 19 UCI [39] Data of 18 different physical activities (such as walking, cycling, playing soccer,
etc., the 19th label is transient activities), performed by 9 subjects wearing 3 inertial
measurement units and a heart rate monitor.

12 kddcup 5209460 41 40 UCI [37] Contains a standard set of data to be audited, which includes a wide variety of
intrusions simulated in a military network environment: “bad” connections, called
intrusions or attacks, and “good” normal connections.

13 linkage 5749132 11 2 [40] Element-wise comparison of records with personal data from a record linkage setting.
The task is to decide from a comparison pattern whether the underlying records
belong to one person.

14 satellite 8705159 138 24 [41] Satellite image time series to predict land cover.
15 splice 54627840 141 2 [1] Recognising a human acceptor splice site (largest public data for which subsampling

is not an effective learning strategy).
1 The data sets are ranked in ascending order of number of instances and the appendix gives the results for individual datasets for those who wish to consider the

effects of different factors on the outcomes.

TABLE 3
Win/Draw/Loss of RMSE for SASAODE

AODE ASAODE SASAODE1k SASAODE5k SASAODE10k SASAODE20k SASAODE50k SASAODE100k
ASAODE 14/1/0
SASAODE1k 11/0/4 0/0/15
SASAODE5k 13/1/1 0/1/14 14/0/1
SASAODE10k 14/0/1 0/1/14 15/0/0 10/4/1
SASAODE20k 14/0/1 0/4/11 14/0/1 12/3/0 10/2/3
SASAODE50k 14/0/1 1/6/8 15/0/0 13/2/0 11/3/1 8/7/0
SASAODE100k 14/0/1 0/6/9 15/0/0 13/2/0 12/3/0 9/6/0 4/10/1
SASAODE200k 14/1/0 1/10/4 15/0/0 13/2/0 13/2/0 10/5/0 6/8/1 6/8/1

more often than AODE, not significantly so only when com-
paring SASAODE1k to AODE. As expected, all SASAODE
classifiers deliver higher RMSE significantly more often than
ASAODE. This illustrates the weakness of the sample tech-
nique. When comparing among SASAODE classifiers, we
see that increasing S from 1k to 200k consistently decreases
RMSE. That is to say, with the number of the instances
increasing, the performance will be enhanced. This indicates
that we should sample more data to select the model.
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Fig. 5. Computation time comparison of SASAODE (hours).

Nevertheless, we should also consider the computation
time. From Fig. 5, We could see that ASAODE needs much
more training time than AODE. This is because ASAODE
needs one more pass through the training data and it
assesses many models during this pass. SASAODE saves
much training time compared to ASAODE due to the sam-
ple technique. The training time of SASAODE consistently
increases as the sample size S increases. Both ASAODE and
SASAODE reduce the classification time as they need less
attributes.

TABLE 4
Average percentages of parent and children selected across 15 data

sets(%)

parent children
AODE 100 100
ASAODE 28.98 60.66
SASAODE1k 26.66 56.46
SASAODE5k 28.44 59.29
SASAODE10k 27.44 57.79
SASAODE20k 26.32 56.53
SASAODE50k 27.77 56.95
SASAODE100k 28.32 58.64
SASAODE200k 28.88 60.08
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In Table 10, we also present the details of the number of
parents and children selected for each algorithm. In order to
give an overall idea, we compile the average percentage of
parents and children selected across 15 data sets in Table 4.
We could see that ASAODE selects only 28.98% attributes
as parents and 60.66% attributes as children. SASAODE
selects attributes as parents and children almost the same as
ASAODE. These data illustrate the effectiveness of attribute
selection in ASAODE and the reason why ASAODE and
SASAODE reduce the classification time.

Given the trade off between accuracy and computation
time, we set the sample size to 20k and 50k in the next
comparisons of attribute selective AODE and A2DE.

5.3 Sampling for Selection versus Sampling for Param-
eterization of the Model
It is interesting that SASAODE200k could achieve compara-
ble performance to ASAODE while it saves much training
time. As the sampling technique could also be used in the
first pass through the training data for parameterization of
the model, we implement an algorithm called SASAODE-
p200k in which a sample of 200k examples is used both for
attribute selection in the second pass and for parameteriza-
tion of the model in the first pass. We present the compar-
ison result of SASAODEp200k with AODE, ASAODE and
SASAODE200k in Table 5 .

TABLE 5
Win/Draw/Loss of RMSE for SASAODEp200k

AODE ASAODE SASAODE200k
ASAODE 14/1/0
SASAODE200k 14/1/0 1/10/4
SASAODEp200k 3/0/12 0/1/14 0/1/14

We could see that SASAODEp200k achieves higher
RMSE significantly more often than the other three algo-
rithms. We believe that this is because the accuracy of the
probability estimates in the conditional probability tables
is critical to accurate posterior probability estimates, while
the selection of good network structures requires less fine-
grained information. This is the reason why a sample is used
for selection but not for parameterization of the model.

5.4 Comparison of SASAnDE
5.4.1 Comparison of SASAODE
As ASAODE and SASAODE have been demonstrated to
be significant improvements to AODE, we would compare
them with other improvements to AODE. Just as indicated
in [11], AODE with BSE requires much more training time
than AODE. So it is not feasible to run AODE with BSE
on large data sets. Consequently, we compare ASAODE
and SASAODE with weighted AODE (WAODE) and AODE
with subsumption resolution (AODESR).

Table 6 presents win/draw/loss records of the above
algorithms. We can see both WAODE and AODESR achieve
lower RMSE, ZOL and nCLL more often than AODE. But
the differences are not significant, except that between
AODESR and AODE. Both ASAODE and SASAODE re-
duce RMSE, ZOL and nCLL significantly often relative to
AODE. Compared to WAODE and AODESR, ASAODE and

SASAODE reduce RMSE significantly often. ZOL and nCLL
measures reveal similar results, although the differences
are not significant except those between SASAODE and
AODESR with respect to nCLL.

TABLE 6
Win/Draw/Loss of RMSE, ZOL and nCLL for SASAODE

AODE WAODE AODESR ASAODE SASAODE20k

R
M

SE

WAODE 9/0/6
AODESR 6/8/1 8/1/6
ASAODE 14/1/0 14/0/1 13/0/2
SASAODE20k 14/0/1 14/0/1 13/0/2 0/4/11
SASAODE50k 14/0/1 14/0/1 13/0/2 1/6/8 8/7/0

Z
O

L

WAODE 8/1/6
AODESR 6/8/1 8/2/5
ASAODE 11/2/2 11/1/3 10/1/4
SASAODE20k 12/1/2 10/1/4 10/1/4 1/7/7
SASAODE50k 12/1/2 10/1/4 10/1/4 1/9/5 6/8/1

nC
LL

WAODE 11/1/3
AODESR 7/8/0 8/1/6
ASAODE 13/1/1 10/0/5 11/0/4
SASAODE20k 14/0/1 11/0/4 12/0/3 5/2/8
SASAODE50k 14/0/1 11/0/4 12/0/3 6/4/5 5/5/5

5.4.2 Comparison of SASA2DE
Table 7 presents win/draw/loss records of sample-based
attribute selective A2DE (SASA2DE) to ASAODE, A2DE,
WA2DE and A2DESR. Note that the sum of win/draw/loss
records of A2DE with respect to alternative algorithms is
only 13. The reason is that the maximum wall time available
for the experiments is 120 hours, but it is not enough for
each fold on satellite and splice. So we get the RMSE
results for A2DE on only 13 data sets. We can only compare
A2DE with alternative algorithms on 13 data sets. That
is why the sum of win/draw/loss records of A2DE with
respect to comparing algorithms is 13. That of SASA2DE is
12 accordingly.

TABLE 7
Win/Draw/Loss of RMSE, ZOL and nCLL for SASA2DE

SASAODE A2DE WA2DE A2DESR SASA2DE20k

R
M

SE

A2DE 6/0/7
WA2DE 7/0/6 11/0/2
A2DESR 6/0/7 6/6/1 5/0/8
SASA2DE20k 12/0/0 12/0/0 10/1/1 11/0/1
SASA2DE50k 12/0/0 12/0/0 11/0/1 11/0/1 9/2/1

Z
O

L

A2DE 6/1/6
WA2DE 6/1/6 7/4/2
A2DESR 6/1/6 5/7/1 4/4/5
SASA2DE20k 12/0/0 11/0/1 9/0/3 10/0/2
SASA2DE50k 12/0/0 11/0/1 9/0/3 10/0/2 6/5/1

nC
LL

A2DE 6/0/7
WA2DE 7/1/5 11/0/2
A2DESR 7/0/6 6/7/0 6/0/7
SASA2DE20k 11/0/1 11/0/1 11/0/1 10/0/2
SASA2DE50k 11/0/1 11/0/1 11/0/1 10/0/2 6/2/4

We can see that SASA2DE obtains lower RMSE, ZOL
and nCLL significantly more often than ASAODE, A2DE,
WA2DE and A2DESR, except the ZOL between SASA2DE
and WA2DE. SASA2DE50k also reduces RMSE, ZOL and
nCLL often relative to SASA2DE20k, not significantly so
when comparing with respect to ZOL and nCLL. It is also
worthwhile to note that ASAODE achieves lower RMSE ,
ZOL and nCLL almost often as higher than A2DE.

Fig. 6 presents the computation time comparison of
SASA2DE. We can see that SASA2DE needs more training
time but less classification time than A2DE, WA2DE and
A2DESR. ASAODE needs a little more training time, but
much less classification time than A2DE. What is more
important is that ASAODE requires much less memory than
A2DE. This demonstrates that the sample-based attribute
selection method by leave-one-out cross validation is a
powerful technique.
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Fig. 6. Computation time comparison of SASA2DE (hours).

5.5 Comparison with Typical In-Core Bayesian Network
Classifiers

In order to present a thorough understanding of compar-
ison with typical in-core Bayesian network classifiers, we
compare ASAODE and SASA2DE (S=50k) with NB, TAN
and KDB in this section. The proposed technique has also
been applied to NB, so we get attribute selective NB (ASNB).
The results of ASNB have been included. Table 8 gives the
win/draw/loss records of alternative algorithms. Notably,
KDB5 denotes KDB when k is set to 5.

TABLE 8
Win/Draw/Loss of RMSE, ZOL and nCLL for Out-of-Core Bayesian

Network Classifiers

NB ASNB TAN KDB5 ASAODE

R
M

SE

ASNB 11/4/0
TAN 14/0/1 14/0/1
KDB5 14/0/1 13/0/2 13/0/2
ASAODE 15/0/0 15/0/0 6/0/9 4/0/11
SASA2DE50k 12/0/0 12/0/0 10/0/2 5/0/7 12/0/0

Z
O

L

ASNB 11/4/0
TAN 14/0/1 12/0/3
KDB5 14/0/1 13/0/2 14/0/1
ASAODE 14/1/0 12/2/1 6/0/9 3/0/12
SASA2DE50k 12/0/0 12/0/0 9/1/2 4/0/8 12/0/0

nC
LL

ASNB 11/4/0
TAN 14/0/1 13/0/2
KDB5 12/0/3 11/0/4 11/0/4
ASAODE 15/0/0 14/0/1 7/0/8 6/0/9
SASA2DE50k 12/0/0 11/0/1 10/0/2 5/0/7 11/0/1

We can see that ASNB, along with TAN, KDB5, ASAODE
and SASA2DE, reduces RMSE, ZOL and nCLL significantly
often relative to NB. ASAODE achieves lower RMSE, ZOL
and nCLL less often than TAN and KDB5, but only the
difference of ZOL between ASAODE and KDB5 is sig-
nificant. SASA2DE50k achieves lower RMSE significantly
more often than ASNB and TAN, not significantly so when
comparing SASA2DE50k and TAN with respect to ZOL.
And SASA2DE50k obtains lower RMSE, ZOL and nCLL
almost as often as higher than KDB5, although it needs less
parents than KDB5.

5.6 Comparison with In-Core Random Forest

Random Forest (RF) [35] is a powerful in-core learning algo-
rithm of the state-of-the-art. Here we compare SASA2DE50k
with Random Forest which uses 100 trees (RF100) with
respect to RMSE.

From Table 9 , we can see that the win/draw/loss
of SASA2DE50k against RF100 is 1/0/10. That is to say,
SASA2DE50k has lower RMSE than RF100 on only 1 data
set. In order to know how much RF100 wins by, we present
the scatter plot in Fig. 7, where the X-axis represents the

RMSE results of SASA2DE50k and the Y-axis the RMSE
results of RF100.

Note that we do not get the results for both the al-
gorithms on such 4 data sets as MSDYearPrediction,
USPSExtended, satellite and splice, so we remove
these 4 points in the plot. We can see that the dataset
uscensus1990 is above the diagonal line, which means
SASA2DE50k could beat Random Forest on uscensus1990.
Except localization, covertype, pokerhand and PAMP2, the
other data sets fall close to the diagonal line. That means the
performance of SASA2DE50k is close to RF100 on most data
sets. It is worthwhile to keep in mind that SASA2DE50k is
a 2-pass out-of-core algorithm in contrast to typical in-core
processing of RF.
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Fig. 7. SASA2DE50k and Random Forest.

5.7 Global Comparison
In order to explore the statistical significance of the results,
we perform a nonparametric Friedman test followed by
Nemenyi post test with respect to RMSE, as advised by
Demšar [45] and Garcı́a and Herrerato [46] to statistically
compare multiple algorithms on multiple data sets.

The Friedman test needs to rank the algorithms on
different data sets. Since we do not obtain the results of
all algorithms on such data sets as MSDYearPrediction,
USPSExtended, satellite and splice, we remove
these data sets. So we rank the algorithms on 11 large data
sets. The null hypothesis of the Friedman test is that all
algorithms are equivalent. The test result is p = 0. This
means that at α = 0.05, there is an evidence to reject the
null hypothesis. So the eight algorithms are not equivalent
in terms of RMSE results.

Fig. 8. RMSE comparison of eight algorithms against each other with
Nemenyi test.

In order to further explore which algorithm is signifi-
cantly different to others, we perform a Nemenyi test shown
in Fig. 8. The analysis reveals that the RMSE of RF100 is
significantly lower than those of NB, AODE, A2DE and
TAN, which seem to have equivalent performance. RMSE
of SASA2DE50k is significantly lower than those of NB and
AODE. There is no consistent evidence to indicate statistical
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differences between ASAODE, KDB5, SASA2DE50k and
RF100, respectively.

6 CONCLUSION

In this paper, we propose a sample-based attribute selection
technique for AODE and A2DE. It performs attribute selec-
tion by selecting the most accurate approximate model in
one extra pass through the training data in terms of leave-
one-out cross validation error. The idea in this framework
is different from the greedy strategy search in BSE or FSS
in AODE [24]. We create a series of nested submodels of
attribute subsets, each being only a minor extension to the
previous one. All these models can be efficiently evaluated
in one pass learning through the training data. We can not
guarantee the selected model is the best in the entire space,
but it is acceptable given the accuracy and the training time.

The experiments on 15 large data sets demonstrate that
the proposed technique significantly reduces AnDE’s error
at the cost of a modest increase in training time. It delivers
lower RMSE, ZOL and nCLL than typical in-core Bayesian
classifiers such as NB and TAN, and has comparable error
to KDB when k is set to 5. The performance of SASA2DE50k
is very close to RF100 on most data sets.

It worthwhile to note that the technique proposed in
this paper can also be applied to other Bayesian network
classifiers. We leave to future research application of the
technique to TAN.

APPENDIX

Detailed results of RMSE, ZOL and nCLL are presented in
Table 9, Table 11 and Table 12. Average numbers of parents
and children selected in ASAODE and SASAODE are in
Table 10.
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TABLE 9
RMSE

Algo locali-
zation

census-
income

USPS-
Extended

MITFace-
SetA

MITFace-
SetB

MSDYear-
Prediction

cover-
type

MITFace-
SetC

poker-
hand

uscensus-
1990 PAMAP2 kddcup linkage satellite splice

AODE 0.6520±
0.0010

0.2932±
0.0020

0.1538±
0.0028

0.1001±
0.0036

0.1682±
0.0025

0.9459±
0.0002

0.4587±
0.0013

0.1564±
0.0014

0.5392±
0.0006

0.2154±
0.0010

0.3881±
0.0008

0.0979±
0.0007

0.0120±
0.0005

0.5783±
0.0003

0.1034±
0.0003

WAODE 0.6497±
0.0011

0.2739±
0.0021

0.1547±
0.0027

0.0999±
0.0036

0.1693±
0.0025

0.9461±
0.0002

0.4567±
0.0014

0.1569±
0.0014

0.5068±
0.0007

0.2016±
0.0011

0.3873±
0.0008

0.0735±
0.0006

0.0118±
0.0005

0.5795±
0.0003

0.1111±
0.0004

AODESR 0.6520±
0.0010

0.2510±
0.0021

0.1427±
0.0024

0.1001±
0.0036

0.1682±
0.0025

0.9459±
0.0002

0.4551±
0.0013

0.1564±
0.0014

0.5392±
0.0006

0.1933±
0.0010

0.3873±
0.0007

0.0803±
0.0006

0.0120±
0.0005

0.5834±
0.0003

0.1034±
0.0003

ASAODE 0.6444±
0.0011

0.2057±
0.0013

0.1508±
0.0027

0.0509±
0.0020

0.1005±
0.0019

0.9455±
0.0002

0.4582±
0.0014

0.1419±
0.0017

0.5004±
0.0010

0.1538±
0.0008

0.3819±
0.0006

0.0611±
0.0007

0.0110±
0.0005

0.5783±
0.0003

0.0532±
0.0002

SASAODE1k 0.6452+/-
0.0021

0.2096±
0.0032

0.1546±
0.0048

0.0606±
0.0047

0.1083±
0.0070

0.9462±
0.0005

0.4589±
0.0016

0.1466±
0.0038

0.5013±
0.0016

0.1547±
0.0014

0.3844±
0.0021

0.0636±
0.0030

0.0114±
0.0007

0.5823±
0.0046

0.0559±
0.0036

SASAODE5k 0.6444±
0.0011

0.2059±
0.0013

0.1519±
0.0033

0.0539±
0.0044

0.1024±
0.0020

0.9459±
0.0004

0.4583±
0.0014

0.1432±
0.0028

0.5007±
0.0011

0.1539±
0.0007

0.3833±
0.0013

0.0628±
0.0025

0.0115±
0.0007

0.5788±
0.0009

0.0537±
0.0004

SASAODE10k 0.6444±
0.0011

0.2059±
0.0014

0.1513±
0.0028

0.0522±
0.0034

0.1009±
0.0019

0.9457±
0.0003

0.4583±
0.0014

0.1425±
0.0023

0.5008±
0.0009

0.1539±
0.0007

0.3826±
0.0012

0.0615±
0.0014

0.0113±
0.0005

0.5785±
0.0006

0.0535±
0.0004

SASAODE20k 0.6444±
0.0011

0.2057±
0.0013

0.1510±
0.0026

0.0512±
0.0022

0.1013±
0.0020

0.9456±
0.0002

0.4582±
0.0013

0.1421±
0.0021

0.5005±
0.0010

0.1539±
0.0007

0.3824±
0.0010

0.0611±
0.0007

0.0115±
0.0006

0.5787±
0.0007

0.0534±
0.0002

SASAODE50k 0.6444±
0.0011

0.2057±
0.0013

0.1510±
0.0027

0.0511±
0.0021

0.1004±
0.0017

0.9456±
0.0002

0.4582±
0.0013

0.1419±
0.0018

0.5004±
0.0010

0.1539±
0.0008

0.3821±
0.0006

0.0611±
0.0007

0.0113±
0.0006

0.5786±
0.0007

0.0533±
0.0002

SASAODE100k 0.6444±
0.0011

0.2057±
0.0013

0.1509±
0.0027

0.0511±
0.0021

0.1006±
0.0020

0.9456±
0.0002

0.4582±
0.0013

0.1419±
0.0020

0.5004±
0.0010

0.1539±
0.0007

0.3820±
0.0006

0.0611±
0.0007

0.0111±
0.0006

0.5785±
0.0007

0.0533±
0.0002

SASAODE200k 0.6444±
0.0011

0.2057±
0.0013

0.1508±
0.0027

0.0511±
0.0021

0.1004±
0.0018

0.9455±
0.0002

0.4582±
0.0013

0.1420±
0.0019

0.5004±
0.0010

0.1539±
0.0008

0.3819±
0.0006

0.0611±
0.0007

0.0111±
0.0005

0.5783±
0.0003

0.0532±
0.0002

SASAODE
p200k

0.8589±
0.1113

0.3279±
0.1380

0.1509±
0.0027

0.5763±
0.3313

0.5443±
0.2837

0.9744±
0.0157

0.4582±
0.0014

0.5956±
0.2344

0.7658±
0.2063

0.4374±
0.2682

0.9068±
0.1789

0.4391±
0.3853

0.5000±
0.0000

0.9338±
0.0309

0.0535±
0.0003

A2DE 0.5865±
0.0018

0.2403±
0.0026

0.1485±
0.0028

0.0737±
0.0027

0.1479±
0.0020

0.9368±
0.0003

0.4373±
0.0014

0.1489±
0.0017

0.4956±
0.0007

0.1753±
0.0010

0.3307±
0.0004

0.0833±
0.0007

0.0112±
0.0005 oot1 oot1

WA2DE 0.5884±
0.0018

0.2364±
0.0026

0.1497±
0.0027

0.0731±
0.0027

0.1478±
0.0020

0.9367±
0.0003

0.4304±
0.0016

0.1485±
0.0017

0.4201±
0.0008

0.1688±
0.0009

0.3291±
0.0004

0.0684±
0.0006

0.0109±
0.0005 oot1 oot1

A2DESR 0.5865±
0.0018

0.2135±
0.0020

0.1501±
0.0025

0.0737±
0.0027

0.1479±
0.0020

0.9368±
0.0003

0.4223±
0.0015

0.1489±
0.0017

0.4956±
0.0007

0.1678±
0.0009

0.3306±
0.0004

0.0643±
0.0006

0.0111±
0.0005 oot1 oot1

SASA2DE20k 0.5853±
0.0017

0.2033±
0.0011 oot1 0.0446±

0.0031
0.0840±
0.0020

0.9367±
0.0003

0.4337±
0.0015

0.1110±
0.0018

0.4073±
0.0007

0.1513±
0.0007

0.3264±
0.0007

0.0516±
0.0008

0.0078±
0.0010 oot1 oot1

SASA2DE50k 0.5853±
0.0017

0.2025±
0.0016 oot1 0.0444±

0.0032
0.0834±
0.0018

0.9366±
0.0003

0.4337±
0.0015

0.1107±
0.0015

0.4075±
0.0009

0.1512±
0.0007

0.3262±
0.0005

0.0515±
0.0007

0.0073±
0.0010 oot1 oot1

NB 0.7106±
0.0007

0.4660±
0.0018

0.2256±
0.0026

0.0982±
0.0029

0.1394±
0.0014

0.9600±
0.0002

0.4953±
0.0012

0.2367±
0.0021

0.5801±
0.0006

0.2911±
0.0006

0.4647±
0.0006

0.1849±
0.0008

0.0125±
0.0006

0.6540±
0.0002

0.0971±
0.0002

ASNB 0.7106±
0.0007

0.2330±
0.0015

0.2254±
0.0026

0.0677±
0.0016

0.1382±
0.0018

0.9530±
0.0001

0.4845±
0.0010

0.2367±
0.0021

0.5801±
0.0006

0.2579±
0.0008

0.4573±
0.0007

0.1046±
0.0005

0.0125±
0.0006

0.6520±
0.0002

0.0537±
0.0002

TAN 0.6321±
0.0014

0.2247±
0.0025

0.1153±
0.0022

0.0202±
0.0025

0.1213±
0.0020

0.9436±
0.0002

0.4721±
0.0013

0.2068±
0.0017

0.4987±
0.0006

0.1845±
0.0009

0.3232±
0.0007

0.0572±
0.0006

0.0081±
0.0009

0.5424±
0.0003

0.1020±
0.0003

KDB5 0.5225±
0.0023

0.2143±
0.0022

0.0839±
0.0034

0.1350±
0.0035

0.0841±
0.0023

0.9447±
0.0003

0.3903±
0.0020

0.0494±
0.0015

0.2842±
0.0011

0.1638±
0.0006

0.1697±
0.0004

0.0477±
0.0008

0.0060±
0.0006

0.4448±
0.0004

0.0924±
0.0002

RF100 0.5194±
0.0024

0.1992±
0.0013

0.0338±
0.0010

0.0353±
0.0017

0.0566±
0.0012 oom2 0.3478±

0.0018
0.0888±
0.0006

0.3190±
0.0028

0.1573±
0.0008

0.0962±
0.0012

0.0466±
0.0008

0.0060±
0.0007 oom2 oom2

1 Out of time when the wall time is set to 120 hours for each fold.
2 Out of memory when the available memory is 138G.

TABLE 10
Average numbers of parents and children selected in ASAODE and SASAODE

Algo locali-
zation

census-
income

USPS-
Extended

MITFace-
SetA

MITFace-
SetB

MSDYear-
Prediction

cover-
type

MITFace-
SetC

poker-
hand

uscensus-
1990 PAMAP2 kddcup linkage satellite splice

AODE 5,5 41,41 676,676 361,361 361,361 90,90 54,54 361,361 10,10 67,67 54,54 41,41 11,11 138,138 141,141
ASAODE 1,5 3,5 652,469 1,25 1,85 18,80 42,54 42,361 1,5 2,4 15,54 2,20 5,11 138,138 14,6
SASAODE1k 1,5 8,3 559,491 2,33 2,149 23,59 41,52 29,336 1,8 1,11 21,47 2,20 4,7 68,79 37,12
SASAODE5k 1,5 3,5 629,485 1,92 1,156 41,69 44,51 34,353 1,7 1,8 18,45 2,20 4,8 104,105 11,7
SASAODE10k 1,5 2,5 645,474 1,27 1,89 31,78 44,52 36,354 1,8 1,6 16,48 2,20 4,7 105,105 9,7
SASAODE20k 1,5 2,5 648,466 1,26 1,105 24,79 44,53 41,357 1,7 1,7 15,47 2,20 5,7 82,84 7,7
SASAODE50k 1,5 3,5 650,469 1,26 1,87 23,77 46,53 40,359 1,5 1,8 15,51 2,20 5,8 104,105 8,6
SASAODE100k 1,5 3,5 650,469 1,26 1,85 21,79 46,53 39,361 1,5 1,6 15,51 2,20 5,10 116,116 11,6
SASAODE200k 1,5 3,5 652,469 1,26 1,86 18,79 43,53 40,360 1,5 1,6 15,54 2,20 5,10 138,138 12,6
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TABLE 11
Zero-one loss

Algo locali-
zation

census-
income

USPS-
Extended

MITFace-
SetA

MITFace-
SetB

MSDYear-
Prediction

cover-
type

MITFace-
SetC

poker-
hand

uscensus-
1990 PAMAP2 kddcup linkage satellite splice

AODE 0.4333±
0.0027

0.1106±
0.0015

0.0244±
0.0008

0.0104±
0.0007

0.0294±
0.0008

0.9281±
0.0013

0.2859±
0.0016

0.0254±
0.0005

0.4812±
0.0028

0.0532±
0.0004

0.1654±
0.0007

0.0154±
0.0002

0.0002±
0.0000

0.3537±
0.0004

0.0134±
0.0001

WAODE 0.4314±
0.0036

0.0990±
0.0018

0.0247±
0.0009

0.0103±
0.0007

0.0297±
0.0009

0.9288±
0.0012

0.2812±
0.0017

0.0257±
0.0005

0.1758±
0.0079

0.0474±
0.0005

0.1647±
0.0006

0.0109±
0.0002

0.0002±
0.0000

0.3552±
0.0005

0.0154±
0.0001

AODESR 0.4333±
0.0027

0.0844±
0.0019

0.0210±
0.0007

0.0104±
0.0007

0.0294±
0.0008

0.9281±
0.0013

0.2825±
0.0015

0.0254±
0.0005

0.4812±
0.0028

0.0434±
0.0005

0.1647±
0.0007

0.0108±
0.0002

0.0002±
0.0000

0.3608±
0.0004

0.0134±
0.0001

ASAODE 0.4556±
0.0033

0.0555±
0.0009

0.0235±
0.0008

0.0030±
0.0002

0.0108±
0.0004

0.9286±
0.0009

0.2852±
0.0018

0.0211±
0.0005

0.3302±
0.0022

0.0274±
0.0003

0.1611±
0.0005

0.0040±
0.0001

0.0002±
0.0000

0.3537±
0.0004

0.0029±
0

SASAODE20k 0.4556±
0.0033

0.0555±
0.0010

0.0236±
0.0008

0.0030±
0.0003

0.0110±
0.0003

0.9280±
0.0017

0.2853±
0.0016

0.0212±
0.0006

0.3302±
0.0022

0.0279±
0.0008

0.1629±
0.0026

0.0040±
0.0001

0.0002±
0.0000

0.3691±
0.0165

0.0029±
0.0001

SASAODE50k 0.4556±
0.0033

0.0555±
0.0009

0.0235±
0.0008

0.0030±
0.0003

0.0109±
0.0004

0.9279±
0.0010

0.2853±
0.0016

0.0211±
0.0005

0.3302±
0.0022

0.0281±
0.0011

0.1617±
0.0016

0.0040±
0.0001

0.0002±
0.0000

0.3630±
0.0151

0.0029±
0.0000

A2DE 0.3598±
0.0047

0.0777±
0.0014

0.0227±
0.0008

0.0057±
0.0004

0.0227±
0.0006

0.9095±
0.0012

0.2609±
0.0019

0.0232±
0.0005

0.1185±
0.0019

0.0366±
0.0005

0.1207±
0.0003

0.0108±
0.0002

0.0002±
0.0000 oot1 oot1

WA2DE 0.3602±
0.0044

0.0752±
0.0016

0.0231±
0.0008

0.0056±
0.0004

0.0227±
0.0006

0.9095±
0.0013

0.2505±
0.0025

0.0232±
0.0005

0.0763±
0.0011

0.0342±
0.0004

0.1195±
0.0003

0.0095±
0.0002

0.0002±
0.0000 oot1 oot1

A2DESR 0.3598±
0.0047

0.0618±
0.0014

0.0233±
0.0008

0.0057±
0.0004

0.0227±
0.0006

0.9095±
0.0012

0.2433±
0.0020

0.0232±
0.0005

0.1185±
0.0019

0.0345±
0.0004

0.1206±
0.0003

0.0094±
0.0001

0.0002±
0.0000 oot1 oot1

SASA2DE20k 0.3594±
0.0047

0.0546±
0.0008 oot1 0.0023±

0.0004
0.0078±
0.0005

0.9103±
0.0014

0.2567±
0.0026

0.0132±
0.0004

0.0883±
0.0378

0.0273±
0.0003

0.1184±
0.0007

0.0027±
0.0001

0.0001±
0.0000 oot1 oot1

SASA2DE50k 0.3594±
0.0047

0.0546±
0.0011 oot1 0.0022±

0.0004
0.0077±
0.0005

0.9101±
0.0010

0.2566±
0.0025

0.0131±
0.0003

0.1005±
0.0509

0.0273±
0.0003

0.1182±
0.0005

0.0027±
0.0001

0.0001±
0.0000 oot1 oot1

NB 0.5449±
0.0026

0.2410±
0.0017

0.0532±
0.0012

0.0100±
0.0006

0.0199±
0.0004

0.9514±
0.0005

0.3321±
0.0024

0.0582±
0.0010

0.4988±
0.0018

0.0896±
0.0003

0.2365±
0.0007

0.0361±
0.0005

0.0002±
0.0000

0.4425±
0.0002

0.0121±
0.0001

ASNB 0.5449±
0.0026

0.0620±
0.0010

0.0531±
0.0012

0.0046±
0.0002

0.0196±
0.0005

0.9247±
0.0015

0.3094±
0.0017

0.0582±
0.0010

0.4988±
0.0018

0.0759±
0.0005

0.2302±
0.0007

0.0090±
0.0001

0.0002±
0.0000

0.4410±
0.0003

0.0029±
0.0000

TAN 0.4367±
0.0033

0.0675±
0.0016

0.0149±
0.0006

0.0005±
0.0001

0.0158±
0.0005

0.9268±
0.0010

0.3005±
0.0023

0.0455±
0.0008

0.3295±
0.0015

0.0390±
0.0005

0.1171±
0.0005

0.0034±
0.0001

0.0001±
0.0000

0.3240±
0.0004

0.0133±
0.0001

KDB5 0.3064±
0.0036

0.0547±
0.0010

0.0080±
0.0006

0.0188±
0.0010

0.0073±
0.0004

0.9124±
0.0006

0.2077±
0.0023

0.0026±
0.0002

0.0877±
0.0008

0.0313±
0.0002

0.0340±
0.0002

0.0026±
0.0001

0.0000±
0.0000

0.2284±
0.0004

0.0104±
0.0001

1 Out of time when the wall time is set to 120 hours for each fold.

TABLE 12
Negative conditional log likelihood

Algo locali-
zation

census-
income

USPS-
Extended

MITFace-
SetA

MITFace-
SetB

MSDYear-
Prediction

cover-
type

MITFace-
SetC

poker-
hand

uscensus-
1990 PAMAP2 kddcup linkage satellite splice

AODE 1.7891±
0.0083

0.4898±
0.0062

0.9115±
0.0474

0.3789±
0.0325

1.1192±
0.0438

5.7865±
0.0129

0.9467±
0.0058

0.8297±
0.0156

1.2089±
0.0034

0.4122±
0.0053

1.7758±
0.0104

0.0400±
0.0006

0.0007±
0.0001

6.1527±
0.0119

0.0590±
0.0008

WAODE 1.7824±
0.0094

0.4086±
0.0050

0.9211±
0.0475

0.3774±
0.0325

1.1242±
0.0443

5.7601±
0.0124

0.9233±
0.0055

0.8218±
0.0156

1.0865±
0.0031

0.3186±
0.0044

1.7677±
0.0104

0.0240±
0.0004

0.0007±
0.0001

6.1337±
0.0118

0.0724±
0.0010

AODESR 1.7891±
0.0083

0.3204±
0.0053

0.7169±
0.0360

0.3789±
0.0325

1.1192±
0.0438

5.7865±
0.0129

0.9232±
0.0054

0.8297±
0.0156

1.2089±
0.0034

0.2796±
0.0039

1.7650±
0.0100

0.0273±
0.0005

0.0007±
0.0001

5.9648±
0.0120

0.0590±
0.0008

ASAODE 1.8528±
0.0098

0.2132±
0.0027

0.8413±
0.0421

0.0198±
0.0027

0.1764±
0.0079

5.6117±
0.0091

0.9435±
0.0058

0.5785±
0.0148

1.0977±
0.0048

0.1278±
0.0011

1.6265±
0.0085

0.0248±
0.0006

0.0005±
0.0001

6.1527±
0.0119

0.0230±
0.0002

SASAODE20k 1.8528±
0.0098

0.2133±
0.0028

0.8347±
0.0424

0.0201±
0.0027

0.1956±
0.0490

5.6020±
0.0732

0.9440±
0.0057

0.5842±
0.0211

1.0981±
0.0046

0.1283±
0.0013

1.5053±
0.1873

0.0248±
0.0006

0.0006±
0.0002

4.2352±
2.0162

0.0229±
0.0010

SASAODE50k 1.8528±
0.0098

0.2132±
0.0027

0.8372±
0.0452

0.0201±
0.0027

0.1783±
0.0089

5.5829±
0.0615

0.9441±
0.0058

0.5782±
0.0159

1.0977±
0.0048

0.1284±
0.0015

1.5873±
0.1286

0.0248±
0.0006

0.0006±
0.0001

5.0036±
1.8474

0.0229±
0.0004

A2DE 1.4750±
0.0105

0.2986±
0.0072

0.7473±
0.0460

0.1650±
0.0145

0.7929±
0.0363

5.4457±
0.0131

0.8488±
0.0057

0.6298±
0.0175

1.0441±
0.0030

0.2046±
0.0026

1.3610±
0.0054

0.0286±
0.0005

0.0006±
0.0001 oot1 oot1

WA2DE 1.4839±
0.0108

0.2882±
0.0067

0.7619±
0.0466

0.1614±
0.0144

0.7835±
0.0357

5.4173±
0.0129

0.8174±
0.0058

0.6187±
0.0174

0.8125±
0.0026

0.1796±
0.0023

1.3453±
0.0054

0.0209±
0.0004

0.0005±
0.0001 oot1 oot1

A2DESR 1.4750±
0.0105

0.2288±
0.0040

0.6961±
0.0410

0.1650±
0.0145

0.7929±
0.0363

5.4457±
0.0131

0.7865±
0.0052

0.6298±
0.0175

1.0441±
0.0030

0.1759±
0.0022

1.3600±
0.0053

0.0190±
0.0004

0.0006±
0.0001 oot1 oot1

SASA2DE20k 1.4752±
0.0101

0.2087±
0.0023 oot1 0.0259±

0.0122
0.0970±
0.0262

5.3964±
0.0295

0.8333±
0.0059

0.2487±
0.0099

0.7834±
0.0043

0.1241±
0.0011

1.2770±
0.0467

0.0147±
0.0006

0.0004±
0.0002 oot1 oot1

SASA2DE50k 1.4752±
0.0101

0.2070±
0.0036 oot1 0.0307±

0.0099
0.0934±
0.0248

5.4081±
0.0142

0.8333±
0.0057

0.2481±
0.0107

0.7848±
0.0052

0.1240±
0.0010

1.2935±
0.0328

0.0146±
0.0004

0.0003±
0.0001 oot1 oot1

NB 2.1440±
0.0054

1.9789±
0.0172

1.1939±
0.0268

0.3484±
0.0249

0.8865±
0.0396

8.1275±
0.0344

1.1997±
0.0074

2.0562±
0.0578

1.4158±
0.0048

1.7613±
0.0133

2.8094±
0.0103

0.2249±
0.0022

0.0009±
0.0001

19.8610±
0.0349

0.0509±
0.0003

ASNB 2.1440±
0.0054

0.2884±
0.0035

1.1906±
0.0265

0.0402±
0.0017

0.8071±
0.0374

4.8479±
0.0067

1.1119±
0.0054

2.0562±
0.0578

1.4158±
0.0048

0.4008±
0.0033

2.6305±
0.0107

0.0759±
0.0010

0.0009±
0.0001

17.9436±
0.0335

0.0285±
0.0002

TAN 1.7726±
0.0126

0.2571±
0.0056

0.1948±
0.0117

0.0053±
0.0020

0.2335±
0.0097

5.6951±
0.0127

1.0798±
0.0089

0.9739±
0.0112

1.0822±
0.0029

0.2595±
0.0028

1.1518±
0.0068

0.0207±
0.0005

0.0004±
0.0001

3.7185±
0.0091

0.0572±
0.0004

KDB5 1.3241±
0.0143

0.4681±
0.0128

0.0912±
0.0088

0.7473±
0.0457

0.2307±
0.0173

16.9637±
0.0732

0.7217±
0.0080

0.0603±
0.0048

0.4014±
0.0030

0.1620±
0.0020

0.2241±
0.0020

0.0134±
0.0005

0.0002±
0.0001

1.6850±
0.0052

0.0592±
0.0006

1 Out of time when the wall time is set to 120 hours for each fold.


