
Noname manuscript No.
(will be inserted by the editor)

Selective AnDE for large data learning: a low-bias
memory constrained approach

Shenglei Chen · Ana M. Mart́ınez · Geoffrey I.
Webb · Limin Wang

Received: Jun 06, 2015 /Revised: Jan 17, 2016 /Accepted: Mar 06, 2016

Abstract Learning from data that are too big to fit into memory poses great
challenges to currently available learning approaches. Averaged n-Dependence Es-
timators (AnDE) allows for a flexible learning from out-of-core data, by varying
the value of n (number of super parents). Hence AnDE is especially appropriate
for learning from large quantities of data. Memory requirement in AnDE, however,
increases combinatorially with the number of attributes and the parameter n. In
large data learning, number of attributes is often large and we also expect high n
to achieve low bias classification. In order to achieve the lower bias of AnDE with
higher n but with less memory requirement, we propose a memory constrained
selective AnDE algorithm, in which two passes of learning through training ex-
amples are involved. The first pass performs attribute selection on super parents
according to available memory, whereas the second one learns an AnDE model
with parents only on the selected attributes. Extensive experiments show that
the new selective AnDE has considerably lower bias and prediction error relative
to An′DE, where n′ = n − 1, while maintaining the same space complexity and
similar time complexity. The proposed algorithm works well on categorical data.
Numerical data sets need to be discretized first.
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1 Introduction

Many applications in e.g. bioinformatics, IT-security and text-classification come
with millions of training examples. Learning from these large data sets poses great
challenges to currently available machine learning algorithms, one of which is that
the entire dataset probably cannot be loaded into memory. One way to address
this problem is to learn from a sample of the dataset, which will potentially lose
information implicit in the data as a whole. Another alternative is to learn from
out-of-core data [27]. While information will not be lost in this approach, data
access will be very expensive. Hence approaches requiring limited number of passes
through training data become more desirable.

AnDE is one family of Bayesian learning algorithms that can learn in a single
pass through training examples [22,23]. Developed based on Näıve Bayes (NB)
learning [6], AnDE preserves many favorable features of Näıve Bayes, including
no model selection and direct prediction of class probabilities [23]. What is more
desirable is that AnDE has linear time complexity with respect to the number of
training examples, which allows learning from a single pass through training data
and hence enables out-of-core learning possible.

Besides the feature of single pass of data access, AnDE provides lower bias than
NB, because it allows every attribute to depend on n other attributes, where the
depended n attributes are called super parents. It is well known that classification
error can be decomposed into bias and variance [14]. The variance component will
be lower when learning from large data than when learning from small data sets
[2], since probability estimates are made considering a larger number of points. A
low value of the bias component of the classification error is highly appealing to
large data learning, where generally more complex multivariate relationships must
be captured. In AnDE, bias can be made progressively lower as the parameter n
increases.

However, memory requirement of AnDE increases combinatorially with the
number of attributes, denoted by a, and the parameter n. And it is often the case
that a large data set contains not just a large amount of training examples but
also a large number of attributes. Additionally, higher n is desired to obtain low
bias from large datasets. Thus, this poses conflicting objectives between lower bias
and less memory requirement.

In order to achieve the lower bias of AnDE with higher n but with less memory
requirement, we propose a memory constrained selective AnDE algorithm which
performs attribute selection in AnDE with higher n according to certain memory
restrictions. Two passes of learning through training examples are involved in this
scheme. The first pass generates the information theoretic statistics required for
selecting the parent attributes. The second pass is used to calculate the sample
distribution for AnDE, in which only the attributes selected in the previous step
are used as super parents. By this means, we choose a very productive subset
of all attribute subsets much more efficiently than previous attribute selection
techniques [24,25,28], which involve a passes learning on the data in the worst
case.
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As a proof of concept and to show the validity of this setting, we show how
this memory constrained selective AnDE obtains similar performance to regular
AnDE with the same n and better performance than regular AnDE with lower n.
That is, experimental results show that selective AnDE, where memory has been
constrained so as to match the memory of An′DE, where n′ = n − 1, performs
similarly to regular AnDE (which requires significantly more memory) and can
achieve lower bias and will deliver more accurate classification than regular An′DE,
where n′ = n− 1 (which requires the same memory).

It is worthwhile to note that the proposed algorithm can be used only on
categorical data. If we deal with numerical data sets directly, the memory and run-
time requirements would be not acceptable as the numerical attribute might take
an infinite number of values. As a result, for data sets with numerical attributes,
the attributes have to be discretized first.

The paper is organized as follows: we provide a survey of related work in Section
2. Section 3 reviews some preliminaries, including Näıve Bayes and Averaged n-
Dependence Estimators. We present how the number of selected parent attributes
can be approximated and what metrics can be used for attribute ranking in Section
4, and propose a two passes algorithm for selective AnDE. Section 5 presents
experimental evaluation of our proposed approach. Section 6 provides conclusions
and directions for future research.

2 Related work

Since AODE was first proposed in 2005 [22], which is a special case of AnDE with
n equal to one, there have been many attempts to perform attribute selection in
AnDE from different perspectives. Here we give a brief survey of them.

Yang et al [24,25] investigated how to select SPODEs (Super Parent One De-
pendence Estimator) within AODE. They presented five different metrics to rank
SPODEs, including two popular information theoretic metrics, Minimum Descrip-
tion Length (MDL) [7], Minimum Message Length (MML), and three accuracy-
based empirical metrics, Leave One Out (LOO), Backward Sequential Elimination
(BSE), and Forward Sequential Addition (FSA). For MDL, MML and LOO, they
selected those SPODEs whose metric values were lower than the mean value. For
BSE and FSA, the process produced a SPODE ensembles (where a is the number
of attributes), from size 1 to a; out of these a ensembles, the one with the lowest
classification error was selected. They demonstrated that model selection in AODE
did make a difference and empirical metrics outperformed information theoretic
metrics at the cost of higher training time overhead. Zheng et al [28] also explored
the attribute selection problem in AODE in the framework of BSE and FSA, but
rather concentrated on the comparison of parent selection and children selection.
They suggested that elimination of children was more effective.

These studies agree that BSE is very effective for attribute selection in AODE.
However, it involves multiple passes learning on the data, which can amount to
a passes in the worst case. This is clearly not a suitable approach for large data
learning.

Chen et al [4] proposed a new attribute selection algorithm for AODE, referred
to as ASAODE. This algorithm can search in a large model space, while it requires
only a single extra pass through the training data, resulting in a computationally
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efficient two-pass learning algorithm. Experimental results indicate that ASAODE
significantly reduces AODE’s bias at the cost of a modest increase in training time.

Besides these studies on attribute selection in AODE, there is also some well-
known work that improves AODE. Jiang et al [12] proposed weightily AODE
based on the observation that in AODE, each One-Dependence Estimator (ODE)
is treated equally, while attributes do not play the same role in classification for
many real world applications. Weightily AODE uses mutual information between
the super-parent and the class as the weight.

Zheng et al [29] proposed a technique called Subsumption Resolution for AODE,
which identifies pairs of attribute values such that one appears to subsume the
other and deletes the generalization. This idea is inspired by the fact that one
value of one attribute might be a generalization of one value of the other. For
example, consider Gender and Pregnant as two attributes, then Pregnant = yes
implies that Gender = female. Therefore, Gender = female is a generalization
of Pregnant = yes. Likewise, Gender = male implies that Pregnant = no, so
Pregnant = no is a generalization of Gender = male. Where one value xi is a
generalization of another value, xj , P (y|xi, xj) = P (y|xj). In consequence drop-
ping the more general value from any calculations should not harm any posterior
probability estimates, whereas assuming independence between them may.

3 Preliminaries

In this section, we present some preliminaries, including Näıve Bayes and Averaged
n-Dependence Estimators.

The classification task is assumed as follows. Given a training sample T of t
classified objects, we are required to predict the probability P(y | x) that a new
example x = ⟨x1, . . . , xa⟩ belongs to some class y, where xi is the value of the
attribute xi and y ∈ {c1, . . . , ck}.

3.1 Näıve Bayes

From the definition of conditional probability, we have

P(y | x) = P(y,x)/P(x).

As P(x) =
∑k

i=1 P(ci,x) and y ∈ {c1, . . . , ck}, it is reasonable to consider P(x)
as the normalizing constant and estimate only the joint probability P(y,x) in the
remainder of this paper.

If example x does not appear frequently enough in the training data, we cannot
directly derive accurate estimates of P(y,x) and must extrapolate these estimates
from observations of lower-dimensional probabilities in the data [23]. Applying the
definition of conditional probabilities again, we have

P(y,x) = P(y)P(x | y).

The first term P(y) on the right side can be sufficiently accurately estimated from
the sample frequencies, if the number of classes, k, is not a huge number. For the
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second term P(x | y), NB assumes the attributes are independent of each other
given the class and calculates by the following formula,

P(x | y) =
a∏

i=1

P(xi | y). (1)

Consequently NB calculates the joint probability P(y,x) according to the following
formula,

PNB(y,x) = P(y)
a∏

i=1

P(xi | y). (2)

Thus, NB classifies example x by selecting

argmax
y

(
P̂(y)

a∏
i=1

P̂(xi | y)
)
.

Where P̂(y) and P̂(xi | y) are estimates of the respective probabilities derived from
the frequencies of their respective arguments in the training sample, with possible
correction such as Laplace estimate.

We can obtain estimates of the probabilities P(y | x) by normalizing across
all possible classes, allowing the classifier to predict not just the class, but the
probability of each class [18].

3.2 Averaged n-Dependence Estimators

Although some violations of the attribute independence assumption do not matter
[5], it is clear that many do. Consequently there have been and still are increasing
interests on developing techniques to alleviate the attribute independence assump-
tion while retaining NB’s desirable simplicity and efficiency [9,19,30]. In terms of
large data, this requirement becomes as important as ever, since scalable but pow-
erful classifiers are required.

Among these significant developments is AnDE [23], which relaxes the at-
tribute independence assumption and averages over all possible n-dependence es-
timators, with the aim of reducing the inductive bias in the classifier. To be specific,
instead of using (2) to estimate the joint probability P(y,x), AnDE assumes every
attribute depends on a subset of attributes of size n known as parent attributes.
And in order to simplify the calculation, it assumes that each attribute depends on
the same parent attributes set p. Joint probability P(y,x) for some p is calculated
as following,

P(y,x) = P(y,xp)
a∏

i=1

P(xi | y,xp), (3)

where xp is the set of values of attributes in p corresponding to example x.
When we try to select a subset p of size n from a attributes, we have C(a, n) =

a!/(n!(a−n)!) possible options. For each possible set of parents, we can build one
model. The average across all models gives a final probability. So joint probability
in AnDE is calculated by:

PAnDE(y,x) =
1

C(a, n)

∑
p

P(y,xp)
a∏

i=1

P(xi | y,xp), (4)
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where p ranges over all size-n subsets of attributes.

When training the AnDE classifier, we need to form an (n + 2)-dimensional
probability table, which contains the observed frequency for each combination of
n + 1 attribute values and the class labels. The space complexity of the table is
O(kC(a, n+ 1)v̄n+1), where v̄ is the average number of values per attribute. It is
worthwhile to note that AnDE can only work well on categorical data. Numeri-
cal data sets need to be discretized first. The time complexity of compiling it is
O(tC(a, n + 1)), as we need to update each entry for every combination of the
n+ 1 attribute-values for every instance.

It is evident that AnDE has linear time complexity with respect to the number
of training examples, which allows single pass learning through training examples
and makes out-of-core learning for large data set possible. On the other hand,
as every attribute is assumed to depend on its parent attributes, which is more
coincident with the characteristics of real data sets, AnDE has lower bias than
NB. And as n increases, AnDE achieve lower bias at the cost of higher variance
[23]. This low bias characteristic, combined with the single pass learning, makes
AnDE well suited to large data learning, where variance is generally low.

However, as we can see from the space complexity, the memory requirement in
AnDE increase combinatorially with the number of attributes and the parameter
n. Thus, higher n does not only mean lower bias but also higher memory require-
ment. In the next section we present a new approach that combines the low bias
characteristic of AnDE with higher n with the low memory requirement of AnDE
with smaller n.

4 Selective AnDE

NB assumes that all attributes are independent of each other, which is not the
case in most real-life data sets. AnDE assumes that each attribute depends on its
parent attributes which range over all size-n subsets of the entire attribute set.
This means AnDE requires large amount of memory for high n and large number
of attributes.

Here we propose a trade-off between these two strategies, in which parent
attributes (or super parents) range over all size-n subsets of s selected attributes,
rather than the entire set of a attributes, where s ≤ a. This strategy reduces
the memory requirement and can resolve the large memory problem brought by
increasing n. At the same time, it is able to retain the low bias characteristic of
original AnDE. So compared to regular AnDE with lower n, selective AnDE with
higher n can be expected to achieve higher accuracy while requiring comparative
memory.

There are a number of factors of which we ideally want the attribute selection
mechanism to take account. We want the final collection of parent-child pairs to
include those that are most predictive of the class as well as those for which the
violations of the attribute-independence assumption between parents and children
are most harmful to the classifier. The most effective way to assess the latter is
through wrapper evaluation. We can obtain a good heuristic approximation to the
former by ranking parents and children on their individual capacity to predict the
class, which we assess using mutual information.
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As a result, we can first use a memory criterion to approximate the number
of selected attributes. That is, the memory requirement of selective AnDE with
higher n should be comparable to the memory of AnDE with lower n. Then we
rank the attributes and select the top s attributes.

The following sections include details in which this process is carried out. Sec-
tion 4.1 presents an analysis to approximate the number of selected attributes
according to AnDE with a lower value of n. Section 4.2 includes three different
options to evaluate the classification power of an attribute based on information
theoretic measures. Section 4.3 presents the selective AnDE algorithm. The space
and time complexity analyses are presented in Section 4.4.

4.1 Approximating the Number of Selected Attributes

In order to calculate s, the number of selected parent attributes, we need to esti-
mate the memory requirements before selecting and after. As it is mentioned afore,
the space complexity of regular AnDE is O(kC(a, n+1)v̄n+1), where C(a, n+1) is
the binomial coefficient when n+1 elements are chosen from a pool of a elements.

When we compute the memory requirement of selective AnDE, we need to
consider two parts. One is the memory complexity for s selected attributes. As
the probability table contains the observed frequency for each combination of
n + 1 attribute values and the class label, the space complexity of the table is
O(kC(s, n + 1)ūn+1), where ū is the average number of values for the selected
attributes. The second is the memory requirement of storing the instance counts
for the a−s unselected attributes given the s selected attributes. This is due to the
fact that we actually want to select only the parents, but not the children. There
should be one dimensional attribute in which all the attributes are included. Hence
we should also consider the joint probability of the a − s unselected attributes
with other n parent attributes and the class. This requires a memory space of
O(kC(s, n) ∗ ūn ∗ (a − s) ∗ r̄), where r̄ is the average number of values for the
unselected attributes. So the overall memory complexity is O(kūn(C(s, n+ 1)ū+
C(s, n) ∗ (a− s) ∗ r̄)).

We expect this memory to be comparable to the memory of An′DE, where
n′<n. So we get the following equation,

kūn(C(s, n+ 1)ū+ C(s, n) ∗ (a− s) ∗ r̄) = kC(a, n′ + 1)v̄n
′+1. (5)

This gives the criterion to compute s.
Note that in a practical scenario, the number of attributes to be selected can

also be calculated according to the total main memory available. The above de-
tailed approach to match versions of AnDE with different values of n is specially
used to stress the validity of this approach.

4.2 Metrics for Attribute Ranking

After the number of desired attributes is calculated, we need to rank the attributes
and select the top s attributes. Because we want to minimize the accuracy loss
resulted from selecting attributes, we should keep those attributes which are more
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correlated with the class than others. We need to find some metrics to evaluate
this correlation.

Previous research findings suggest that correlation metrics based on informa-
tion theory are more powerful than metrics based on classical linear correlation
for classification purposes [26] and are more widely used in classification fields [9,
19].

Here we investigate three different metrics from information theory: mutual
information, conditional mutual information and a hybrid combination of both.

4.2.1 Mutual information

Mutual information between two random variables describes how much informa-
tion one random variable bears on the other [15]. More precisely, mutual informa-
tion between random variables X and Y is defined as:

I(X,Y) = H(X)−H(X | Y) =
∑
y∈Y

∑
x∈X

P (x, y)log2
P (x, y)

P (x)P (y)
, (6)

where H(X) = −
∑

x P (x)logP (x) is the entropy of X, which roughly measures
the amount of information carried by X, and H(X | Y) = −

∑
y P (y)

∑
x

P (x | y)logP (x | y) is the conditional entropy, which measures the entropy of X
when we know the value of Y.

For classification purpose, we consider attributes and class as random variables.
As mutual information between attribute Xi and class Y measures how much
information attribute Xi provides about class Y, an attribute with higher mutual
information value is considered to be more informative to the class. Consequently,
as the first approach, we can use mutual information to rank the attributes.

4.2.2 Conditional mutual information

Conditional mutual information between random variables X and Y given the
value of Z is defined as:

I(X,Y | Z) =
∑

x∈X,y∈Y,z∈Z

P (x, y, z)log2
P (x, y | z)

P (x | z)P (y | z) , (7)

Roughly speaking, this function measures the information that X provides about
Y when the value of Z is known.

In the classification context, Z is considered to be another attribute different
from X. If we sum I(X,Y | Z) across all possible attributes Z, then we get a
second metric between X and Y.

4.2.3 Direct rank using both mutual information and conditional mutual
information

The above two strategies compute some metrics and then rank the attributes.
They are quite intuitive, but do not consider the correlation among the selected
attributes. Here we give a third ranking approach based on both mutual informa-
tion and conditional mutual information, which ranks the attributes directly.
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At the beginning, the sorted attribute set As is empty. When we select the first
attribute, we select the attribute with the largest mutual information with the class
and add it to As. When we select next attribute from the unsorted attribute set A,
we should consider not only the relationship between the attribute and the class,
but also the influence of the selected attributes. So we select the attribute from
the unsorted attributes which has the largest mutual information with the class
conditioned on the selected attributes. In order to achieve this, we loop through
each selected attribute, and assess the conditional mutual information between the
candidate attribute and the class conditioned on the selected attribute. We take
the minimum of these values as an estimate of the conditional mutual information
between the candidate and the class conditioned on all the selected attributes.
Then from all the minimal conditional mutual information estimates, we select
the attribute with the maximal conditional mutual information and add it to As.
This process continues until the unsorted attribute set A becomes empty. The
sequence of attributes added to the sorted attribute set As gives an attribute
rank. The above attributes ranking procedure is summarised in Algorithm 1.

Algorithm 1 Direct attributes ranking algorithm.
1: A: set of unsorted attributes, initialized to contain all attributes
2: As: set of sorted attributes, initialized to be empty
3: Xmax = argmaxX∈A I(X,Y)
4: Add Xmax to As

5: while A ≠ ∅ do
6: for X ∈ A do
7: I(X) = minZ∈As I(X,Y | Z)
8: end for
9: Xmax = argmaxX∈A I(X)
10: Add Xmax to As, AND Remove Xmax from A
11: end while

4.3 Two Passes Algorithm

As is indicated above, the selective AnDE algorithm consists of two passes on the
data. When we try to compute the mutual information, we need the joint distri-
bution of one attribute and the class across all the examples. For the conditional
mutual information, we need the joint distribution of each pair of attributes and
the class. So before we can compute these metrics, the first pass of learning through
the examples should be performed to obtain the joint distribution.

After we select the top s attributes, we need a second pass of learning through
the examples to obtain the joint probability distributions on the selected at-
tributes. Algorithm 2 presents the pseudo-code of this second pass in selective
A2DE. Note that here we store only the observed count of each combination of 3
attributes and the class label. With these data we can easily compute the frequen-
cy of each combination when necessary. This process in selective A3DE is similar.
The only difference lies in that we need to store the count of each combination of 4
attributes and the class label. So the overall memory constrained selective AnDE
involves two passes of learning through training examples. Algorithm 3 highlights
the key steps of the training procedure.
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Algorithm 2 Second pass of learning through training data in selective A2DE.
1: U : set of unselected attributes
2: S : set of selected attributes ordered by one metric from Section 4.2
3: Count1 : vector of observed counts of combination of 3 selected attribute values and the

class label
4: Count2 : vector of observed counts of combination of 2 selected attribute values, 1 unse-

lected attribute value and the class label
5: for instance inst ∈ T do
6: y = value of class label in inst
7: for X1 ∈ S do
8: x1 = value of attribute X1 in inst
9: for X2 ∈ S AND X2 precedes X1 do
10: x2 = value of attribute X2 in inst
11: for X3 ∈ S AND X3 precedes X2 do
12: x3 = value of attribute X3 in inst
13: increase the element in Count1 with index (X1, x1,X2, x2,X3, x3, y) by 1
14: end for
15: for X3 ∈ U do
16: x3 = value of attribute X3 in inst
17: increase the element in Count2 with index (X1, x1,X2, x2,X3, x3, y) by 1
18: end for
19: end for
20: end for
21: end for

Algorithm 3 Training algorithm of memory constrained selective AnDE.
1: Perform the first pass of learning to compute the joint probability distribution
2: Calculate the number of selected attributes s according to equation (5)
3: Rank the attributes and then select the top s attributes as set S
4: Perform the second pass of learning to compute the probability distribution as in Algorithm

2

4.4 Complexity Analysis

Section 4.1 gives an analysis of the space complexity of selective AnDE, which
is O(kūn(C(s, n + 1)ū + C(s, n) ∗ (a − s) ∗ r̄)). It is worthwhile to note that the
memory requirement in the first pass of learning can be ignored compared to the
memory in the second pass.

In order to compile the probability tables, for every instance, we need to update
each entry for every combination of the n + 1 attribute-values from s attributes
and the entry for the unselected a− s attributes given every combination of the n
attribute-values from s attributes, so the time complexity of the training procedure
is O(t(C(s, n+ 1) + C(s, n)(a− s))). When classifying a single example, we need
to consider each attribute for every qualified combination of s parent attributes
within each class, so the time complexity is O(kaC(s, n)).

5 Empirical Study

In this section, we first describe the empirical setup. Then, in Section 5.2 we
evaluate the selective AnDE with different attribute ranking approaches, as well
as weighting and subsumption resolution. Section 5.3 compares selective AnDE
with NB and AnDE in terms of RMSE and zero-one loss, analyses the bias and
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variance component of the error results, and presents training and classification
time comparisons for different algorithms considered.

5.1 Empirical Setup

As the algorithm is proposed for large data, we undertake an extensive online
search to gather a group of large datasets, all of which have more than 100K
instances. These are all the publicly available datasets we could find. The detailed
sources of all data sets have been indicated in Table 1. From left to right, we
present the following characteristics of each data set: name, number of instances,
number of attributes, number of classes, source and description. Note that the
data sets have been ranked in ascending order of number of instances.

All datasets except poker-hand, uscensus1990 and splice contain one or
more numeric attributes. 6 datasets contain only numeric attributes: MITFaceSetA,
MITFaceSetB, MITFaceSetC, USPSExtended, MSDYearPrediction and satellite.
We discretize these numeric attributes using 5-bin equal frequency discretization
(EF5). We have observed that EF5 and MDL [7] discretization provide the best re-
sults in approximately half of the datasets each. In fact, the discretization method
does not matter if the group of data sets is large enough [8]. EF5 has been chosen
because it is faster than MDL, and also because it is not supervised and hence
does not need to potentially provide the classifier with class information from the
holdout data when used for pre-discretization. Using a pre-fixed number of bins
gives us another advantage of not having to deal with a huge number of values
per attribute as in MDL discretization in some cases. When we discretize one at-
tribute using EF5, we need to store the values of this attribute and sort the values.
Then we compute the cut points, which can be used to discretize new instance,
either training instance or testing instance. To avoid loading the whole data into
memory, only a sample of 100K points is used to define the bins for discretization.

We run the experiments on a C++ system which is specially designed for
out-of-core learning. It has the following characteristics:

1) It supports out-of-core learning, which means it can fetch one instance at
a time from the disk. This addresses the problem that large data sets can not be
loaded into memory entirely.

2) It provides the ability to flexibly set the number of learning passes through
the training data.

3) It supports 10-fold cross validation and bias-variance decomposition.

The base probabilities are estimated using m-estimation (m = 1) [3]. Missing
values have been considered as a distinct value. Note that root mean square error
is calculated exclusively on the true class label. This is different from Weka’s
implementation [10], where all class labels are considered.
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Table 1 Data sets used for experiments1

No. Name ♯Inst ♯Att ♯Class Source Description

1 localization 164860 5 11 UCI [13] Recordings of 5 people performing different
activities. Each person wore 4 sensors while
performing the same scenario 5 times.

2 census-
income

299285 41 2 UCI [1] Weighted census data extracted from the
1994 and 1995 current population surveys
conducted by the U.S. Census Bureau.

3 USPS-
Extended

341462 676 2 CVM [21] 0/1 digit classification (extended version of
the USPS data set).

4 MITFace-
SetA

474101 361 2 CVM [21] Face detection using an extended version of
the MIT face databasec. By adding nonfaces
to the original training set.

5 MITFace-
SetB

489410 361 2 CVM [21] Each training face is blurred and added to
set A. They are then flipped laterally.

6 MSDYear-
Prediction

515345 90 90 UCI [1] Prediction of the release year of a song
from audio features. Songs are mostly west-
ern, commercial tracks ranging from 1922 to
2011, with a peak in the year 2000s.

7 covertype 581012 54 7 UCI [1] Predicting forest cover type from carto-
graphic attributes only (no remotely sensed
data).

8 MITFace-
SetC

839330 361 2 CVM [21] Each face in set B is rotated.

9 poker-
hand

1025010 10 10 UCI [1] Each record is an example of a hand con-
sisting of five playing cards drawn from a
standard deck of 52. Each card is described
using two attributes (suit and rank), for a
total of 10 predictive attributes. The class
label describes the “Poker Hand”. The or-
der of cards is important.

10 uscensus-
1990

2458285 67 4 UCI [1] Discretized version of the USCensus1990raw
dataset, a 1% sample from the full 1990 cen-
sus. ‘Temp. Absence From Work’ has been
selected as class.

11 PAMAP2 3850505 54 19 UCI [17] Data of 18 different physical activities (such
as walking, cycling, playing soccer, etc., the
19th label is transient activities), performed
by 9 subjects wearing 3 inertial measure-
ment units and a heart rate monitor.

12 kddcup 5209460 41 40 UCI [1] Contains a standard set of data to be au-
dited, which includes a wide variety of in-
trusions simulated in a military network en-
vironment: “bad” connections, called intru-
sions or attacks, and “good” normal connec-
tions.

13 linkage 5749132 11 2 [11] Element-wise comparison of records with
personal data from a record linkage setting.
The task is to decide from a comparison pat-
tern whether the underlying records belong
to one person.

14 satellite 8705159 138 24 [16] Satellite image time series to predict land
cover.

15 splice 54627840 141 2 [20] Recognising a human acceptor splice site
(largest public data for which subsampling
is not an effective learning strategy).

1 The data sets are ranked in ascending order of number of instances and the appendix gives the results for
individual datasets for those who wish to consider the effects of different factors on the outcomes.

5.2 Best Configuration of Selective AnDE

In this subsection, we first compare an approximation to Eq. 5. Then we compare
the performance of three different ranking approaches along with random ranking
in selective A2DE. We also evaluate the influence of weighting and subsumption
resolution in selective A2DE. The aim is to obtain the best configuration for se-
lective AnDE.

Zero-one loss and root mean squared error (RMSE) are the most common loss
functions to measure the classification performance. As RMSE gives a finer grained
measure of the calibration of the probability estimates than zero-one loss, we select
the best configuration in terms of RMSE in this section. Table 8 in Appendix A
presents the RMSE for each algorithm on all data sets. These results are obtained
by 10-fold cross validation.

In order to give the results a more intuitionistic explanation, we present sum-
maries of win/draw/loss records of alternative algorithms, which indicate the num-
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ber of data sets on which one algorithm has lower, equal or higher outcome relative
to the other. Each entry compares the algorithm in the row against the algorithm
in the column. The p value following each win/draw/loss record is the outcome of
a binomial sign test and represents the probability of observing the given number
of wins and losses if each were equally likely. The reported p value is the result of
a two-tailed test. We consider a difference to be significant if p ≤ 0.05. All such p
values have been changed to boldface in the table.

5.2.1 Comparison of two approaches to compute the number of selected attributes

It is a bit complex to compute the number of selected attributes using Eq. 5. So
we here propose a heuristic to compute the selected attributes approximately. We
use ū also for the a − s unselected attributes as we believe this will not make a
significant difference and it will simplify the computation. So the overall memory
complexity of selected AnDE is O(k(C(s, n + 1) + C(s, n) ∗ (a − s))ūn+1). This
gives the heuristic to compute the number s of selected attributes as follows,

k(C(s, n+ 1) + C(s, n) ∗ (a− s))ūn+1 = kC(a, n′ + 1)v̄n
′+1. (8)

We compare these two approaches while using both mutual information and
conditional mutual information to direct rank the attributes. The algorithm us-
ing Eq. 5 is abbreviated as SA2DEdRank acrt, while the algorithm using Eq.8
is abbreviated as SA2DEdRank. Table 2 provides the win/draw/loss record of
SA2DEdRank acrt against SA2DEdRank. We can see that the approximation in Eq.
8 results in performance loss compared to the accurate estimation in Eq. 5. But it
is still acceptable. We use Eq. 8 for the rest of the experiments.

Table 2 W/D/L of SA2DE with different approaches to compute the number of selected
attributes

SA2DEdRank

W/D/L p

SA2DEdRank acrt 4/10/1 0.375

5.2.2 Comparison of selective A2DE with different attribute ranking approaches

As discussed in Section 4.2, we use mutual information, conditional mutual infor-
mation, and both of them to rank the attributes respectively. In order to evaluate
the effectiveness of ranking, we also run the algorithm which randomly ranks
the attributes. These four algorithms are abbreviated as SA2DEMI, SA2DECMI,
SA2DEdRank and SA2DERandom.

Table 3 presents the win/draw/loss records of these four algorithms. Note
that each win/draw/loss entry indicates the result of the row algorithm versus
the column algorithm. It is the same for the tables in the rest of the paper.
We can see that SA2DEdRank obtains lower RMSE more often than SA2DEMI,
SA2DECMI and SA2DERandom, significantly so with respect to SA2DEMI. Note
that while SA2DEMI and SA2DECMI also obtain lower RMSE more often than
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Table 3 W/D/L of SA2DE with different ranking methods

SA2DEMI SA2DECMI SA2DEdRank

W/D/L p W/D/L p W/D/L p

SA2DECMI 4/8/3 1
SA2DEdRank 10/3/2 0.039 9/4/2 0.065
SA2DERandom 6/0/9 0.607 6/0/9 0.607 4/0/11 0.118

SA2DERandom, these differences are not found to be significant. Relative to SA2DECMI,
SA2DEMI achieves lower RMSE almost as often as higher. These results show that
dRank is the most favorable attribute ranking approach. This might be explained
by the fact that dRank considers not only the correlation between the attribute
and the class label, but also the correlation among the selected attributes.

For the rest of the experiments, we consider dRank as the attribute ranking
option.

5.2.3 Comparison of weighting and subsumption resolution in selective A2DE

As weighting and subsumption resolution are two most well-known improvements
to AODE, we also examine the influence of these techniques in selective A2DE,
which are denoted by w and sub in the name.

Table 4 W/D/L of SA2DE with weighting and subsumption resolution

SA2DEdRank SA2DEdRank w SA2DEdRank sub

W/D/L p W/D/L p W/D/L p

SA2DEdRank w 6/7/2 0.289
SA2DEdRank sub 4/8/3 1 5/4/6 1
SA2DEdRank w sub 7/4/4 0.549 4/8/3 1 7/5/3 0.344

From the win/draw/loss records in Table 4, we can see that SA2DEdRank w

and SA2DEdRank w sub achieve lower RMSE more often than SA2DEdRank, but
these differences are not significant. While SA2DEdRank sub achieves lower RMSE
almost as often as higher than SA2DEdRank.

We may conclude that subsumption resolution will not improve selective A2DE
while weighting will. The reason might be that subsumption resolution is also a
technique to perform attribute selection and the repeated attribute selection will
not improve the accuracy further. As the improvement of weighting to selective
A2DE is not significant, we will not exploit these two techniques in the following
experiments.

5.3 Selective AnDE Compared to AnDE and ASAODE

In order to present a comprehensive comparison of selective AnDE, we also im-
plement two selective A3DE algorithms in this section. SA3DEdRank one per-
forms attributes selection based on the memory requirement of AODE, while
SA3DEdRank two on that of A2DE. We compare these algorithms with NB, AODE
and A2DE.

At the same time, we want to obtain a thorough idea on how selective AnDE
is compared with other improvements of AODE. As the study in [4] shows that
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ASAODE outperforms such improvements of AODE as weightily AODE, AODE
with Subsumption Resolution and AODE with BSE, we add ASADOE here to
give a thorough comparison.

5.3.1 Comparison in terms of RMSE

The win/draw/loss results of involved algorithms in terms of RMSE are presented
in Table 5. Notably, we obtain the results of A2DE on only 13 data sets. So the sum
of win/draw/loss records of A2DE with respect to alternative algorithm is 13. Sim-
ilarly, the sum of win/draw/loss records for SA3DEdRank one and SA3DEdRank two

is 14.

Table 5 W/D/L of NB, AODE, ASAODE, SA2DE, SA3DE and A2DE in terms of RMSE

NB size AODE size A2DE size

NB AODE ASAODE SA2DEdRank SA3DEdRank one A2DE

W/D/L p W/D/L p W/D/L p W/D/L p W/D/L p W/D/L p

AODE size

AODE 12/0/3 0.035
ASAODE 15/0/0 <0.001 14/1/0 <0.001
SA2DEdRank 14/0/1 <0.001 13/0/2 0.007 12/0/3 0.035
SA3DEdRank one 12/0/2 0.013 12/0/2 0.013 10/0/4 0.18 10/0/4 0.18

A2DE size
A2DE 12/0/1 0.003 13/0/0 <0.001 6/0/7 1 6/0/7 1 4/0/9 0.267
SA3DEdRank two14/0/0 <0.001 14/0/0 <0.001 12/0/2 0.013 14/0/0 <0.001 11/3/0 <0.001 12/0/1 0.003

These algorithms can be divided into three categories. The first category con-
tains only NB. The second category uses models that are of AODE size, includ-
ing AODE, ASAODE, SA2DEdRank and SA3DEdRank one. The last category uses
models that are of A2DE size, including A2DE and SA3DEdRank two.

We can see that NB achieves higher RMSE significantly more often than all
the other algorithms, which demonstrates the limitations of the independence as-
sumption in NB. We observe that both SA2DEdRank and SA3DEdRank one reduce
RMSE significantly often relative to AODE. They also reduce RMSE relative to
ASAODE, although the difference between SA3DEdRank one and ASADOE is not
significant. As for algorithms of A2DE size, SA3DEdRank two also reduces RMSE
significantly often relative to A2DE.

We can see that selective AnDE can obtain better performance than AnDE
of the same size but with lower n. Not only that, SA2DEdRank achieves low-
er RMSE almost as often as higher than A2DE. SA3DEdRank one obtains lower
RMSE more often than A2DE, although the difference is not significant. Notably,
SA3DEdRank one and SA2DEdRank are of AODE size, which require much less
memory than A2DE. These results show that selective AnDE can achieve similar
performance as AnDE with the same n.

These observations demonstrate that the attribute selection approach proposed
in this paper is a powerful technique to improve classification accuracy while not
requiring more memory. It might be explained by the fact that AnDE with higher
n has lower bias and big data sets favor these low bias algorithm, although the
attribute selection might result in some loss in accuracy.

5.3.2 Comparison in terms of zero-one loss

In this section we assess the performance using zero-one loss. Table 9 in Appendix
B presents the zero-one losses for each algorithm on all data sets, which are ob-
tained along with the RMSE results.
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Table 6 W/D/L of NB, AODE, ASAODE, SA2DE, SA3DE and A2DE in terms of zero-one
loss

NB size AODE size A2DE size

NB AODE ASAODE SA2DEdRank SA3DEdRank one A2DE

W/D/L p W/D/L p W/D/L p W/D/L p W/D/L p W/D/L p

AODE size

AODE 11/1/3 0.057
ASAODE 14/1/0 <0.001 11/2/2 0.022
SA2DEdRank 14/0/1 <0.001 13/0/2 0.007 11/1/3 0.057
SA3DEdRank one 12/0/2 0.013 11/0/3 0.057 9/0/5 0.424 9/1/4 0.267

A2DE size
A2DE 11/1/1 0.006 12/1/0 <0.001 6/1/6 1 7/0/6 1 3/0/10 0.092
SA3DEdRank two14/0/0 <0.001 14/0/0 <0.001 12/0/2 0.013 14/0/0 <0.001 11/3/0 <0.001 13/0/0 <0.001

Table 6 presents the win/draw/loss records of involved algorithms in terms of
zero-one loss. What is different from Table 5 is that the difference between AODE
and NB and the difference between SA3DEdRank one and AODE are not significant.
But AODE and SA3DEdRank one still achieve lower zero-one losses more often than
their rivals in these comparisons. What is revealed in Table 6 is very similar with
that in Table 5.

5.3.3 Comparison in terms of bias and variance

As we expect selective AnDE to exhibit low bias, we run the bias-variance decom-
position experiment which utilizes the experimental method proposed by Kohavi
and Wolpert [14]. For each data set, 10,000 training examples and 10,000 testing
examples are randomly selected. The bias variance decomposition is calculated
from the error on the test examples. This process is repeated 10 times to obtain
the mean bias and variance.

Table 10 in Appendix C provides the detailed results for each combination of
metric, algorithm and data set. Note that we get the bias and variance decompo-
sition for A2DE on only 14 data sets. Table 7 presents the win/draw/loss records
of the above 7 algorithms with respect to bias and variance.

We may observe that NB achieves higher bias significantly more often than all
the other algorithms. SA2DEdRank and SA3DEdRank one obtain lower bias more
often than AODE, although the difference between SA3DEdRank one and AODE
is not significant. Relative to ASAODE, SA2DEdRank obtains lower bias more
often, but the difference is not significant. SA3DEdRank one obtains lower bias
almost as often as ASAODE. SA3DEdRank two obtains lower bias more often than
AODE, ASAODE, SA2DEdRank, SA3DEdRank one and A2DE, not significant so
only with respect to ASAODE and A2DE. The win/draw/loss records for variance
do not indicate a significant difference between any pair of these algorithms except
SA2DEdRank against NB and SA3DEdRank one against NB.

Table 7 W/D/L of NB, AODE, ASAODE, SA2DE, SA3DE and A2DE in terms of bias and
variance

NB size AODE size A2DE size

NB AODE ASAODE SA2DEdRank SA3DEdRank one A2DE

W/D/L p W/D/L p W/D/L p W/D/L p W/D/L p W/D/L p

B
ia

s AODE size
AODE 14/1/0 <0.001
ASAODE 14/1/0 <0.001 11/2/2 0.022
SA2DEdRank 14/1/0 <0.001 11/2/2 0.022 9/2/4 0.267
SA3DEdRank one 12/1/2 0.013 11/1/3 0.057 7/1/7 1 9/1/5 0.424

A2DE size
A2DE 13/1/0 <0.001 12/2/0 <0.001 9/2/3 0.146 8/2/4 0.388 7/2/5 0.774
SA3DEdRank two 14/1/0 <0.001 14/1/0 <0.001 10/1/4 0.18 11/2/2 0.022 10/5/0 0.002 9/2/3 0.146

V
a
r
ia

n
c
e

AODE size
AODE 6/2/7 1
ASAODE 7/1/7 1 6/1/8 0.791
SA2DEdRank 2/0/13 0.007 5/0/10 0.302 4/0/11 0.118
SA3DEdRank one 2/0/13 0.007 4/0/11 0.118 4/0/11 0.118 4/3/8 0.388

A2DE size
A2DE 5/1/8 0.581 6/1/7 1 6/1/7 1 9/1/4 0.267 10/0/4 0.18
SA3DEdRank two 5/1/9 0.424 4/1/10 0.18 6/1/8 0.791 10/1/4 0.18 9/4/2 0.065 4/1/9 0.267
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5.3.4 Comparison in terms of computing time

Table 11 in Appendix D presents the training and classification time obtained by
10-fold cross validation. The mean training and classification time across all data
sets for each algorithm is shown in Fig. 1.
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Fig. 1 Computation time comparison of different algorithms (hours).

We can see that NB needs less training and classification time than all the
other algorithms. The reason is that the independence assumption in NB simpli-
fies the model computation. SA2DEdRank and SA3DEdRank one enjoy consistent
advantages over AODE and ASAODE at classification time, while suffering the
training time disadvantages over only AODE. It is mainly because SA2DEdRank,
SA3DEdRank one and ASAODE require one more pass learning through the data
than AODE and the former two compile more complicated tables of instance fre-
quencies at training time, while require less attributes at classification time. It is
also true for SA3DEdRank two to A2DE.

6 Conclusion

In order to deal with large data learning, we present memory constrained selective
AnDE in this paper which can achieve a satisfying balance between the memory
requirement and prediction accuracy. Experimental results show that our novel
heuristics provide highly accurate out-of-core learning for large datasets.

In all, selective AnDE enjoys the following characteristics:

1) two passes learning through the training data, which is acceptable to large
data learning given the accuracy improvement;

2) comparable accuracy to regular AnDE without attribute selection;

3) the same memory requirement as An′DE, where n′ = n− 1;

4) considerably lower bias and prediction error relative to An′DE, where n′ =
n− 1;

5) more training time, but less testing time than An′DE, where n′ = n− 1.
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During the process of doing this work, some new ideas have come into our mind.
On one hand, it is worthwhile to explore the technique of selecting both parents
and children. On the other hand, we can also combine the fast attribute selection
technique based on leave one out cross validation proposed in [4] to further improve
the classification accuracy.
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to care in independent living. In: Proceedings of the First international joint conference
on Ambient intelligence, AmI’10, pp. 177–186. Springer-Verlag, Berlin, Heidelberg (2010)

14. Kohavi, R., Wolpert, D.H.: Bias plus variance decomposition for zero-one loss functions.
In: Proceedings of the Thirteenth International Conference on Machine Learning, pp. 275–
283. Morgan Kaufman Publishers, Inc. (1996)

15. MacKay, D.J.: Information theory, inference and learning algorithms. Cambridge univer-
sity press (2003)
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